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To reduce the computational burden of the generalized FLANN (GFLANN) filter for nonlinear active noise 
control (NANC), a hierarchical partial update GFLANN (HPU-GFLANN) filter is presented in this paper. 
Based on the principle of divide and conquer, the proposed HPU-GFLANN divides the complex GFLANN 
filter (i.e., long memory length and large cross-terms selection parameter) into simple small-scale 
GFLANN modules and then interconnected in a pipelined form. Since those modules are simultaneously 
performed in a parallelism fashion, there is a significant improvement in computational efficiency. 
Besides, a hierarchical learning strategy is used to avoid the coupling effect between the nonlinear and 
linear part of the pipelined architecture. Data-dependent hierarchical M-Max filtered-error LMS algorithm 
is derived to selectively update coefficients of the HPU-GFLANN filter, which can further reduce the 
computational complexity. Moreover, the convergence analysis of the NANC system indicates that the 
proposed algorithm is stable. Computer simulation results verify that the proposed adaptive HPU-GFLANN 
filter is more effective in nonlinear ANC systems than the FLANN and GFLANN filters.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that the adaptive finite impulse response (FIR) 
filter has been widely applied in the linear ANC system due to its 
simple structure and low computational complexity [1,2]. But since 
the actual ANC system may contain some nonlinear distortions 
and the reference noise may also be a nonlinear or deterministic 
noise process, the performance of the linear ANC system is de-
graded, even failed [3,4]. Thus the nonlinearity must be considered 
in the design of the controllers for the NANC system. In the past 
decades, various nonlinear adaptive filters for the NANC system 
have been proposed, including the truncated Volterra filter (VF) [5,
6], multi-layer perceptron (MLP) [7,8], recurrent neural networks 
[9,10], fuzzy neural network [11], spline filter [12], functional link 
artificial neural networks (FLANN) [13–15], just to mention a few. 
Especially, the FLANN has received much attention in the literature 
on ANC due to its simple structure for practical implementation.

In order to improve the noise-canceling performance, various 
FLANN structures for the NANC system have been proposed in re-
cent years. Two structures based on feedback FLANN (FFLANN) and 
recursive FLANN with a bounded-input bounded-output (BIBO) sta-
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bility condition have been introduced in [16,17]. Based on the ex-
ploitation of both feedback and feedforward polynomial, a bilinear 
FLANN (BFLANN) filter was proposed in [18]. To further improve 
the performance of the pure sinusoids-based FLANN filter, the non-
linear filters using FLANN with exponentially varying amplitudes 
have been presented in [19,20]. In addition, many efficient struc-
tures based on the convex/cascade combinations of the nonlinear 
adaptive FLANN filter have been proposed [21,22]. By introducing 
cross-terms in a traditional FLANN structure and arranging them 
in a similar way to the diagonal representation of the Volterra fil-
ter, a generalized FLANN (GFLANN) has been developed in [23]. It 
is shown that NANC applications with the presence of strong non-
linearity, the GFLANN filter can achieve better performance than 
high-order volterra filters. Using long memory length and large 
enough cross-terms, however, in order to achieve a good noise can-
cellation may increase its computational complexity and negatively 
influence on the use of system resources.

According to the study in [24], to reduce the computational 
burden of the recurrent neural networks (RNN), a computation-
ally efficient pipelined RNN (PRNN) structure was developed. The 
idea of the design is based on the engineering principle of di-
vide and conquer and the biological principle of modules. Follow-
ing this work, a variety of nonlinear filters based on pipelined 
structures have been proposed to reduce the computational com-
plexity, such as the pipelined feedforward second-order Volterra 
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Fig. 1. Implementation of GFLANN structure.
[25], adaptive bilinear filter based on pipelined architecture [26], 
Pipelined second-order Volterra filter against impulsive noise [27,
28], pipelined recurrent fuzzy neural networks filter [29], hierar-
chical pipelined alternative update adaptive Volterra filter (HPAVF) 
[30], and so on. In the HPAVF architecture, the authors proposed a 
hierarchical learning strategy to eliminate the coupling effect be-
tween linear and nonlinear parts of the pipelined architecture.

Inspired by the HPAVF, a hierarchical partial update GFLANN 
(HPU-GFLANN) filter for NANC is proposed to reduce the compu-
tational complexity of the GFLANN in this paper. The proposed 
HPU-GFLANN filter inherits many advantages of pipelined archi-
tecture, and uses a computationally efficient hierarchical M-max 
filtered-error least mean square (HMmFE-LMS) algorithm to par-
tially update the weights of the HPU-GFLANN. In order to evaluate 
the performance as well as the computational complexity of the 
proposed HPU-GFLANN filter in NANC applications, a series of the 
computer simulations are conducted.

The rest of this paper is organized as follows. Section 2 and 
3 present the brief of GFLANN structure and hierarchical update 
GFLANN architecture, respectively. In section 4, the HMmFE-LMS 
algorithm is designed. Sections 5 and 6 present the analysis of 
computational complexity and convergence condition, respectively. 
The effectiveness of the proposed nonlinear filter is illustrated by 
comparing with GFLANN and FLANN filters for nonlinear active 
noise control system in Section 7. Finally, Section 8 is devoted to a 
brief summary and discussion

2. Brief of GFLANN structure

From the analysis of the Taylor series expansion, a traditional 
FLANN can only directly model the power and sinusoidal nonlin-
earity. Therefore, with the aim of improving nonlinear modeling 
capability of FLANN structure-based filter, G.L. Sicuranza et al. pro-
posed a generalized FLANN (GFLANN) structure, which achieved 
by introducing cross-terms in a FLANN structure and exploiting 
them in a suitable strategy [23]. Research also has shown that 
in some applications of NANC, the GFLANN filter can offer better 
performance than the FLANN and even as good as the high-order 
Volterra filters with a reduced complexity. Fig. 1 illustrates the im-
plementation of the GFLANN structure.
Let X(n) denotes the L input signal vector of the filter

X(n) = [
x(n), x(n − 1), ..., x(n − L + 1)

]T
(1)

where L is the number of input samples at each time step n. Con-
sequently, the expanded input signal vector of GFLANN is given by

X g(n) = [
x(n)x(n − 1) . . . x(n − L + 1)

sin
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πx(n)

)
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(2)

Note that in this method to reduce computational complex-
ity, the GFLANN only exploits the cross-terms in a similar way to 
the diagonal representation of the Volterra filter. As shown clearly 
in Fig. 1, the FIR filters for the input signal x(n) and cos(πx(n)), 
sin(πx(n)) expansions have lengths of L samples; the cross-terms 
generated by products x(n −1) cos(πx(n)), x(n −1) sin(πx(n)) have 
lengths of L − 1 samples; and so on until the last cross-terms 
x(n − L + 1) cos(πx(n)), x(n − L + 1) sin(πx(n)) have lengths of one 
sample.

Thus, the expanded Xg(n) signal can be represented as follows

X g(n) = [
X gT

1 (n)X gT
2 (n) . . . X gT

T (n)
]T

(3)

where X gr(n) denotes sub-vector of X g(n), r = 1, 2, . . . T , and its 
elements are

X gr(n) = [ fr
[
xr(n)

]
fr

[
xr(n − 1) . . . fr

[
xr(n − L + 1)

]]T
(4)

where the nonlinear expansions of fr[xr(n)] are defined as
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f1[x1(n)] = x(n)

f2[x2(n)] = cos(πx(n))

f3[x3(n)] = sin(πx(n))

f4[x4(n)] = x(n − 1) cos(πx(n))

f5[x5(n)] = x(n − 1) sin(πx(n))

...

f T −1
[
xT −1(n)

] = x(n − Ld + 1) cos
(
πx(n)

)
f T

[
xT (n)

] = x(n − Ld + 1) sin
(
πx(n)

)

(5)

Note that we can also adjust the compromise between the com-
plexity and performance of this filter based on the cross-terms 
selection parameter Ld to limit the number of active channels of 
Fig. 1. In particular, 1 ≤ Ld ≤ L − 1 and T = 3 + 2Ld is the channel 
number of the GFLANN.

3. Hierarchical update generalized FLANN (HU-GFLANN) 
architecture

By combining the efficient pipelined architecture and hierarchi-
cal learning strategy, the HU-GFLANN architecture is proposed as 
illustrated in Fig. 2. The design of the HU-GFLANN architecture 
consists of two subsections. The nonlinear subsection comprises 
a number of simple small-scale GFLANN modules (i.e., the short 
memory length and small cross-term selection parameter) which 
are interconnected in a pipelined fashion. It performs a nonlin-
ear mapping from input space to an intermediate space. The linear 
subsection is a conventional transversal filter that performs a lin-
ear mapping from the intermediate space to the output space. The 
output of the HU-GFLANN is a linear combination of these two 
subsections.

3.1. Nonlinear subsection

The nonlinear subsection of the HU-GFLANN filter consists of 
the M identical small-scale GFLANN modules, i.e. all of them have 
exactly the same number of external inputs and cross-term ele-
ments. Inputs of each module are composed of L delayed external 
input signals and one delayed signal of previous module output. In 
the case of module M , the output of the previous module is non-
existent and it is replaced by its own feedback signal. In this study, 
the weight vector of each module is different, i.e., each module up-
dates its weight independently.

Let Xi(n) denotes the L + 1 input signal vector of the i-th mod-
ule and is defined by

Xi(n) = [
X̂ T

i (n), Ui(n)
]T

= [
x(n − i), x(n − i − 1), ..., x(n − i − L + 1), Ui(n)

]T
,

i = 1,2..., M (6)

where X̂i(n) = [x(n − i), x(n − i − 1), ..., x(n − i − L + 1)]T is the ex-
ternal input vector at the n-th time point. This external input vec-
tor is delayed by Z−i I at the input of the i-th module, where Z−i

is the delay operator and I denotes the (L × L)-dimensional iden-
tity matrix. Ui(n) is other input signal vector of the i-th module. 
Ui(n) = yi+1(n) when 1 ≤ i < M , which is the output of adjacent 
module i + 1; Ui(n) = yM(n − 1), when i = M , which is the output 
of module M after a delay of a one-time unit.

As mentioned above, each module is a small-scale GFLANN. 
Hence, at the n-th time point, input signal vector Xi(n) is ex-
panded to X gi(n) by the GFLANN series and is expressed as

X gi(n) = [
X gT (n), X gT (n), · · · , X gT (n)

]T
(7)
1,i 2,i T ,i
where T = (3 + 2(Ld + 1)) is considered as the number of channels 
in the implementation of the GFLANN filter; 1 ≤ Ld ≤ L − 1.

More specifically, the subvectors X g1,i(n), X g2,i(n), . . . , X gT ,i(n)

are explicitly given by

X g1,i(n) = [
x(n − i), x(n − i − 1), ...x(n − i − L + 1), Ui(n)

]T
(8)

X g2,i(n) = [
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(
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)
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)
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)
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... = ...

X g(T −3),i(n) = [
x(n − i − Ld + 1) sin

(
πx(n − i)

)
,

Ui(n) sin
(
πx(n − i − 1)

)]T
(13)

X g(T −2),i(n) = [
x(n − i − Ld + 1) cos

(
πx(n − i)

)
,

Ui(n) cos
(
πx(n − i − 1)
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X g(T −1),i(n) = [
Ui(n) sin

(
πx(n − i)

)]T
(15)

X gT ,i(n) = [
Ui(n) cos

(
πx(n − i)

)]T
(16)

where the length Lh of X gi(n) is defined by Lh = 3(L + 1) +
(Ld + 1)(Ld + 2).

As mentioned above, the weight vector Hi(n) of each module is 
different (H1(n) �= . . . Hi(n) �= . . . H M(n)), which is defined by

Hi(n) = [
h1,i(n),h2,i(n), ...,hLh,i(n)

]T
(17)

Hence, the output yi(n) of the i-th module is written by

yi(n) = H T
i (n)X gi(n) (18)

3.2. Linear section

As illustrated in Fig. 2, each module in the nonlinear subsec-
tion provides a local interpolation for M time-series points. Then, 
thanks to a conventional transversal filter we can obtain global 
interpolation with good localization properties. Here the weight 
vector of the linear transversal filter is defined as

W (n) = [
w1(n), w2(n), ..., w M(n)

]T
(19)

where the weights of the linear subsection are equal to the num-
ber of designed modules. The input of the transversal filter in-
cludes the present outputs of each module, and is written as

Y (n) = [
y1(n), y2(n), ..., yM(n)

]T
(20)

Thus the output of the linear filter is

yL(n) = W T (n)Y (n) (21)
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Fig. 2. The HU-GFLANN architecture.
3.3. The HU-GFLANN output

As shown in Fig. 2, the output of the HU-GFLANN is the combi-
nation of the outputs of the nonlinear and linear subsections. Thus, 
the output of the PU-GFLANN architecture at time n can be written 
as

ŷ(n) = W T (n)Y (n) +
M∑

i=1

H T
i (n)X gi(n) (22)

4. Hierarchical M-max filtered-error least mean square 
(HMmFE-LMS) algorithm

As pointed out in [31], the filtered-error least mean square 
(FE-LMS) algorithm significantly reduces the computational bur-
den of the filtered-x least mean square (Fx-LMS) algorithm since it 
can reduce the computational cost for filtering the signal through 
the secondary path. Especially in the case of the secondary path 
is nonlinear. In addition, in order to control the computational 
complexity of the adaptive algorithm, the strategies of the partial 
coefficient update have been proposed in the literature [32–34]. 
Among the many possible partial update methods, the M-max par-
tial update method is selected and studied here [32–38]. Com-
plexity reduction by M-max partial update technique is a data-
dependent update algorithm which is based on finding the Mm

largest values of the input vector. Therefore, a hierarchical M-max 
update filtered-error least mean square (HMmFE-LMS) algorithm 
for the HU-GFLANN architecture has proposed in this section. Due 
to the use of partial update filtered-error technique and hierar-
chical learning strategy, the proposed algorithm may considerably 
reduce the computational complexity.

Fig. 3 shows the schematic diagram of the NANC system based 
on HPU-GFLANN filter. In the figure, S(z) is the transfer function 
of the secondary path (represent path from the output of the HPU-
GFLANN controller to the output of the error sensor e(n)), P (z)
is the transfer function of the primary path (represent path from 
reference sensor to error sensor e(n)), x(n) is the reference sig-
nal which is sensed by a reference microphone and applied to the 
HPU-GFLANN controller to generate the anti-noise ys(n), d(n) is 
primary noise at the noise cancellation point and ef (n) is a fil-
tered version of the error.

According to [31], to achieve a unified structure for both the 
NANC with a linear secondary path (NANC/LSP) and the NANC with 
a nonlinear secondary path (NANC/NSP), we use a concept of a 
virtual secondary path filter g̃(n) with coefficients as

g̃(n) = [
g̃(n,0)g̃(n,1)...g̃(n, P s)

]T

=
[

∂ ys(n)

∂ ŷ(n)

∂ ys(n)

∂ ŷ(n − 1)
...

∂ ys(n)

∂ ŷ(n − P s)

]T

(23)

where P s is the length of the virtual secondary path. When the 
secondary path is linear, the coefficient vector of the virtual sec-
ondary path filter is equal to the estimated coefficient vector of 
the linear secondary path. In contrast, when the secondary path is 
nonlinear, the coefficient vector of the virtual secondary path filter 
is considered as a time-varying filter.

The goal of the HPU-GFLANN filter is to minimize the instanta-
neous square error J (n). Herein, we define the cost function J (n)

as follows

J (n) = e2(n) = (
d(n − 1) − ys(n)

)2
(24)

where ys(n) is indirectly generated signal at the noise cancellation 
point.

4.1. Nonlinear subsection

The coefficient vector Hi(n) of the nonlinear subsection will be 
adjusted according to the steepest descent algorithm to minimize 
the cost function J (n) as follows

Hi(n + 1) = Hi(n) − 1

2
μ∇Hi(n) J (n) (25)

where μ is the learning rate; ∇Hi(n) J (n) is the gradient of cost 
function J (n) with respect to the weight vector Hi(n) and is de-
duced by

∇Hi(n) J (n) = ∂ J (n) ∼= −2e(n)
∂ ys(n)

(26)

∂ Hi(n) ∂ Hi(n)
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Fig. 3. Schematic diagram of NANC systems using the HPU-GFLANN filter.
Note that

∂ ys(n)

∂ Hi(n)
=

P s∑
p=0

∂ ys(n)

∂ ŷ(n − p)

∂ ŷ(n − p)

∂ Hi(n)
(27)

We assume that when the step size is small, the weight Hi(n) is a 
slowly varying, thus (27) can be written by

∂ ŷ(n − p)

∂ Hi(n)
≈ ∂ ŷ(n − p)

∂ Hi(n − p)

= ∂(
∑M

i=1 w T
i (n − p)yi(n − p) + ∑M

i=1 H T
i (n − p)X gi(n − p))

∂ Hi(n − p)

= X gi(n − p) (28)

from (26), (27) and (28) we can obtain the update equation of 
Hi(n) as

Hi(n + 1) = Hi(n) + μe(n)

P s∑
p=0

∂ ys(n)

∂ ŷ(n − p)
X gi(n − p)

= Hi(n) + μe(n)

P s∑
p=0

g̃(n, p)X gi(n − p) (29)

where g̃(n, p) is the (p + 1)th component of the virtual secondary 
path vector g̃(n), as defined in (23).

Let t = n − p + P s, so that n = t + p − P s. Thus, the last term in 
(29), e(n) 

∑P s
p=0 g̃(n, p)X gi(n − p) is expressed by

e(n)

P s∑
p=0

g̃(n, p)X gi(n − p)

=
[

P s∑
p=0

e(t + p − P s)g̃(t + p − P s, p)

]
X gi(t − P s) (30)

Let us define vector g̃adj(n) as an adjoint virtual secondary path 
filter with coefficients vector as

g̃adj(n) = [
g̃(n, P s)g̃(n − 1, P s − 1)...g̃(n − P s,0)

]T
(31)

Note that the vector g̃adj(n) contrasts with the vector g̃(n), it 
not only requires reversing the order of the coefficients of the vec-
tor g̃(n) but also requires delaying the time-varying coefficients.

Obviously, the term [∑P s
p=0 e(t + p − P s)g̃(t + p − P s, p)] in 

Equation (30) can be considered as the result of filtering the er-
ror signal through the adjoint virtual secondary path filter. Thus, 
we define the filtered error as

e

w

fi
a

w

H

w
is
p

u
a
e

H

w

�

W

λ

w
v
v
m
t
a

f (n) =
P s∑

p=0

e(n + p − P s)g̃(n + p − P s, p)

=
P s∑

p=0

e(n − (P s − p)g̃adj(n, P s − p) (32)

here g̃adj(n, p) is the (p + 1)th component of the vector g̃adj(n).
Note that in the case of the secondary paths that are linear, the 

ltered-error can be easily derived as ef (n) = e(n) ∗ a(n), where 
(n) is the transfer function of the estimated secondary path.

Consequently, by combining (29), (30) and (32) we yield the 
eigh update equation of the nonlinear subsection:

i(n + 1) = Hi(n) + μef (n)X gi(n − P s) (33)

here the term X gi(n − P s) denotes the extended input signal and 
 delayed by a time unit equaling the length of the secondary 
ath.

In order to further reduce the computational burden, an M-max 
pdate technique is applied to the update equation (33). In this 
lgorithm, only a fraction of the total weights is updated during 
very iterations. Then, the HMmFE-LMS algorithm is given by

i(n + 1) = Hi(n) + μef (n)�(n)X gi(n − P s) (34)

here the coefficient selection matrix �(n) is defined by

(n) =

⎡
⎢⎢⎢⎣

λ1(n) 0 · · · 0
0 λ2(n) · · · 0
...

...
. . .

...

0 0 · · · λLh (n)

⎤
⎥⎥⎥⎦ (35)

ith

j(n) =
{

1 if |xgi, j(n − P s)| ∈ max1≤k≤Lh (|xgi,k(n − P s)|, Mm)

0 otherwise

(36)

here Lh = 3(L + 1) + (Ld + 1)(Ld + 2) is the length of the weight 
ector Hi(n); xgi, j(n − P s) is the jth element of the extended input 
ector X gi(n − P s) in (7); and 1 ≤ Mm ≤ Lh is the pre-selected M-
ax parameter. The parameters Mm need to appropriately choose 

o achieve a good compromise between computational complexity 
nd performance.
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4.2. Linear subsection

For the linear subsection, using the steepest descent method, 
the update equation W (n) is expressed as

W (n + 1) = W (n) − 1

2
η∇W (n) J (n) (37)

where η is the learning rate; ∇W (n) J (n) is the gradient of cost 
function J (n) with respect to the weight vector W (n).

Analysis is similar to the nonlinear subsection, we easily obtain 
the update equation of W (n) as follows

W (n + 1) = W (n) + ηef (n)Y (n − P s) (38)

where Y (n − P s) is the output vector of the M module and delayed 
P s time units

5. The convergence of the HPU-GFLANN-based NANC system

According to the adaptive filter theory [39], we know that the 
update equations (34) and (38) will not ensure stability unless a 
strong condition is imposed on the learning rate μ and η. In this 
section, we give the stability conditions for nonlinear and linear 
subsections of the HPU-GFLANN-based NANC system.

5.1. The nonlinear subsection

According to the gradient descent algorithm, the update equa-
tion in (34) can be written equivalent to the following

Hi(n + 1) = Hi(n) + μe(n)�(n)X f gi(n) (39)

where X f gi(n) = ∑P s
p=0 g̃(n, p)X gi(n) is the filtered signal of the 

X gi(n) through the virtual secondary path g̃(n).
To avoid confusion in the analysis, equation (39) is represented 

in the form of the following partial update rule:

Hij(n + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hij(n) + μe(n)X f gij, if vector X f gij is associated

with the Mm largest values

of |xf gi(n − j + 1)|, j = 1, . . . Lh,

i = 1...M

Hij(n) otherwise
(40)

where xf gi(n − j + 1) is the jth element of X f gi(n).
The proposed algorithm uses a gradient descent method to ad-

just the weight vector, as in [11], a discrete-type Lyapunov function 
can be defined by

J L(n) = e2(n)

2
(41)

During the training process, the change of J L(n) can be expressed 
as

� J L(n) = J L(n + 1) − J L(n) = e2(n + 1) − e2(n)

2
(42)

The difference of instantaneous output error resulting from the 
learning can be represented in the Taylor series expansion as fol-
lows

e(n + 1) = e(n) + ∂e(n)

∂ Hij(n)
�Hij(n) + h.o.t (43)

where h.o.t denotes the higher order terms of the rest of Taylor 
series expansion and can be ignored. Hence, we have
� J L(n) = e2(n + 1) − e2(n)

2

= 1

2

[
∂e(n)

∂ Hij(n)

]T

�Hij(n)

{[
∂e(n)

∂ Hij(n)

]T

�Hij(n) + 2e(n)

}
(44)

From the update rule in (40), we can obtain

�Hij(n) = μe(n)X f gij(n) (45)

Substitute (45) in (44), and set � J L(n) < 0, we have

� J L(n) = 1

2

[
∂e(n)

∂ Hij(n)

]T

μe(n)X f gij(n)

×
{[

∂e(n)

∂ Hij(n)

]T

μe(n)X f gij(n) + 2e(n)

}

= −1

2

∥∥X f gij(n)
∥∥2

μe2(n)
{

2 − μ
∥∥X f gij(n)

∥∥2
)
}

< 0 (46)

where ∂e(n)
∂ Hij(n)

= ∂[d(n)−g̃(n)∗{∑M
i=1 H T

i (n)X gi(n)+W T (n)Y (n))}]
∂ Hij(n)

= −X f gij(n), 
the symbol “∗” and ‖.‖ are the convolution and the Euclidean, re-
spectively.

Therefore, the local convergence of the system is guaranteed 
provided that 0 < μ < 2

‖X f gi j(n)‖2 .

5.2. Linear subsection

Using the methods of analyzing stability condition and con-
vergence performance of LMS algorithm under small step size 
assumptions [39], we can propose the range of learning rate to 
guarantee a convergence condition of linear subsection for HPU-
GFLANN-based NANC system as follows

0 < η <
2

γmax(RY Y )
(47)

RY Y = E
[
Y (n − P s)Y T (n − P s)

]
(48)

where γmax denotes the max eigenvalue of matrix RY Y .

6. Computational complexity analysis

In this section, an analysis of the computational complexity of 
the NANC system based on the proposed HPU-GFLANN filter is pre-
sented. As has been reported in [23], the GFLANN uses the Fx-LMS 
algorithm. Thus, to make a fair comparison, we will compare it 
to the HFx-GFLANN filter (using the HU-GFLANN architecture with 
Fx-LMS algorithm), HFE-GFLANN filter (using the HU-GFLANN ar-
chitecture with FE-LMS algorithm) and HPU-GFLANN filter.

Note that in the ANC system using the Fx-LMS algorithm, the 
secondary path has a significant effect on computational complex-
ity. When the secondary path is linear, it can take advantage of 
the delay relationship in the nonlinear state to reduce the compu-
tational burden. In contrast, when the secondary path is nonlinear, 
the Fx-LMS algorithm cannot take advantage of the delay relation-
ship.

Assuming P s is the memory size of the secondary path; L is ex-
ternal input signals of each module; Ld is the cross-term selection 
parameter; M is the number of modules, the computational com-
plexity of the HPU-GFLANN filter-based NANC system is required 
the following major operations

– Generating the cross-terms require 2(Ld + 1) multiplications.
– The output of each module yi(n) requires Lh multiplications 

and Lh − 1 additions, where Lh = 3(L + 1) + (Ld + 1)(Ld + 2) is 
the length of the expanded input signal of the ith module.
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Table 1
Total computational requirements for NANC/LSP case.

Filters for NANC system Multiplications Additions

FLANN 14L f + 7P s + 1 14L f + 7(P s − 1) − 1
GFLANN 2Lgd(Lgd + 2) + (3 + 2Lgd)P s + 6Lg 2Lgd(Lgd + 1) + (3 + 2Lgd)(P s − 1) + 6Lg − 1
HFx-GFLANN 2Nd + 2Lh + 2M + P s + 2Ld P s + MLh + 4 2Lh + 2M + P s + 2Ld P s − 2Ld + MLh − 4
HFE-GFLANN 2Ld + 2Lh + 2M + P s + MLh + 4 2Lh + 2M + P s − +MLh − 4
HPU-GFLANN 2Ld + Lh + 2M + P s + Mm + MLh + 3L + 7 Lh + 2M + P s + Mm + MLh + 3L − 1

Table 2
Total computational requirements for NANC/NSP case.

Filters for NANC system Multiplications Additions

FLANN 14L f + 7L f P s + 1 14L f + 7L f (P s − 1) − 1
GFLANN 2Lgd(Lgd + 2) + (3Lg + Lgd(Lgd + 1))P s + 6Lg 2Lgd(Lgd + 1) + 6Lg + (3Lg + Lgd(Lgd + 1))(P s − 1) − 2
HFx-GFLANN 2Ld + 2Lh + 2M + 5P s + Lh P s + MLh + 4 2Lh + M + M P s + Lh(P s − 1) + MLh − 2
HFE-GFLANN 2Ld + 2Lh + 2M + P s + MLh + 4 2Lh + 2M + P s + MLh − 4
HPU-GFLANN 2Ld + Lh + 2M + P s + Mm + MLh + 3L + 7 Lh + 2M + P s + Mm + MLh + 3L − 1

Table 3
Total computational requirements for specific case in experiment 1 and experiment 2.

Filters for NANC 
system

Nonlinear secondary path (Ps = 3) Linear secondary path (Ps = 5)

L f = 10; Lg = 10, Lgd = 9; L = 4, 
Ld = 3, M = 5, Mm = 5

L f = 10; Lg = 10, Lgd = 9; L = 4, 
Ld = 3, M = 5, Mm = 5

Multiplications Additions Multiplications Additions

FLANN [13] 351 279 176 167
GFLANN [23] 618 496 363 341
HFx-GFLANN 385 333 300 280
HFE-GFLANN 268 254 270 256
HPU-GFLANN 253 239 255 241

Fig. 4. The number of multiplications and additions required in each of the controller for NANC/LSP.
– The output of the HPU-GFLANN filter ŷ(n) requires M + MLh

multiplications and 2(M − 1) + M(Lh − 1) additions
- Calculate ef (n), the filtered error of the adjoint virtual sec-

ondary path filter, which require P s multiplications and P s −1
additions.

- Update linear filter coefficient W (n) in (38) requires M + 1
multiplications and M additions.

- Update filter coefficient Hi(n) in (34) requires Mm + 1 multi-
plications and Mm additions, where Mm is the parameter of 
the M-max partial update algorithm.

Therefore, the total calculation requirements of the NANC with 
a linear secondary path (NANC/LSP) based on FLANN, GFLANN, 
HFx-GFLANN, HFE-GFLANN and HPU-GFLANN filters are summa-
rized in Table 1. Similarly, the total calculation requirements for 
the NANC with a nonlinear secondary path (NANC/NSP) case are 
summarized in Table 2, where Lg and Lgd are memory length and 
the cross-term selection parameter of the GFLANN, respectively. In 
addition, the computational cost comparison in specific cases is 
also shown in Table 3.

For a more general view, we assume the length of the sec-
ondary path increases from 3 to 10. Thus, the number of multi-
plications and additions required in each of the controller for the 
NANC/LSP case is plotted in Fig. 4 as a function of P s , respectively. 
It is clear that the HPU-GFLANN, HFE-GFLANN and HFx-GFLANN 
controllers are more computationally efficient than the GFLANN 
controller. The FLANN controller has the lowest computational 
complexity but its noise reduction capability is too poor compared 
to other controllers. Similarly, the number of additions and mul-
tiplications required in each of the controllers for the NANC/NSP 
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Fig. 5. The number of multiplications and additions required in each of the controller for NANC/NSP.
is also illustrated in Fig. 5, respectively. From these figures, it is 
evident that the HPU-GFLANN and HFE-GFLANN controllers are 
computationally superior to the GFLANN and FLANN controllers, 
and the HFx-GFLANN are more computationally efficient than the 
FLANN controller when the secondary path length P s ≥ 5. This can 
be explained since the HU-GFLANN architecture is simpler than the 
GFLANN structure and the proposed algorithms are more efficient 
than the Fx-LMS algorithm.

7. Simulation

In order to prove the effectiveness of proposed HPU-GFLANN 
based-NANC system, several simulation experiments are presented 
in this section. The noise cancellation performance and the com-
putational complexity of the HPU-GFLANN based-NANC system are 
compared with the FLANN and GFLANN based-NANC systems for 
both NANC/LSP and NANC/NSP.

In these simulations, the memory length of the FLANN and 
GFLANN filters are chosen as Lg = L f = 10; and of the HPU-
GFLANN denoted as L = 4. The parameter for selecting the cross-
term of GFLANN is Lgd = 9, that of HPU-GFLANN as Ld = 3. The 
function expansion of the input signal is third-order type (B = 3) 
for the FLANN and first-order type (B = 1) for HPU-GFLANN and 
GFLANN. Without losing generality, the coefficients of the non-
linear subsection of the HPU-GFLANN can be divided into three 
groups for increased flexibility during the update process. The first 
group updates the weights of the linear part, the second group up-
dates the weights of the sin(.), cos(.), and the third group updates 
the weights of the cross-term elements. In fact, the weight group 
of the cross-terms has the greatest influence on the computational 
complexity of the system, thus we only apply the HMmFE-LMS al-
gorithm to this group. The learning curves are ensemble averages 
on 100 independent runs and are smoothed with a rectangular 
window of length equal to 100 samples in order to better discern 
the curves behavior.

7.1. Experiment 1

In this experiment, we assume that the primary path exhibit-
ing strong nonlinear behavior. Its primary noise that generated at 
the canceling point can be considered as a following third-order 
polynomial model

d(n) = u(n − 2) + g1u2(n − 2) − g2u3(n − 2) (49)
Fig. 6. MSE versus the number of modules M .

where g1 = 0.8, g2 = 0.4 are a measure of the strength of the pri-
mary path nonlinearity, u(n) = x(n) ∗ f (n) and f (n) is the impul-
sive response of the transfer function f (z) = z−3 −0.3z−4 +0.2z−5.

The secondary path is the non-minimum phase and its estimate 
is shown as S(z) = Ŝ(z) = z−2 + 1.5z−3 − z−4. The reference noise 
x(n) is a sinusoidal wave of 500 Hz sampled at the rate of 8000 
samples/s, which is obtained by

x(n) = √
2 sin

(
2π500n

8000

)
+ ν(n) (50)

where ν(n) is a white noise process with the Gaussian distribution. 
The signal power-to-noise power ratio is set to 40 dB.

a) Choice of the number of modules The number of modules of the 
HPU-GFLANN based-ANC system is an important parameter. It di-
rectly affects the performance and the computational cost of the 
system. Hence, to make the best choice, in this experiment, we 
will evaluate the noise-canceling performance of the system by 
giving M increases from 2 to 8. Learning rate of the nonlinear sub-
section of the HPU-GFLANN are set to μ1 = 0.0007, μ2 = 0.0005, 
μ3 = 0.0003 for linear part, sin(.) cos(.) part and cross-terms part, 
respectively. Learning rate of the linear subsection of the HPU-
GFLANN is η = 0.13. Fig. 6 shows the influence of the number 
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Fig. 7. The HPU-GFLANN versus HFE-GFLANN for different values of Mm . (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

of module on the mean-square error (MSE). Clearly, the MSE de-
creased slightly as M increased from 5 to 8. Therefore, we here 
choose M to be equal to 5.

b) Choice of the M-max parameter To select the appropriate param-
eter Mm , we carried out the evaluation of the performance of HPU-
GFLANN versus HFE-GFLANN for different values of 1 < Mm < 20
(length of the cross-term vector). The suitable Mm value is a good 
compromise between computational complexity and performance. 
In this experiment, we keep the number of modules M = 5; Learn-
ing rate of the HPU-GFLANN and HFE-GFLANN is set as part (a). 
Fig. 7 illustrates the performance MSE of HPU-GFLANN versus HFE-
GFLANN for different values of Mm . It is clear that when Mm = 5, 
the performance of the HPU-GFLANN can be equivalent to that of 
HFE-GFLANN.

c) Choice of the step-sizes As shown above, the HPU-GFLANN fil-
ter consists of two step-sizes groups that are nonlinear step-sizes 
group (μ1, μ2, and μ3 for linear input signal part, sin(.) cos(.) 
input signal part and cross-terms input signal part, respectively) 
and linear sep-size η. To obtain the appropriate step-sizes pa-
rameter, we first keep one of them as constants and change the 
other. Figs. 8 and 9 show the performance of HPU-GFLANN when 
one step-size changes. From these figures, it is easy to see that 
the convergence performance of the filter changes rapidly when 
the step-size of the nonlinear part increases from (μ1 = 0.00005, 
μ2 = 0.00003, and μ3 = 0.00001) to (μ1 = 0.0007, μ2 = 0.0005, 
and μ3 = 0.0003), and changes slowly when the step-size of the 
linear part increases from 0.0003 to 0.3.

Moreover, based on the analysis in section 5, we also eas-
ily calculate the theoretical convergence condition of step-size of 
the nonlinear subsection is 0 < μ < 2/‖X f gij(n)‖2 = 0.0637 and 
step-size of linear subsection is 0 < η < 2 (linear subsection of 
HPU-GFLANN filter can be considered as a conventional LMS fil-
ter). Here, Xfgij(n) is the filtered version of the expanded input 
signal X gi(n) through the secondary path. Clearly, the step-sizes 
selected in this experiment satisfy the stable conditions.

d) Comparing performance Next, comparing the noise-canceling 
performance of the proposed HPU-GFLANN with FLANN and 
GFLANN is presented. In this experiment, the learning rate of the 
nonlinear subsection of the HPU-GFLANN and HFE-GFLANN are set 
to μ1 = 0.0007, μ2 = 0.0005, μ3 = 0.0003 for linear part, sin(.) 
Fig. 8. MSE versus step-size of nonlinear part of HPU-GFLANN.

Fig. 9. MSE versus step-size of linear part of HPU-GFLANN.

cos(.) part, cross-terms part, respectively. Learning rate of the lin-
ear subsection is η = 0.13. The learning rate of the GFLANN are 
set to μG1 = 0.005, μG2 = 0.0015 and μG3 = 0.001 for linear part, 
sin(.) cos(.) part and cross-terms part, respectively. The learning 
rate of the FLANN are set to μF 1 = 0.007 and μF 2 = 0.002 for 
linear part and sin(.) cos(.) part, respectively. Fig. 10 shows a com-
parative plot of the MSE achieved by the NANC/LSP systems with 
the HPU-GFLANN, HFE-GFLANN, GFLANN and FLANN controllers. 
It is clear that the HPU-GFLANN and HFE-GFLANN controllers 
can achieve better noise-canceling performance than FLANN and 
GFLANN controllers when the primary noise at the canceling point 
exhibits high nonlinear behavior.

7.2. Experiment 2

To evaluate the noise-canceling performance of the HPU-
GFLANN filter for the NANC/NSP system, we refer here to the 
situation described in Example 2 in [23]. In this simulation, the 
secondary path is modeled by a Volterra series give as

ys(n) = y(n) + 0.35y(n − 1) + 0.09y(n − 2) − 0.5y(n)y(n − 1)

+ 0.4y(n)y(n − 2) (51)

The primary path is assumed to be exhibiting high nonlinear 
behavior and modeled by a Volterra series as follows
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Fig. 10. Learning curves of controllers use the linear secondary path.

Fig. 11. Learning curves of controllers use the secondary path as the Volterra model.

d(n) = x(n) + 0.8x(n − 1) + 0.3x(n − 2) + 0.4x(n − 3)

− 0.8x(n)x(n − 1) + 0.9x2(n − 2)

+ 0.7x2(n − 3) − 3.9x3(n − 1) − 2.6x2(n − 1)x(n − 3)

+ 2.1x2(n − 2)x(n − 3) (52)

The reference signal is random noise with a uniform distribu-
tion between −0.5 and +0.5. The learning rate for all the con-
trollers are chosen as: the HPU-GFLANN and HFE-GFLANN are 
μ1 = 0.009, μ2 = 0.003, μ3 = 0.009 and η = 0.05; the GFLANN 
are μG1 = 0.09, μG2 = 0.05 and μG3 = 0.2; the FLANN are μF 1 =
0.5 and μF 2 = 0.01. The Mm parameter is set to 5. Fig. 11 shows 
the averaged MSE performance of the controllers when the pri-
mary path and the secondary path are time-varying nonlinear 
models. It is clearly observed that the proposed HPU-GFLANN and 
HFE-GFLANN controllers outperform both the GFLANN and the 
FLANN controllers.

7.3. Experiment 3

In actual ANC systems, the output signal of the controller needs 
to be transmitted through the main components such as the am-
plifier, the loudspeaker to produce an anti-noise signal. Thus the 
secondary path can be approximated as block-oriented nonlinear 
Fig. 12. Learning curves of controllers use the secondary path as the Hammerstein 
model.

models. There are several secondary path models shown in [31]
such as linear-memoryless nonlinear-linear (LNL) cascades, Wiener 
and Hammerstein models. In this case, we assume that the sec-
ondary path is described as Hammerstein model with a memory-
less nonlinearity and followed by a linear filter:

u(n) = tanh(y(n))

ys(n) = u(n) + 0.2u(n − 1) + 0.05u(n − 2)
(53)

The primary path is the same as in experiment 2. The reference 
signal is colored noise and is generated by

x(n) = 0.04x(n − 1) − 0.034x(n − 2) + 0.0396x(n − 3)

− 0.07565x(n − 4) − 0.1v(n) − 0.01v(n − 1)

− 0.137v(n − 2) + 0.0353v(n − 3) + 0.06984v(n − 4)

(54)

where v(n) is mean-zero white Gaussian sequence with variance 
one.

Fig. 12 depicts the results of MSE’s for the controllers. The 
learning rates of the controllers are: for the HPU-GFLANN and 
HFE-GFLANN (μ1 = 0.02, μ2 = 0.003, μ3 = 0.009 and η = 0.2); 
for the GFLANN (μG1 = 0.15, μG2 = 0.05 and μG3 = 0.25); for 
the FLANN (μF 1 = 0.5 and μF 2 = 0.1). The Mm parameter is set 
to 5. In this experiment, it is also clearly observed that the pro-
posed HPU-GFLANN and HFE-GFLANN controllers outperform both 
the GFLANN and the FLANN controllers.

7.4. Experiment 4

In this experiment, the secondary path and the primary path 
are used similarly to those of Experiment 3. The reference noise is 
a logistic chaotic noise, which is generated by the following recur-
sive equation:

x(n + 1) = γ x(n)
[
1 − x(n)

]
(55)

where γ = 4 and initial value x(0) = 0.9.
For this experiment, the amplitude of the reference signal is 

limited to the range (−0.5 to 0.5) and its length is equal to 20000 
samples. The learning rates of the controllers are: for the HPU-
GFLANN and HFE-GFLANN (μ1 = 0.001, μ2 = 0.0003, μ3 = 0.001
and η = 0.05); for the GFLANN (μG1 = 0.06, μG2 = 0.05 and 
μG3 = 0.06); for the FLANN (μF 1 = 0.05 and μF 2 = 0.01). The Mm
parameter is set to 5.
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Table 4
Noise attenuation and computational complexity for experiment 4.

Controllers for NANC system Noise attenuate on (dB) Mul add

FLANN 8.212 351 279
GFLANN 15.844 618 496
HFE-GFLANN 16.285 268 254
HPU-GFLANN 16.188 253 239

Fig. 13. The amplitude response and phase response for the measured primary path 
and secondary path.

Table 4 shows the noise attenuation and computational com-
plexity of the controllers. Here, the noise attenuation at the can-
cellation point is equal to the ratio between the mean noise power 
values without and with NANC. Note that the noise power is mea-
sured in the last 10,000 samples and the controllers are selected 
with the same convergence rate. As it appears from Table 4, the 
proposed HPU-GFLANN and HFE-GFLANN controllers achieve better 
noise attenuation and lower computational complexity compared 
to the FLANN and GFLANN controller. The HPU-GFLANN reduced 
the computational requirement compared to the GFLANN approxi-
mately equal 60% for multiplication and 52% for addition.

7.5. Experiment 5

To demonstrate the effectiveness of the proposed controllers in 
an actual application, the real measured primary path and sec-
ondary path used in [2] are adopted. Fig. 13 depicts the amplitude 
response and phase response for the secondary and primary paths.

The reference input signal is a sinusoidal signal which con-
sists of three normalized frequencies of 0.02, 0.04, 0.08, and is 
normalized to have a unit power. The SNR at the noise cancel-
ing point is set to 40 dB. The reference signal is assumed to be 
strongly distorted by clipping threshold at 50% of the maximum 
signal value.

The learning rates of the controllers are: for the HPU-GFLANN 
and HFE-GFLANN (μ1 = 0.0000025, μ2 = 0.000002,
μ3 = 0.0000005 and η = 0.013); for the GFLANN (μG1 = 0.000005, 
μG2 = 0.000003 and μG3 = 0.000002); for the FLANN (μF 1 =
0.000007 and μF 2 = 0.0000015). The memory length of the HPU-
GFLANN and HFE-GFLANN are chosen as L = 9; the parameter for 
selecting the cross-terms is Ld = 3; the Mm parameter is set to 
5. Fig. 14 shows the average learning curves for the strong sat-
urated nonlinear noise under the real measured secondary and 
primary paths. It is obvious that the proposed HFE-GFLANN and 
HPU-GFLANN controllers achieve an improvement in the noise-
Fig. 14. Learning curves of controllers use the real measured secondary and primary 
paths.

canceling performance compared to the GFLANN and FLANN con-
trollers.

8. Conclusion

This paper has proposed a nonlinear adaptive HPU-GFLANN fil-
ter to reduce the computational complexity of the GFLANN filter 
for NANC system. The proposed filter inherits the good properties 
of filters based on pipelined architecture such as low computa-
tional complexity, easy implementation in practice. The proposed 
HMmFE-LMS algorithm using the data-dependence partial up-
date filtered-error technique and the hierarchical learning strategy 
is suitable for HU-GFLANN architecture. Simulation results have 
demonstrated that the proposed HPU-GFLANN filter-based NANC 
system can offer better performance than that of the GFLANN 
filter-based NANC system with a significantly reduced computa-
tional complexity.
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