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The Even Mirror Fourier (EMF) filter is the universal approximation for nonlinear systems, which has
been used in active noise control (ANC) applications, especially in scenarios where ANC contains strong
nonlinearity. However, the computational burden can impede its implementation in practice. To mitigate
this disadvantage, an improved pipelined EMF (IPEMF) filter has been developed and applied for the non-
linear ANC systems, in this paper. The proposed architecture uses simple small-scale EMF modules (i.e.,
fewer coefficients) nested in a pipelined fashion to replace the complex EMF structure, and hence has got

Key w ordsf a computational advantage. Moreover, the modules of the IPEMF are designed to update the synaptic
Active noise control . . [ . .
Pipelined weight vector independently, and the output of IPEMF is simplified by the sum of the local estimates

of the modules. As a consequence, the nonlinear processing capability is considerably improved and
the filtered-error algorithm deduced for the IPEMF controller is less complicated. Simulation results show
that the proposed IPEMF controller significantly reduces the computational complexity compared to EMF,
while still maintaining control performance is as equivalent as EMF and better than the pipelined EMF

Even mirror fourier
Nonlinear filter

(PEMF), pipelined Volterra filter (PVF).

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The linear ANC systems using the FIR controller or its improve-
ments have been developed in many practical applications [1,2].
However, since these systems do not take into account the nonlin-
earity that exists in the noise sources or occurs in the primary or/
and secondary path, their performance is degraded [3-5]. Many
studies on reducing the effect of nonlinearity on the ANC system
have been represented. Nonlinear controllers based on neural net-
works (NN) were soon applied to compensate for nonlinear distor-
tion in the secondary path [6,7]. Extended Volterra series based-
controllers have shown to be effective under the assumption that
the noise source or/and the primary path contains nonlinear
behavior [3-5]. In [8-10], many computationally efficient nonlin-
ear controllers based on bilinear and spline structures have also
been developed. Another structure using the functional links artifi-
cial neural network (FLANN) for the nonlinear ANC system was
first proposed by Das and Panda [11]. In the recent literature, many
improvements of the FLANN structure have been studied and
applied to the nonlinear ANC [12-20].
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As indicated by research [21], the improvements of FLANN-
related structures cannot fulfill the requirements of the universal
approximation. By exploiting the attractive properties of the mul-
tidimensional generalized Fourier series, an EMF linear-in-the-
parameters filter was developed by Carini and Sicuranza [21].
The EMF filter can arbitrarily good approximation to a continuous
nonlinear function. It has been shown to be more efficient than the
Volterra series in nonlinear identification applications [21]. As can
be seen in [22-25], many ANC systems using EMF filters as con-
trollers have been developed with significant results. Like the Vol-
terra series-based filter, however, in order to have a good enough
model for systems containing strong nonlinearity, the EMF needs
to expand its order and memory length. This will lead to an
increase in computational complexity and training time.

In order to reduce computational complexity, many systems
using the pipelined architecture have been proposed [26-30].
The idea of pipelined architecture is based on the concept of divide
and conquer (i.e. a complex system can be broken down into many
simple small-scale subsystems and nested in a pipelined parallel
manner) [30]. Pipelined-based systems have low computational
cost because they only have to deal with small-scale modules con-
currently, and maintain their performance thanks to the nested
nonlinearity of the modules.
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The computational complexity of the controller using the EMF
increases rapidly when the order and/or the memory length goes
up, arising in ANC scenarios containing strong nonlinearity. To
reduce this disadvantage, a computational efficiency improved
pipelined EMF (IPEMF) controller for the nonlinear ANC systems
is developed. The design of the proposed IPEMF architecture con-
sists of small-scale EMF modules cascaded in a pipelined fashion.
Unlike the pipelined architecture in [26,27], the EMF modules in
the IPEMF have different synaptic weight vectors, and global out-
put is the sum of local estimates of each module. As a result, the
proposed IPEMF architecture can further improve the performance,
and simplify the adaptive algorithm in the ANC system. Besides, to
reduce the computational costs of filtering the signal through the
secondary path, the filtered-error algorithm has also been adopted
for the IPEMF based-ANC system. The stability conditions of the
proposed system have also been analyzed and presented. Finally,
we conducted many computational simulations with different sce-
narios and degrees of nonlinearity at the input signal, the primary
and secondary path to evaluate the effectiveness of the proposed
IPEMF controller.

The paper is presented as follows: Section 2 presents the pipe-
lined EMF (PEMF) controller. In Section 3, we develop the improved
structure for the PEMF controller. The stability condition and com-
putational complexity analysis are presented in Sections 4 and 5.
Section 6 deals with the simulation experiments. Finally, conclu-
sions are drawn in Section 7.

2. Pipelined even mirror fourier (PEMF) filter for ANC system
2.1. PEMF structure

Inspired by [26], the PEMF structure is developed and illus-
trated in Fig. 1. It is composed of small-scale EMF modules and
nested in a pipelined fashion. The input of each EMF module
includes the external signal and the output of the adjacent module
before it. For the M—th module, the second signal is its own
delayed output. The i-th EMF module structure is illustrated in
detail in Fig. 2. The module’s output is then fed into a linear FIR fil-
ter to extract the information contained in the signal. The PEMF
structure is designed so that the modules have the same synaptic
weight vectors.
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Fig. 2. The detailed structure of the i-th EMF module.

Let X;(n) be the input vector of the ith module, we can express it
as follows.
Xi(n) = [x(n =i+ 1), x(n = i), x(n =i = L+2), wi(n)]",1
<i<M (M
where [x(n—i+1),x(n—i),---,x(n—i—L+2)]"are the external

input vector at nth time, L is the input memory length, and u;(n)
is the second input signal of ith module,

):{J/i+1(”—1)if i#M
yu(n=1) ifi=M,
where y; ;(n—1) is the delayed output signal of the module

i+ 1;y,(n—1) is the output that is delayed one unit-time of the
M—th module. And the output y;(n) of the ith module is computed.

¥i(n) = H(n)'XEi(n) 3)

ui(n

(2)

with XE;(n) denote the expansion vector of the external input vector
Xi(n) by the third-order EMF function (For the sake of brevity, we
hereafter call EMF). And H(n) is the corresponding synaptic weight
vector in each EMF module. As mentioned before, the modules
adopt the same synaptic weight vector (i.e, H(n)=
H, (Tl)7 e, = Hm(n))

The extended signal XE;(n) at the n-th time can be represented
as,

X(n)
Xu(n) Xi(n) xi(n)
- ; dul
B Mol\:ule yM(n)l Mociiule y,(n) Molue yz(n)
'} —
E H(n) E H(n) H(n)
ym(n)
t
' d(n)
FIR Wm
() <
NI (3

Fig. 1. PEMF structure.
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XEi(n) = [XE1,(n)", XE2i(n)", XE3;(n)" | @

= [xel;,xe2;, - -, xeP;]"

where memory length P of XE;j(n) is defined as P = 23, with L! is
factorial L.

XE1;(n) is extended signal of the order 0 and order 1 of the EMF,
with memory length P; = L + 2,

XE1i(n) = [1,sin(0.57x(n — i + 1)), ...,sin(0.57mx(n — i — L + 2)),
sin(0.57u;(n))]"
(3)
XE2;(n) = [XEZli(n)T,XEZZi(n)T]T is the second-order extended
signal, with memory length P, = L + 1 + L(L + 1)/2,

XE21;(n) = [cos(mx(n — i + 1)), - -, cos(mx(n — i — L + 2)), cos(mu;(n))]"

(6)
Form=0:L—-1;k=m:L—1; and if .m#k
XE22i(n) = [sin(0.57tx(n — i — m)) x sin(0.57x(n —i — k)), ...,
sin(0.57x(n — i —m x sin(0.57u;(n))" (7)

T
XE3;(n) = [XEB]i(n)T,XE321,~(n)T,XE322,-(n)T7XE33,v(n)T] is the
third-order extended signal, with memory length P; = L + 1 + L
(L+1)+L(L-1)(L + 1)/6 and represented as.

XE31;(n) = [sin(1.57x(n — i+ 1)), ...,sin(1.57x(n —i — L + 2)),

sin(1.57u;(n))]" (8)
Form=0:L-1;k=m:L-1;t=k:L—-1.
ifm=k XE321;(n) = [cos(mx(n — i — m)) x sin(0.57x(n — i — t)), ...,

cos(mx(n —i—m)) x sin(0.57u;(n )]T 9)

elseif k = t XE322;(n) = [sin(0.57x(n — i — m) x cos(mx(n — i — k),...,

sin(0.57x(n — i — m)) x cos(mu;(n))]" (10)
else m#k=#t

XE33i(n) = [sin(0.57x(n — i — m)) x sin(0.57x(n — i — k))
xsin(0.5mx(n —i—t)),...,sin(0.57x(n — i — m))
xsin(0.57mx(n — i — k)) x sin(0.57u;(n)]" (11)

Thus, we can represent the weight vector H(n) consisting of 3

vectors H;(n),H»(n),Hs;(n) corresponding to the weights of the
expanded signal XE1;(n), XE2;(n), XE3;(n) as follows.

T

H(n) = [H1 (n)T,Hz(n)T,Hg(n)T}
= [h(n), ha(n), -, hp_ (n), hp(n)]" (12)

and the global output signal of the PEMF is the output of the FIR
filter (see Fig. 1),

y(n) =W(m'Y(n) (13)
where Y(n) = [y; (1), y,(n),- -, yyu(m)]'and W(n) = [wi(n), wz(n),---,

wu(n))" is the output vector of the modules and weight vector of
the linear FIR combiner, respectively.

2.2. Adaptive Fx-LMS algorithm for PEMF controller

The goal of the controller is to minimize residual error e(n).
Thus, we can define the cost function €(n) as an instantaneous
mean squared error (MSE) as follows.

€(n) = e*(n) (14)
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Residual error e(n) = d(n) — d(n) is sensed by a microphone at
the quiet location, with d(n) is the primary path noise and a(n) is
the noise-canceling signal generated through the secondary path
(see Fig. 3). Similarly [31], to give a general algorithm for both lin-
ear and nonlinear secondary path cases, we use a virtual secondary
path concept as,

A(n) =[a(n,0),a(n,1),--- ,a(n,KS)]T

_lodmn) admn)  ad(n) as)
~|9y(n) 9y(n—1)  dy(n —Ks)
where a(n,0),a(n,1),---,a(n,K;) are coefficients of the time-varying

filter A(n), and K; denotes the memory length of the a(n).
To minimize the cost function €(n), the synaptic weight vector
H(n) is adapted according to the algorithm as following,

H(n+1) = H(n) = } Vo) € (n) = H(n) = } p 250

9E(eX(m)) od (16)
= H(n) — "5 = H(n) + pe(n) 54
Note that,
ad(n) ks ad(n) 9y(n—p)
OH(n) szo dy(n—p) OH(n) 17)

and assume that the adaptation process is variable slowly,
which leads to.

dy(n—p) _ 9y(n—p)
oH(n) ~ @H(n—p) (18)

On the other hand,

dy(n-p) B(Zﬁﬁlwf(n —p)yi(n - p))

OH(n—p) OH(n —p)
oM wi(n — p)H(n — p)'XEi(n - p))
B 9H(n - p)
=3 wi(n — p)XEi(n - p) (19)

Substituting (19) into (18) and combining (16,17), we have.

H(n+1)=H(n) + ,ue(n)Zf’:Oa(n,p)
x SV wi(n - p)XEi(n — p)] (20)
Note that the term Y} ja(n, p) [Zﬁ‘ilwi(n — p)XEi(n — p)] is the

result of filtering the signal [Z?Lw,»(n —p)XEi(n — p)] through vir-

tual secondary path 7\(11). And if we set,
M ~
XEg(n) = [Zizlwi(n — p)XEi(n — p)] * A(n) (21)

where * is convolutional operation. Thus, the update equation of
H(n) is rewritten as follows,

H(n+1) = H(n) + pe(n)XEy(n) (22)
Similarly, we obtain the update equation of W(n) as.
W(n+1) =W(n) + pe(n)Ys(n) (23)

where Y;(n) = Y(n)*ﬁ(n) is the filtered signal of Y(n) through the
virtual secondary path 7\(n).
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Fig. 3. The ANC system based on PEMF controller.

3. Proposed improved PEMF (IPEMF) filter for ANC system
3.1. The IPEMF structure

In the PEMF structure, the EMF modules have the same synaptic
weight vector (i.e., H(n) = H,(n) = Hy(n),---,= Hy(n)). This can
limit the performance because the input signal in each module is
different (different in its delay). In addition, to extract the informa-
tion containing in the input signal, the outputs of the modules need
to be filtered through an adaptive linear FIR combiner. Another
drawback as shown in (21), the adaptation algorithm for the ANC
system needs to take into account the costs of generating signal

[Zﬁ‘ilwi(n —p)XEi(n — p)] and filtering it via the virtual secondary

path filter. These factors can complicate the algorithm and
increases the computational cost.

To overcome these disadvantages, the IPEMF structure has been
proposed for the ANC system, as shown in Fig. 4. Unlike PEMF, the
EMF modules of the proposed IPEMF update the synaptic weight
vector independently (i.e., Hi(n)#Hx(n),--- #Hyu(n)) and the out-
put of the IPEMF is the sum of the estimates of the EMF modules.
This can further improve the performance because of the dynamic
nature of each module. In the PEMF structure, the error e(n) needs
to be backpropagated through the linear FIR combiner (see Fig. 1)
to update the synaptic weight vector H(n) (i.e., the synaptic weight

errors to update the synaptic weight vector H(n). In contrast, the
proposed IPEMF is designed to update the synaptic weight vectors
H;(n) directly from the global error e(n). We can, thus, simply the
output estimate of the IPEMF by the sum of the output of the
modules.

Thus, the output signal of the proposed IPEMF filter is defined
as.
ym =" ym =

" Hi(n)"XEi(n) (24)

3.2. Filtered-error LMS algorithm for IPEMF controller

In order to reduce the computational cost of filtering the XE;(n)

signal through the a(n), the FE-LMS algorithm has been applied to
the proposed IPEMF structure. Fig. 5 illustrates the ANC system
based on the IPEMF architecture using the FE-LMS algorithm.

The coefficient vector H;(n) will be adapted according to the
algorithm as follows,

1

Hi(n + 1) = Hi(n) = 5 Vo) € (1) (25)
where Vy,m € (n) is gradient of €(n) with respect to H;(n), and is
calculated as,

5 ~
vector H(n) use the error which is affected by the weight w(n) of Vim € (n) = 9 (n) _ OE(€*(n)) ~ 2e(n) od(n) (26)
the FIR combiner to update). In other words, the PEMF uses local OHi(n) ~ OHi(n) OH;(n)
7 | 7 <
X(n)
X,(n)
X, (n)
»| Module Module Module
Yu (n) Vi (n) Vi (n)
M g - i 1
Vi (0) y,(n
y(n)
e(n)

Fig. 4. The Proposed IPEMF structure.
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Fig. 5. The IPEMF-based ANC system using the FE-LMS algorithm.

i)d Ks dd dy(
Note that 43 P05 np O )

is small, the update equation of H;(n) varies slowly, then we can
write.

), and assuming the step-size

y(m—p) _ Hn-p) (Zl {Hi(n — p)'XEi(n — p))
oH;(n) ~ oHi(n—p) oHi(n —p)
=XEi(n—p) (27)

Substituting (26), (27) in (25), and combining with (15), we get

Hi(n+ 1) = Hi(n) + pe(n)Y>,% - if’ XEi(n — p)
= Hi(n) + pe(n)y pa(n, p)xa(n -p)

(28)

where a(n, p) is the p + 1 component of the virtual secondary path
A(n). Set v =n—p+Ks such that n=v+p—Ks, thus the term
e(n)zl'fsoa(n D)XE;(n — p) in (28) can is rewritten as.

e(n)Zfioa
= [Zf:oe

Similarly [31], we define an adjoint virtual secondary path

(n, p)XEi(n — p)

(29)
(v+p—Ks)a(v+p— Ks,p)]XEi(v —Ks)

Augj(n) as.

E;j(n) = [a(n,Ks),a(n —1,Ks — 1),---,a(n — Ks, 0)]" (30)

Note that vector Xa;j(n) requires an order inversion of the coeffi-
cients vector fﬁﬁ) and delays these coefficients over time. Obvi-
ously, the term [Ep e(v+p—Ks)a(v+p st,p)} in (29) is the
result of filtering the e(n) through the Ka;j(n). Thus, the filtered

error ef (n) is defined as,

Ks

ef (n) = 3" e(n+ p — Ks)a(n + p — Ks.p)
P=0 (31)
= Se(n— (Ks — p))a(n — (Ks — p).p) = e(n)+Angy (n)

p=0

where a(n — (Ks — p),p

secondary path AAu;j(n).
Combining the (31), (29), (28), we deduce,

) is the p + 1 component of the adjoint virtual

Hi(n+1) = Hi(n) + pef MXE(n —Ks)  i=1---M (32)

where the term XE;(n — K5) is the extended input signal XE;(n) tha
delayed by Ks samples (with Ks is the memory length of the a( ))

4. Analysis of stability condition

To ensure stability for the proposed IPEMF controller, a bound
for the step-size has been analyzed in this section. We know that
the residual noise e(n) at the denoising point can be represented
by the Taylor series rule as.

de(n)

en+1) :e(n)+m

AHi(n) + -+ (33)

In fact, the effect of higher-order terms on the e(n + 1) is negli-
gible, thus we only need to analyze the first and second-order
terms. According to the steepest descent algorithm, AH;(n) is the
adjusted amount of the synaptic weight vector at time n + 1 and
n. From (25) we have,

1
AHy(n) = Hi(n + 1) = H(n) = =5 iV € (1) (34)
Substituting the gradient of the €(n)with respect to the H;(n)
calculated in (26), we get,
ad n)
AH;(n) =
i) = pe(n) g 35)

Note that with the assumption of small step-size, (35) can be
represented as,

AH;(n) = Me(n)zgio aya(?q(ﬁ)p) 8{/95‘7,(;1)19)
dy(n—p)

- Ks aa(n)
= ue(n)zp:o dy(n—p) OHi(n—p)

s ad
- ue(n)Zﬁj{)%XE

where XEg(n) is the filtered version of the XE;(n) through the virtual
secondary path. Similarly, 7 oe( ”) can be deduced as follows,

i(n —p) = ue(mXEi(n) (36)

de(n) ad(n) B ks ad(n) dy(n—p)
OHi(n) —  OH;(n) _szo dy(n—p) OHi(n)
S g KB~ ) = ~XEy(n 37)

On the other hand, squaring both sides of (33) we get,

2
e(n+1)—e(n) = {51352) AHi(n)] + 2e(n) 6(?13,-((”:1)) AHi(n)  (38)

It should be noted that the left-hand side of (38) denotes the
amount of change of the €(n) after an update process, thus we
can rewrite (38) as follows,
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2
Ae(n) =€e(n+1) — e(n)= {;ﬁ,((’:q)) AH:‘(")}
+ 2e(n) ;He(("g) AH;(n) (39)

Therefore, substituting (36) and (37) into (39) we obtain,

2 2
A€(n) = p|e(n)XE; (n) XEg(n - 40
(n) = pt|e(m)XEy(m) ”(ﬂ{“<mﬂmw@mﬁ (40)
According to the steepest descent algorithm, Ae(n) < 0 when
the algorithm reaches steady-state. Hence, we can achieve bound
for p as follows,

2 2

o<u<———— ==
= XEir ()" XEy(n)  max

(41)

where /4 denotes the maximum eigenvalue of the autocorrelation
matrix R = E[XE,-f(n)TXE,-f(n)] of the filtered input signal.

5. Analysis of computational complexity

To evaluate the computational efficiency, we compare the com-
putational complexity of the ANC systems based on the IPEMF con-
troller and the EMF, PEMF, PVF controllers. Note that PEMF and PVF
are 3rd order EMF and Volterra controllers based on the pipelined
architecture referenced in [26,27]. Furthermore, for a fair compar-
ison, we assume that all these controllers use the filtered-error
LMS algorithm. In this section, we only present the analysis of
the computational complexity of the IPEMF-based ANC system.

Note that Ks is the memory length of the secondary path a(n). L,
Lg, Lpg, and Ly is the external signal memory length of the IPEMF,
EMF, PEMF, and PVF controllers, respectively. Computational
requirements of the IPEMF-based ANC system include:

1. Number of multiplication to generate the extended input signal
XE;(n) includes 3L(L + 1)/2 + L(L-1)(L + 1)/6, where L(L + 1)/2 in
(7); L+ 1) in (9) and (10); L(L-1)(L + 1)/6 in (11).

2. The controller output needs MP multiplications and M(P-1)

[(L+1)43)!
(C1)131

additions, where M is the number of modules and P =

is the memory length of the extended signal XE;(n).

3. Updating the synaptic weights of the modules requires MP mul-
tiplication and M(P-1) addition

4. The number of multiplications and additions required to filter
the e(n) through the a(n) are Ks and Ks-1, respectively

Table 1 summarizes the results of the required operations of the

controllers. Note that Py = (=03 is the expanded signal memory

length of the PVF; Py = ‘.71 is the expanded signal memory length

of the EMF; Pp; = K(LL”IfETl))g“ is the expanded signal memory length of
the PEMF; My and Mpg denote the number of modules in PVF and

PEMF structures.

Table 1

The computational complexity of ANC systems.
Controllers Multiplications Additions
PVF (3 + My)Py + My + Ks-Ly-2 (1+My)Py+My+K; —4
PEMF (3 + Mpg)Ppg + Mpg + Ks-3Lp-4 (1 + Mpg)Ppe + Mpg + Ks — 4
EMF 3Pg-3Lg + Ks-1 2Pg + Ks-3
IPEMF (2 M+ 1)P-3L + Ks-4 2 M(P-1) + Ks-1
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6. Computer simulation

In this section, various experiments comparing the noise can-
cellation performance, computational complexity, processing time
of the EMF, PEMF, PVF, and proposed IPEMF controllers are per-
formed in different scenarios of the ANC system. The parameters
of the controllers have been selected as follows: the proposed
IPEMF (memory length L = 4, number of modules M = 4); EMF
(memory length Lg = 10); PEMF (memory length Lpg = 4, number
of modules Mpg = 4); PVF (memory length Ly = 4, number of mod-
ules My = 4). The expansion function of all controllers are chosen as
the third-order. To compare the performance of the controllers, we
use the mean square error (MSE),

MSE = 10log10{E(e*(n)) } (42)

where E(e?(n)) denotes the ensemble average of the e*(n). The
learning curve is plotted after 100 independent runs.

6.1. Experiment 1

In this experiment, the primary path is modeled as a strongly
nonlinear behavior, and described,

d(n) =x(n) +0.8x(n — 1) + 0.3x(n — 2) + 0.4x(n — 3) — 0.8x(n)x(n — 1)
+0.9x(n)x(n — 2) + 0.7x(n)x(n — 3) — 3.9x2(n — 1)x(n — 2)
—2.6x2(n—1)x(n — 3) + 2.1x%(n — 5)x(n — 6)

(43)

the secondary path is modeled.
d(n) =y(n) +0.355(n— 1)+ 0.095(n — 2)
~0.5y(m)y(n—1)+0.4y(m)y(n-2) (44)

The input is Gaussian noise. The performance and complexity of
the proposed IPEMF controller are affected by the choice of module
parameter M and external signal memory length L. Thus, we first
perform two experiments for the selection of suitable parameters
of L and M.

+ Module parameter selection

To select the appropriate number of modules, at first we keep
the external input signal parameter L = 4 and then change the
number of modules M from 1 to 8. Fig. 6 illustrates the relationship
between the MSE performance of the IPEMF controller and the
number of modules. Obviously, the noise cancellation performance

MSE(dB)
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Fig. 6. The MSE performance versus the number of modules M.
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reaches the best MSE value when M is equal to 4 or 5. However, to
compromise between the performance and the computational
complexity, we choose M = 4.

+ External input parameter selection

To select the appropriate input parameter, we keep the M = 4
and then change the external input parameter L incrementally
from 1 to 7. Fig. 7 shows the relationship between the MSE perfor-
mance of the IPEMF controller and the external signal parameter. It
is easy to see that the IPEMF controller achieves its best perfor-
mance when choosing the parameter L is greater than 4. However,
in order not to increase the complexity, here we choose the suit-
able external input parameter of L = 4.

+ Performance Compare of the EMF, PEMF, PVF and proposed IPEMF
controllers

In this section, an MSE performance comparison of the PVF,
PEMF, EMF controllers with the IPEMF controller has been shown
in Fig. 8. The learning rate of the controllers are chosen as: PVF (lin-
ear part y; = 0.06, nonlinear part (1st order uy; = 0.03; 2nd order
Un2 = 0.03, 3rd order uys = 0.028)); PEMF (linear part y; = 0.01,
nonlinear part (1st order py; = 0.05; 2nd order iy, = 0.05, 3rd order
un3 = 0.045)); EMF (1st order pg; = 0.007; 2nd order pg, = 0.006,
3rd order pg; = 0.006); and IPEMF (1st order u; = 0.0065; 2nd order
Ho = 0.0045, 3rd order s = 0.003);

In addition, the training time and computation complexity of
controllers are also shown in Table 2. The processing time is calcu-
lated by Matlab R2014 software and the computer configuration is
Intel(R) core(TM) i5-4590 CPU 3.3 GHz. The MSE performances are
averaged after 20,000 iterations and the controllers are set to the
same convergence rate.

From Fig. 8 and Table 2, it is clear that the performance of IPEMF
is better than that of PVF, PEMF and approximately equivalent to
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Fig. 7. MSE versus the external input signal L.
Table 2

Computational complexity, training time of controllers in experiments 1,2,3.
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EMF. Moreover, the computational complexity and training time
is significantly reduced in comparison with EMF. The PVF, PEMF,
and IPEMF controllers use small-scale EMF and Volterra modules,
resulting in less computation cost and processing time compared
to EMF controllers.

6.2. Experiment 2

In this experiment, primary path noise is referenced from [25],
d(n) =x(n—4) +0.3x(n - 5) +0.2x(n — 6)
—0.5sin(0.57x(n — 3))sin(0.57x(n — 4)) (45)

The reference signal is white noise and is normalized in [-0.8 to
0.8], the secondary path is similar to experiment 1. The parameter
of the controllers is set: PVF (linear part y; = 0.015, nonlinear part
(un1 = 0.005; pnp = 0.005, uns = 0.0045)); PEMF (linear part
u = 0.02, nonlinear part (uy; = 0.1; iy = 0.1, 3 = 0.12)); EMF
(ug1 = 0.022; pp, = 0.01, pgs = 0.0041); and IPEMF (u; = 0.0055;
Uo = 0.0048, us = 0.0045); Fig. 9 illustrates the smoothed MSE
learning curves of the ANC systems.

Here, we see that the proposed IPEMF and EMF controllers have
a better noise cancellation result than PVF and PEMF. And perfor-
mance of the IPEMF (-36.1213 dB) is slightly degraded compared
with that of EMF (-36.4268 dB). However, from Table 2, it is clear
that the IPEMF has a significantly reduced computational cost
and training time compared to EMF. In addition, it is easy to see
that the PEMF controller achieves convergence faster than that of
PVF. The reason may be because the EMF expansion function con-
tains sin(), cos() nonlinearity. This is an advantage of the EMF
extension function over Volterra.

6.3. Experiment 3

In this experiment, the reference noise is assumed to be the
logistics chaotic process [3], which is achieved based on the follow-
ing recursive function,

x(n)=px(n—1)[1 —x(n—1)] (46)

where g = 4, x(0) = 0.9, and is normalized in [-0.5 + 0.5].
The secondary path is the Hammerstein model [15], is repre-
sented as follows,

q(n) = tanh(y(n))

i (47)
d(n) =q(n) +0.2q(n — 1) + 0.05q(n — 2)

Primary path is similar to the experiment 1. The parameter of
controllers are set: PVF (linear part y; = 0.06, nonlinear part
(N1 = 0.002; uny = 0.0018, uyz = 0.0018)); PEMF (linear part
= 0.01, nonlinear part (uy; = 0.012; un = 0.011, ups = 0.011));
EMF (ug; = 0.009; ug, = 0.009, pgs = 0.0086); and IPEMF
(pq = 0.006; uy = 0.0058, i3 = 0.0056);

The MSE learning curves of the controllers are illustrated in
Fig. 10. From Fig. 10 and Table 2, we find that the noise cancellation
performance of the IPEMF controller is acceptable in comparison
with that of the EMF controller. But, it is obviously more efficient

Controllers for ANC system Computational Complexity

Processing time (s)

Mul Add Ex 1 Ex 2 Ex 3
PEMF 383 283 23.9168 37.8143 29.9776
PVF 393 283 22.8209 37.4210 30.5346
EMF 812 560 27.1397 47.3518 34.6973
IPEMF 491 442 23.44571 38.9515 32.2481




Dinh Cong Le, S. Zhang and J. Zhang

-6
PVF
-8 PEMF
EMF
-10 H proposed IPEMF |

0 0.5 1 1.5 2 25 3
Iterations x10*

Fig. 8. The MSE performance of different controllers for the scenario in
experiment 1.
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Fig. 9. The MSE performance of ANC systems for the scenario in experiment 2.

in terms of computation and processing time. The PVF and PEMF
controllers require less computational complexity and training
time than IPEMF. The reason is that they are designed to update
the same weight vectors. In systems containing strong nonlineari-
ties, however, this update strategy may not be effective.

6.4. Experiment 4

To illustrate a real experiment, we use measured secondary and
primary path which were made by Kou et al [1]. Here, the poles and
zeros of the P(Z) and S(Z) transfer function are values measured
from a real ANC system. Fig. 11a depicts the phase and amplitude
response for these measured P(Z) and S(Z).

The reference input signal is three sinewaves that have normal-
ized frequencies of 0.03, 0.06, and 0.08, and are limited to [-0.5 to
0.5]. Furthermore, this reference signal before being fed into the
adaptive controller is assumed to be strongly distorted by the fol-
lowing nonlinear model.

glx(n)] = 0.3x(n)x(n — 2) + 0.7x(n) (48)
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Fig. 10. The MSE performance of different controllers for the scenario in experi-
ment 3.

The learning rate of the controllers in this experiment is chosen
as: PVF (linear part y; = 0.015, nonlinear part (uy; = 0.0003;
Unz = 0.00027, s = 0.00024)); PEMF (linear part y; = 0.01, nonlin-
ear part (uy; = 0.00015; uynp = 0.00012, pns = 0.0001)); EMF
(g1 = 0.0001; pg = 0.00006, wp; = 0.00007); and IPEMF
(u1 = 0.0007; uy = 0.00002, us = 0.00002);

Fig. 11b shows the learning curves for the five controllers on a
length of 40.000 iterations. It is easy to see that two controllers
EMF, and proposed IPEMF reach the same control performance.
However, the computational complexity of IPEMF is significantly
less than that of EMF (Number of multiplication and addition oper-
ations saves 40% and 30% respectively).

6.5. Experiment 5

In practical ANC applications (e.g., for jets turbines, mufflers),
the primary noise propagating in a duct is often highly compressed
[3]. Therefore, we have to take into account the nonlinearity of the
air in the primary path. In this experiment, we choose the primary
noise at the canceling point modeled as a third-order polynomial
[3], that is.

d(n) = u(n —2) + 0.08u?(n — 2) — 0.04u*(n - 2) (49)

where u(n) = x(n) = f(n); f(n) is the impulse response of the transfer
function F(z) =z3 —0.3z7440.2z°, x(n) denotes the reference
noise, which is the sum of a sinusoidal wave of 500 Hz at a sampling
rate of 8000 samples/s and a Gaussian noise process of 40 dB SNR.
The secondary path transfer function is chosen as a
nonminimum-phase model S(z) = z2 + 1.5z72 — z4. The parame-
ters of controllers are set: PVF (linear part y; = 0.01, nonlinear part
(un1 = 0.02; un; = 0.0035, pys = 0.0025)); PEMF (linear part
= 0.01, nonlinear part (uy; = 0.02; un> = 0.003, uys = 0.001));
EMF (ug; = 0.002; up = 0.0005, pps = 0.00015); and IPEMF
(uq = 0.004; u, = 0.0005, ps = 0.0002). Fig. 12 shows a comparative
plot obtained by the PVF, PEMF, EMF, and proposed IPEMF con-
trollers. It is clear that the noise cancellation capacity of the pro-
posed IPEMF is better than PEMF and PVF, while the
computational load is significantly reduced compared to EMF.
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Fig. 11. a) The amplitude and phase response for P(Z) and S(Z), b) The MSE performance of different controllers for the scenario in experiment 4.
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Fig. 12. Comparison of learning curves for PVF, PEMF, EMF and IPEMF controllers.

7. Conclusion

In this paper, a computational efficient IPEMF controller has
been proposed for nonlinear ANC application. The IPEMF controller
consists of small-scale EMF modules cascaded in a pipelined paral-
lel fashion. Research points out that nonlinear processing capabil-
ity based on pipelined architecture can be significantly improved
when updating synaptic weights is independent. In addition, the
output of the IPEMF is designed by the sum of the estimates of
the modules, which makes the algorithm derived for the ANC sys-
tem less complex. Experimental results have proved that the pro-
posed IPEMF-based ANC system achieves better noise
cancellation performance than conventional PVF, PEMF-based
ANC systems and is equivalent to EMF-based ANC systems. Fur-
thermore, it can greatly reduce the computational complexity
and training time compared to EMF- based ANC.
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