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A B S T R A C T

The nonlinear adaptive exponential functional link artificial neural networks (E-FLANN) filter has been in-
troduced to improve the noise reduction capability of the functional link artificial neural networks (FLANN) in
nonlinear active noise control (NANC) system. It, however, suffers from a heavy computational burden at the
nonlinear secondary path (NSP) and poor convergence performance in strong nonlinearity systems. To surmount
these shortcomings, a computationally efficient generalized E-FLANN filter with the channel-reduced diagonal
structure (GE-FLANN-CRD) for NANC system is developed in this paper. Based on introducing the suitable cross-
terms and adaptive exponential factor into the trigonometric functional expansions, the nonlinear processing
capability of the filter is enhanced in NANC. Also, by applying the filtered-error least mean square (FELMS)
algorithm to the GE-FLANN-CRD, it substantially decreases the computational cost to update the exponential
factor. Computer simulations demonstrate that the proposed filter-based the NANC system performs better than
the FLANN, E-FLANN and Generalized FLANN (GFLANN) filters-based NANC system in the presence of strong
nonlinearity.

1. Introduction

To compensate the nonlinear distortions that exist in the actual
NANC systems, many researchers have successfully used various non-
linear adaptive filters as the controller. Based on the Volterra filter,
bilinear filter, and spline filter, adaptive controllers for NANC system
have been proposed in [1–3]. One another method using neural net-
works (NNs) has also been reported in the literature on NANC, such as
multi-layer perceptron (MLP) [4], radial basis function (RBF) [5], the
fuzzy neural network [6] and the recurrent neural network (RNN) [7].
Beside, many wavelet frames (such as POLYnominal WindOwed Gaus-
sian (POLYWOG), superposed LOGistic functions (SLOG) and super-
posed LOGistic functions (SLOG)) have been applied to NANC systems
by M Akraminia et al., [8–10]. Apart from those approaches, an effi-
cient alternative based on FLANN using trigonometric functional ex-
pansions has received much attention due to its single layer archi-
tecture [11–14]. In consequence, various modifiers of FLANN structure
for NANC systems have been proposed. Emerging among them can be
listed as recursive FLANN (RFLANN) [15], generalized FLANN
(GFLANN) [16], bilinear FLANN (BFLANN) [17], convex/cascade
combinations of the nonlinear adaptive FLANN filter and other adaptive
filters such as the adaptive infinite impulse response (IIR) [18], Volterra

[19], FLANN [20] and Legendre polynomial [21].
Recently, in order to further improve the nonlinear modeling cap-

ability of the pure sinusoids-based FLANN filter, an adaptive ex-
ponential FLANN (E-FLANN) filter has been presented and successfully
applied for NANC [22]. In this study, trigonometric functional expan-
sions with the magnitude of the sinusoid are adjusted along with an
adaptive exponential factor. However, because of the extra computa-
tional cost of filtering the signal through the secondary path to update
the exponential factor, its computational complexity increases sig-
nificantly, especially in the case of NSP. Moreover, in the presence of
strong nonlinearity in the secondary or/and primary paths, the per-
formance of the E-FLANN filter may be reduced. This may be caused by
the mixed terms with different time delays that exist in the primary and
secondary paths under such circumstances (as indicated in [23]). In
order to address the aforementioned problems, two improvements are
proposed in this paper. Firstly, a generalized E-FLANN with channel-
reduced diagonal structure (GE-FLANN -CRD) is presented. It is de-
signed by exploiting suitable cross-terms (the products of input samples
at different time delays with trigonometric functions with exponentially
varying amplitude) with an implementation based on a diagonal-
channel structure. Secondly, a filter-error LMS (FELMS) algorithm is
proposed to the GE-FLANN-CRD -based NANC system.
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The rest of this paper is organized as follows. Section 2 proposes GE-
FLANN-CRD filter for NANC system. Sections 3 and 4 presents the
analysis of computational complexity and stability, respectively. Sec-
tion 5 provides computer simulation studies of the proposed controller.
Finally, the conclusion is drawn in Section 6.

2. Proposed GE-FLANN-CRD filter for NANC system

2.1. The GE-FLANN-CRD filter and its multichannel implementation

An E-FLANN filter of order P, memory length N, using the trigo-
nometric expansion with exponentially varying amplitudes [22] can be
described by the input-output relationship as follows

=y n W n X n( ) ( ) ( )E E
T

EF (1)

where WE(n)=[w1E, w2E, …, wME]T denotes the adaptive weight vector;
[•]T is transpose of a vector; M=N(2P+1) and XEF(n) is the expanded
input signal vector
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where β(n) is an adaptive exponential parameter and X(n)= [x(n) x
(n− 1)… x(n−N+1)]T is the vector of input samples to the E-FLANN
filter.

The output of the E-FLANN filter is easily implemented based on a
filter bank structure as
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where ai(n), b1i(n), b2i(n), b(P+1)i(n), b(P+2)i(n) are the corre-
sponding adaptive coefficients.

As discussed above, the performance of the E-FLANN may be de-
graded in the existence of strong nonlinearity. The main reason may be
that its nonlinear extension function lacks cross-terms. To surmount this
shortcoming, the cross-terms involving the products of input samples at
different time delays with trigonometric functions with exponentially
varying amplitudes are introduced into functional expansion.
Theoretically, this method can be easily extended to any order P > 1.
However, to avoid confusion in analysis, in this section we only con-
sider introducing cross-terms into the E-FLANN filter with the order
P=1. Hence, a generalized E-FLANN (GE-FLANN) is defined as
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where C1i,j(n) and C2i,j(n) are the coefficients of cross-terms.
Note that the first three components on the right-hand side of the

equation above satisfy a time-shift property while the last two com-
ponents including the cross-terms do not satisfy this property. This re-
sults in increasing computational burden when applied to NANC sys-
tems. Therefore, we need to consider the diagonal structure feature for
the cross-terms, as pointed out in [24–26].

Similar to [26], a GE-FLANN with channel-reduced diagonal struc-
ture (GE-FLANN-CRD) is presented as
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where m denotes the diagonal channel number, k designates the time
index, C11m,k(n), C12m,k(n), C21m,k(n) and C22m,k(n) are the coefficients
of the cross-terms. Pr is a positive integer and 1≤ Pr≤N− 1. Note that
the channels of the cross-terms are defined so that the channel signal
sequence satisfies a time-shift property and the diagonal channel
number depend on the parameter Pr

To derive the adaptive algorithm for the GE-FLANN-CRD filter, we
can rewrite (5) using the vector form as
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where the coefficient vector and the corresponding input signal vector
are defined by
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For m=1,2,…,Pr
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Combining the coefficients vectors (7), (9), (11), (13), (15), (17) and
(19) we get an overall vector is expressed as
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Similarly, we can combine (8), (10), (12), (14), (16), (18), and (20)
to generalize signal vector U(n) as follows
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Therefore, the output signal given in (6) can be written in a compact
form as

=y n W n U n( ) ( ) ( )T (23)

As a result, a multichannel structure is implemented for the GE-
FLANN-CRD filter as shown in Fig. 1. Clearly, the way to exploit the
cross-terms in the GE-FLANN-CRD is different from that given by

Sicuranza et al. [16]. In this report, they exploited the cross-terms in a
similar way to the diagonal representation of the Volterra filter. How-
ever, unlike Volterra filter, it should be noted that these cross-terms do
not satisfy symmetry properties.

2.2. The FELMS algorithm of the adaptive GE-FLANN-CRD filter in NANC
systems

According to [22], in order to update the coefficient vector W(n)
and the exponential factor β(n) of the adaptive E-FLANN filter using the
FxLMS algorithm, we must filter the input signals of each parameter (W
(n) and β(n)) through the secondary path. This leads to increased
computational complexity. Especially in the case of the secondary path
is nonlinear. Although the adaptive exponential factor can enhance the
nonlinear processing capability, it increases the computational burden
when applied to ANC. To overcome this disadvantage, we propose a
filtered-error LMS algorithm for the GE-FLANN-CRD based NANC
system, in this section. Its structure is shown in Fig. 2.where P(z) is the
transfer function of the primary path, S(z) is the transfer function of the
secondary path, x(n) is the reference signal, d(n) is the primary noise
sensed at the error microphone, y(n) is the controller output, ys(n) is the
indirectly generated signal at the cancellation point. The GE-FLANN-
CRD structure with the adaptive coefficient vector W(n) constitutes the
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nonlinear controller
For the NANC with linear secondary path (NANC/LSP) system, we

can directly apply the algorithms reported in [27,28] to generate the
filtered-error based adaptive GE-FLANN-CRD filter. Thus, the update
equations of the coefficients vectorW(n) and the exponential factor β(n)
can be expressed as

+ = + ∗ −W n W n μ e n a n U n L( 1) ( ) [ ( ) ( )] ( ) (24)

+ = + ∗ ′ −β n β n μ e n a n W n U n L( 1) ( ) [ ( ) ( )] ( ) ( )β
T (25)

where a(n) represents the error filter which is the transfer function of
the estimated secondary path, L denotes the reference signal delay and
equal to the length of the estimated secondary path (L= Ls), (∗) means
convolution.

For the NANC with nonlinear secondary path (NANC/NSP) system,
since the nature of the secondary path is time-varying, it obstructs the
direct application of filtered-error based algorithms to NANC/NSP.
Similar to [23], to derive the filtered-error LMS algorithm for adaptive
GE-FLANN-CRD filter, we use a concept of a virtual secondary path
filter ∼S n( ) with coefficients as
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where Ls is the length of the virtual secondary path.
The coefficient vector W(n) of the nonlinear controller will be ad-

justed according to the steepest descent algorithm to minimize the in-
stantaneous squared error as follows
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where μ is the learning rate; ∇W(n)J(n) is the gradient of cost function J
(n)= E(e2(n)) with respect to the weight vector W(n) and is deduced by
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Here, E(.) denotes the expectation operator, e(n)= d(n)− ys(n) is the
residual noise at the error microphone. Note that
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Assuming that for small step sizes, the weights are slowly varying,
then we have
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Thus, we can write the update equation of W(n) as
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where s n l( , ) is the (l+1)th component of the virtual secondary path
coefficient vector ∼S n( ).

Let t= n− l+ Ls, so that n= t+ l− Ls. Thus, the last term in (31),
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Let us define vector ∼S n( ) as a new virtual secondary path filter with
coefficients vector as

= − − −∼S n s n Ls s n Ls s n Ls( ) [ ( , ), ( 1, 1),..., ( ,0)]T (33)

Note that the vector ∼S n( ) contrasts with the vector ∼S n( ), it not only
requires reversing the order of the coefficients of the vector ∼S n( ) but
also requires delaying the time-varying coefficients.

Obviously, the term on the right-hand side of Eq. (32),
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further define the filtered error as
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where s n l( , ) is the (l+1)th component of the vector ∼S n( ). Combining
(31), (32) and (34) we yields
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Similarly, the adaptive exponential factor β(n) is updated as
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3. Computational complexity analysis

In this section, the comparison of computational complexity of the
proposed GE-FLANN-CRD with the GFLANN [16] and the E-FLANN
[22] for NANC system are given. Assuming N is memory length, P is the
order of sinusoidal expansion function, Ls is the memory size of the
secondary path, Pr, Nd are the parameters for the diagonal channel
number. When the secondary path is affected by the nonlinearity, it is
considered as a time-varying filter. As a result, we cannot take ad-
vantage of the delay relationship that exists in the nonlinear state.
Conversely, when the secondary path is linear, we can use this delay
relationship to reduce the computational burden. Table 1 summarizes
the total computational load of the proposed GE-FLANN-CRD, GFLANN
[16] and E-FLANN [22] filters for the both NANC/NSP and NANC/LSP
case.

Fig. 3a and b illustrate the number of multiplications required in
each of the controller for the NANC/NSP and the NANC/LSP, respec-
tively. Assume that the parameters are set to be N=10, Nd=9, Pr=2,
P=3 (for E-FLANN), P=1 (for GFLANN and GE-FLANN-CRD), with Ls
increasing from 3 to 15. From Fig. 3a, we observed that the E-FLANN
and GE-FLANN-CRD using FxLMS algorithm have higher computational
complexity than the GFLANN. This result is caused by the extra com-
putational cost for filtering the signal through the secondary path to
update the exponential factor. However, thanks to the use of the delay
relationship in the case of NANC/LSP, this extra computational cost can
be reduced. As shown in Fig. 3b, the computational complexity of the E-
FLANN and the GE-FLANN-CRD using the FxLMS algorithm is de-
creased compared to the computational complexity of the GFLANN. It is
evident that the influence of the exponential factor on the computa-
tional complexity is considerable, especially in the case of NANC/NSP.
Furthermore, Fig. 3 reveals the GE-FLANN-CRD using the FELMS al-
gorithm achieves better computational efficiency. It not only reduces
the computation requirement for filtering the signal through the sec-
ondary path to update the exponential factor but also the computation
requirement for filtering the signal through the secondary path to up-
date the filter coefficients.

4. The analysis of stability conditions

To investigate the stability of the proposed approach, we define a
discrete Lyapunov function as

=P n e n( ) ( )
2

2

(37)

where e(n) is the error signal and P denotes the discrete Lyapunov
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function. During the training process, the change of Lyapunov function
can be given by

= + − = + −P n P n P n e n e nΔ ( ) ( 1) ( ) 1
2

[ ( 1) ( )]2 2

from + = +e n e n e n( 1) ( ) Δ ( )

⇒ = +P n e n e n e nΔ ( ) 1
2

Δ ( )[2 ( ) Δ ( )] (38)

For simplicity, we combine the coefficients in the adaptive GE-
FLANN-CRD filter for the ANC system as

=T n W n β n( ) [ ( ), ( )]T (39)

According to the updating rule developed in this study, T(n) can be
adjusted as

+ = + = − ∂
∂

T n T n T n T n η J n
T n

( 1) ( ) Δ ( ) ( ) ( )
( )
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i
0

1

(40)

where η=[μ, μβ], S=[s0, s1,…sLs]T is the coefficients of secondary
path transfer function and G(n)= [Gw(n), Gβ(n)]T are calculated as
follows
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(42)

According to the rule of the Taylor expansion, the instantaneous
error e(n) is expanded as follows

+ = + = + ⎡
⎣⎢

∂
∂

⎤
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+e n e n e n e n e n
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Δ ( ) . .
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(43)

where h.o.t denotes the higher order terms of the rest of Taylor series
expansion and can be ignored. Then

≈ ⎡
⎣⎢

∂
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⎤
⎦⎥
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Substitute (40), (44) in (38) and set <P nΔ ( ) 0, we have

= ⎡
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where ⎡⎣ ⎤⎦
= − ∗∂

∂ S G n( ( ))e n
T n

T
T( )

( ) , Q(n)= S ∗G(n), ‖•‖ is the Euclidean
norm and the symbol “∗” means convolution.

Therefore, the local stability of the system based on the adaptive
GE-FLANN-CRD filter is guaranteed provided that < <η Q n0 2/‖ ( )‖2.

5. Simulations

In order to prove the effectiveness of the proposed GE-FLANN-CRD
filter for the NANC systems, four scenarios of nonlinear ANC system are
simulated in this section. And to provide a fair comparison, all adaptive
filters including FLANN, E-FLANN, GFLANN and GE-FLANN-CRD are
updated by FxLMS-based algorithms. Also, to demonstrate computa-
tional efficiency of the proposed filter, the GE-FLANN-CRD updated byTa
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a FELMS-based algorithm is also compared.
The memory length of the all filters are chosen as N=10. The

function expansion of the input signal is third-order type (P=3) for the
FLANN, E-FLANN and first-order type (P=1) for GFLANN and GE-
FLANN-CRD. The number of diagonal channels of the GE-FLANN-CRD
and GFLANN is chosen as Pr=2 and Nd=9, respectively. The per-
formance of the different filters is measured in terms of the normalized
mean square error (NMSE) which obtained by averaging over 100 in-
dependent runs.

5.1. Experiment 1

In this experiment, the reference noise x(n) is a sinusoidal wave of
500 Hz sampled at the rate of 8000 samples/s, which is obtained by x
(n)= 2 sin(2π500n/8000)+ v(n), and ν(n) denotes a Gaussian noise
of 40 dB SNR. The primary noise observed at the cancellation point is
assumed as the following third-order polynomial model d(n)= t
(n− 2)+ g1t2(n− 2)− g2t3(n− 2). where g1, g2 are a measure of the
strength of the primary path nonlinearity, t(n)= x(n) ∗ f(n) and f(n) is
the impulsive response of the transfer function f
(z)= z−3− 0.3z−4+ 0.2z−5.

Case 1: The secondary path is the non-minimum phase with a
transfer function as S(z)= z−2+ 1.5z−3−z−4. The strength of the
primary path nonlinearity is chosen as a weak nonlinear distortion case:
g1= 0.08, g2= 0.04. The learning rate of FLANN is set to η1w=0.007,
η1H=0.003 for the linear and nonlinear parts, respectively. The
learning rate of E-FLANN is set toη2w=0.0065, η2H=0.003 and
β2= 0 for the linear, nonlinear parts and the adaptive exponential
factor, respectively. Learning rate of GFLANN are η3w=0.006,
η3H=0.0025 and η3c=0.0005 for the linear, the sin(.) cos(.) functions
and the cross-terms parts, respectively. The learning rate of GE-FLANN-
CRD uses FxLMS algorithm as μ1a=0.0045, μ1b=0.0015,
μ1c=0.0008 and βX=0 for the linear, the sin(.) cos(.) functions, the
cross-terms parts and the adaptive exponential factor, respectively. The
learning rate of GE-FLANN-CRD uses FELMS algorithm as μ2a=0.006,
μ2b=0.0025, μ2c=0.0005 and βE=0 for the linear, the sin(.) cos(.)
functions, the cross-terms parts and the adaptive exponential factor,
respectively. Fig. 4 depicts the performance comparison of NMSE for
the FLANN, E-FLANN, GFLANN and GE-FLANN-CRD controllers in
weak nonlinear distortion case.

Case 2: The strength of the primary path nonlinearity is chosen as a

strong nonlinear distortion case: g1= 0.8, g2= 0.4. The secondary path
is chosen similarly to case 1. The learning rates of the different filters
used as: for the FLANN (η1w=0.005, η1H=0.002); for the E-FLANN
(η2w=0.0008, η2H=0.0004 and β2= 0.02); for the GFLANN
(η3w=0.005, η3H=0.0015; η3c=0.001); for the GE- FLANN-CRD
using FxLMS (μ1a=0.0009, μ1b=0.0005, μ1c=0.0003 and
βX=0.01); for the GE-FLANN-CRD using FELMS (μ2a=0.001,
μ2b=0.0006, μ2c=0.0003 and βE=0.01).

Fig. 5a illustrates the NMSE performance curves of the filters for the
nonlinear ANC systems in strong nonlinear distortion case. Fig. 5b re-
presents the change in the adaptive exponential factor with respect to
iterations.

Case 3: The secondary path transfer function is chosen to be the
minimum-phase model S(z)= z−2+ 0.5z−3. Table 2 summarizes si-
mulation results for both cases: the primary path contains strong non-
linear distortion and weak nonlinear distortion. Here, the NMSE values
are measured after 5000 iterations at the same initial convergence
speed.

From Figs. 4, 5a and Table 2, it is evident that the GE-FLANN-CRD
exhibits better performance in comparison with FLANN, E-FLANN and
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Fig. 3. Illustrate the number of multiplications required in each of the controller for (a) NANC/NSP and (b) NANC/LSP.
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GFLANN. And the performance of the GE-FLANN-CRD using the FELMS
algorithm is equivalent to that of the GE-FLANN-CRD using the FxLMS
algorithm. In addition, in the case of the strong nonlinear distortion, the
proposed GE-FLANN-CRD filter achieves superior performance over the
FLANN, E-FLANN and GFLANN filters.

5.2. Experiment 2

In practical ANC system, the main components such as the power
amplifier and loudspeaker at the output of the filter can be considered
as a secondary path. It is usually approximated by block-oriented
nonlinear models that are the Wiener, Hammerstein, and linear–-
memoryless nonlinear–linear (LNL) cascade models.

In this experiment, we use the secondary path as the Hammerstein
model with a memoryless nonlinearity v(n)= tanh(y(n)) and followed
by filter ys(n)= v(n)+ 0.2v(n− 1)+ 0.05v(n− 2). The primary path
is assumed as high nonlinear behavior and modeled by a Volterra series
d(n)= x(n)+ 0.8x(n− 1)+ 0.3x(n− 2)+ 0.4x(n− 3)− 0.8x(n)x
(n− 1)+ 0.9x2(n− 2)+ 0.7x2(n− 3)− 3.9x3(n− 1)− 2.6x2(n− 1)
x(n− 3)+ 2.1x2(n− 2)x(n− 3). The reference signal is colored noise
that are generated from autoregressive moving average models by fil-
tering a random sequence through x(n)= 0.04x(n− 1)− 0.034x
(n− 2)+ 0.0396x(n− 3)− 0.07565x(n− 4)− 0.1u(n)− 0.01u

(n− 1)− 0.137u(n− 2)+ 0.0353u(n− 3)+ 0.0698u(n− 4), where u
(n) is mean-zero white Gaussian sequence with variance one. The
learning rates of the different filters are: for the FLANN (η1w=0.01,
η1H=0.005); for the E- FLANN (η2w=0.03, η2H=0.005 and
β2= 0.1); for the GFLANN (η3w=0.07, η3H=0.01; η3c=0.03); for
the GE-FLANN-CRD using FxLMS (μ1a=0.07, μ1b=0.02, μ1c=0.03
and βX=0.08); for the GE-FLANN-CRD using FELMS (μ2a=0.05,
μ2b=0.015, μ2c=0.03 and βE=0.051).

Fig. 6 shows a comparative plot of the NMSE achieved by the NANC
systems with the FLANN, E-FLANN, GFLANN and GE-FLANN-CRD fil-
ters for the case of the secondary path approximated by the Hammer-
stein model. From Fig. 6, it is observed that the proposed GE-FLANN
-CRD filter using the FELMS or FxLMS algorithm yield better NMSE
performance compared to the FLANN, E-FLANN and GFLANN.

5.3. Experiment 3

In this experiment, we assume that the secondary path is modeled
by a volterra series whose input and output relationship is described as
ys(n)= y(n)+ 0.35y(n− 1)+ 0.09y(n− 2)− 0.5y(n)y(n− 1)+ 0.4y
(n)y(n− 2). The primary path is chosen as the one used in experiment
2. The reference signal is random noise with a uniform distribution
between −0.5 and +0.5. The learning rate for all the filters are chosen
as: the FLANN (η1w=0.003, η1H=0.0005); the E-FLANN
(η2w=0.005, η2H=0.0005 and β2= 0.02); the GFLANN
(η3w=0.065, η3H=0.02; η3c=0.02); the GE-FLANN-CRD using
FxLMS (μ1a=0.028, μ1b=0.002, μ1c=0.012 and βX=0.008); the
GE-FLANN-CRD using FELMS (μ2a=0.018, μ2b=0.001, μ2c=0.01
and βE=0.008).

Fig. 7 shows the simulation result when the secondary path and the
primary path are time-varying nonlinear models. It is evident that the
GE-FLANN-CRD using the FELMS or FxLMS algorithm exhibits better
performance in comparison with FLANN, E-FLANN and GFLANN.

6. Conclusion

In this paper, we proposed the computationally efficient GE-FLANN-
CRD filter to improve the noise mitigation capability of the E-FLANN in
nonlinear ANC system. The performance of the filter has been enhanced
by exploiting the suitable cross-terms and adaptive exponential factor.
Based on the diagonal-channel structure, this GE- FLANN-CRD filter is
easily implemented with the filter bank form. Moreover, computational
complexity and stability analysis has revealed that the FELMS algo-
rithm derived is suitable for GE-FLANN-CRD. Finally, the simulation
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Table 2
The NMSEs of different filters for nonlinear ANC.

Controllers weak nonlinearity strong nonlinearity

FLANN −36.61 dB −24.18 dB
E-FLANN −36.61 dB −26.58 dB
GFLANN −38.14 dB −30.68 dB
GE-FLANN-CRD −39.05 dB −33.15 dB
GE-FLANN-CRD (FE-LMS) −39.02 dB −33.15 dB
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Fig. 6. Performance comparison of different controllers using the secondary
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results have confirmed that for the NANC with strong nonlinearity, the
proposed GE-FLANN-CRD filter offers better control performance than
the FLANN, E-FLANN and GFLANN filters.
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