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To reduce the computational burden of the bilinear FLANN (BFLANN) filter for active noise control (ANC),
an M-max partial update leaky bilinear filtered-error least mean square (MmLBFE-LMS) algorithm is pro-
posed in this paper. Unlike the algorithm based on filtered-reference technique in BFLANN-based ANC
system, the proposed MmLBFE-LMS algorithm uses the filtered-error method and data-dependence par-
tial update strategy to reduce computational complexity, and employs a leaky technique to mitigate the
instability problem as in bilinear filters. The simulation results and computational complexity analysis
indicate that the proposed algorithm can significantly reduce the computational burden of the
BFLANN-based ANC system without suffering from noise-canceling performance degradation.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Activenoise control (ANC)hasbeen recognizedas oneof themost
effective solutions in noise reduction systems, especially in the low-
frequency domain (less than or equal to 500 Hz). It, however, only
really emerges when adaptive filtering technology develops and
becomes popular. The ANC system using the linear filter with
filtered-x leastmean square (Fx-LMS) algorithmhas exhibited supe-
rior performance over previous ANC systems [1,2]. During the past
decades, many variants of the Fx-LMS algorithm have been devel-
oped for both the single channel and multi-channel ANC problems
[3–5]. However, in actual ANC systems, the plant may be nonlinear,
the reference noise may also be nonlinear, and the components of
the ANC system may also be affected by the nonlinearity [6,7]. As a
result, the ANC systemusing a linear controllermay suffer fromper-
formance degradation when applied to real systems. To overcome
this disadvantage, variousANC systemsbasedondifferent nonlinear
controllers have been proposed in the literature [7–10] (such as
radial basis functions (RBF) [8], recurrent neural network (RNN)
[9], multilayer artificial neural networks (MLANN) [10], truncated
Volterra filter (VF) [7], Bilinear filter [11–14], Function link artificial
neural networks (FLANN) [15–17], etc).

Among these nonlinear controllers, the FLANN-based system
has been widely used because of low computational complexity,
linear coefficients-output relationship and simple implementation
structure. An FLANN-based ANC system trained using a filtered-s
LMS (FsLMS) algorithm was first introduced by Das and Panda
[15]. To increase the convergence rate, some methods have been
presented in the literature including fast FsLMS [18] and normal-
ized FsLMS algorithms [19]. With the objective to further improve
the performance of nonlinear ANC systems, numerous modifiers of
FLANN have been developed such as recursive FLANN [20], reduced
feedback FLANN [21], and convex combination-based FLANN
[22,23]. But because of the nature of FLANN, most of these methods
provide relatively high residual noise power in the presence of
strong nonlinearity.

As indicated in [24], the main reason for problem mentioned
above is that the ANC system based on the FLANN cannot compen-
sate for strong nonlinear distortions existing in the secondary path
and the primary path. By introducing suitable cross-terms into a tra-
ditional FLANN structure, a generalized FLANN (GFLANN) has been
presented for NANC system in [25]. The report revealed that the
GFLANN performs better than FLANN and can be equivalent to the
high-order Volterra filter, in the presence of strong nonlinearity.
To improve the convergence performance of the GFLANN, a combi-
nation of the cross-terms and exponential nonlinearity has been
developed by D.C Le et al. [26]. In a recent paper, bilinear FLANN
(BFLANN) filter has been introduced for the NANC to overcome the
strong nonlinear distortion in the system [27]. The BFLANN exploits
cross-terms based on both feedback and feedforward polynomials,
and thus it can accurately model nonlinear systems with shorter
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filter length than that of the GFLANN. However, introducing the
cross-terms into the trigonometric functional expansion can
improve noise-canceling performance, but this also increases the
computational complexity of the system. Furthermore, since
BFLANN using algorithm based on the filtered-reference method,
the computational cost of filtering reference signal through sec-
ondary path is also a cause of increasing computational complexity,
especiallywhen the secondary pathhas nonlinear behavior. Besides,
as in the bilinear filter case, the BFLANN-based ANC system suffers
from an instability problem if the selected parameters for the algo-
rithm are not carefully designed.

With the objective of reducing the computational burden and
increasing the stability for the BFLANN-based ANC system, a novel
algorithm called M-max partial update leaky bilinear filtered-error
least mean square (MmLBFE-LMS) is proposed in this paper. Based
on the filter-error method [24,28] and partial update strategy
[29–32], the algorithm can avoid the computational cost of
filtering reference signals through the secondary path and greatly
reduce the cost to update the filtering weights. Moreover, the pro-
posed algorithm uses leaky technique [33,34], so it is possible to
mitigate the instability problem of BFLANN filter.

The rest of this paper is organized as follows. In Section 2, the
MmLBFE-LMS algorithm is presented. Section 3 investigates the
stability and the convergence condition of the algorithm. Compar-
ison of the computational complexity of MmLBFE-LMS algorithm is
also presented in Section 4. Section 5 provides computer simula-
tion experiments of the proposed algorithm. Finally, conclusions
are drawn in Section 6.
2. M-max partial update leaky bilinear filter error-least mean
square (MmLBFE-LMS) algorithm

Many researchers have shown that filtered-error technique-
based algorithms in [24,28] can be applied to nonlinear ANC sys-
tem to reduce the computational burden. In contrast to the
Bilinear  signal 
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Fig. 1. The nonlinear BFLANN-based ANC
filtered-reference algorithm, the filtered-error algorithm only
needs to filter error signals through the error filter, thus achieving
considerable savings in computational requirements. In addition,
the solution using partial update strategy to reduce computational
complexity has been also studied and successfully applied in vari-
ous engineering areas, as shown in the literature [29–32]. Among
many possible partial update methods, the M-max partial update
method is selected in this study due to its effectiveness and sim-
plicity. Furthermore, as suggested in [11], the instability problem
of bilinear filter can be mitigated by setting the step-size parame-
ter carefully and employing the leaky adaptive algorithm.

Therefore, by combining the filtered-error method, M-max par-
tial update strategy and leaky technique, a novel MmLBFE-LMS
algorithm is proposed to reduce the computational complexity of
the BFLANN controller-based ANC system, as illustrated in Fig. 1.

The relationship between input x(n) and output y(n) of the
BFLANN structure with a memory length of N can be expressed as

y nð Þ ¼ PN�1
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where aj(n), b1j(n) and b2j(n) are feedforward coefficients extended
by FLANN with the order P = 1; cj(n) are feedback coefficients;
d1i,j(n), d2i,j(n) and d3i,j(n) are the coefficients of cross-terms.

To derive the adaptive algorithm for BFLANN filter, the model in
(1) is rewritten under the vector form as follows
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y nð Þ ¼ ATðnÞU1ðnÞ þ BTðnÞU2ðnÞ þ CTðnÞU3ðnÞ þ DTðnÞU4ðnÞ ð2Þ
where signal vectors and their corresponding coefficient vectors are
listed below

A nð Þ ¼ a0ðnÞa1ðnÞ � � � aN�1ðnÞ½ �T ð3Þ

U1 nð Þ ¼ xðnÞxðn� 1Þ � � � xðn� N þ 1Þ½ �T ð4Þ

B nð Þ ¼ b10ðnÞb11ðnÞ � � � b1N�1ðnÞb20ðnÞb21ðnÞ � � � b2N�1ðnÞ½ �T ð5Þ

U2 nð Þ¼ sinðpxðnÞÞsinðpxðn�1ÞÞ � � �sinðpxðn�Nþ2ÞÞsinðpxðn�Nþ1ÞÞ½
cosðpxðnÞÞcosðpxðn�1ÞÞ � � �cosðpxðn�Nþ2ÞÞcosðpxðn�Nþ1ÞÞ�T

ð6Þ

C nð Þ ¼ c1ðnÞc2ðnÞ � � � cN�1ðnÞ½ �T ð7Þ

U3 nð Þ ¼ y n� 1ð Þy n� 2ð Þ � � � y n� N þ 1ð Þ½ �T ð8Þ

D nð Þ¼ d10;1ðnÞ� � �d10;N�1ðnÞd11;1ðnÞ � � �d11;N�1ðnÞ � � �d1N�1;N�1ðnÞ½
d20;1ðnÞ � � �d20;N�1ðnÞd21;1ðnÞ� � �d21;N�1ðnÞ� � �d2N�1;N�1ðnÞ
d30;1ðnÞ � � �d30;N�1ðnÞd31;1ðnÞ� � �d31;N�1ðnÞ� � �d3N�1;N�1ðnÞ�T

ð9Þ

U4 nð Þ¼ x nð Þy n�1ð Þ� � �x nð Þy n�Nþ1ð Þx n�1ð Þy n�1ð Þ � � �x n�Nþ1ð Þy n�Nþ1ð Þ½
sin px nð Þð Þy n�1ð Þ � � �sin px nð Þð Þy n�Nþ1ð Þsin px n�1ð Þð Þy n�1ð Þ� � �
� � �sinðpxðn�1ÞÞyðn�Nþ1Þ � � � � � �sinðpxðn�Nþ1ÞÞyðn�Nþ1Þ
cosðpxðnÞÞyðn�1Þ � � �cosðpxðnÞÞyðn�Nþ1Þcosðpxðn�1ÞÞyðn�1Þ � � �
� � �cosðpxðn�1ÞÞyðn�Nþ1Þ � � � � � �cosðpxðn�Nþ1ÞÞyðn�Nþ1Þ�T

ð10Þ

By combination of (3), (5), (7) and (9), we get the coefficient
vector as an overall vector W(n) as follows

W nð Þ ¼ ATðnÞBTðnÞCTðnÞDTðnÞ
h iT

ð11Þ

Similarly, we can combine (4), (6), (8) and (10) to generalize sig-
nal vector U(n) as follows

U nð Þ ¼ UT
1ðnÞUT

2ðnÞUT
3ðnÞUT

4ðnÞ
h iT

ð12Þ

With the definitions in (11) and (12), the BFLANN filter output
can be simplified to

yðnÞ ¼ WT nð ÞUðnÞ ð13Þ
In order to achieve a unified algorithm for both NANC/linear

secondary path (LSP) and NANC/nonlinear secondary path (NSP),
we use a concept of virtual secondary pathG nð Þ, as in [24]. It is
defined as a time-varying filter with coefficients as follows

G nð Þ ¼ gðn;0Þ gðn;1Þ:::gðn; PsÞ½ �T

¼ @dsðnÞ
@yðnÞ

@dsðnÞ
@yðn� 1Þ :::

@dsðnÞ
@yðn� PsÞ

� �T
ð14Þ

where Ps is the memory length of the virtual secondary path filter.
To calculate the gradient instantaneous estimate, we define the
residual noise which is sensed by the microphone error as follows
(see Fig. 1).

e nð Þ ¼ dðnÞ � dsðnÞ ¼ dðnÞ � GðnÞ � yðnÞ ð15Þ
where d(n) is primary noise signal at the cancellation point and
ds(n) is the signal generated by the adaptive control and propagated
through the secondary path to the cancellation point, and * is con-
volution operation.

Similar to the study [33], the cost function of the MmLBFE-LMS
algorithm can be defined as
JðnÞ ¼ Eðe2ðnÞÞ þ cWTðnÞWðnÞ ð16Þ
where c << 1 denotes a positive number, E(.) denotes the expecta-

tion operator, and k WðnÞ k2 ¼ WTðnÞWðnÞ
The objective of the MmLBFE-LMS algorithm for the BFLANN fil-

ter is to minimize the cost function J(n) by using the steepest des-
cent method as follows

W nþ 1ð Þ ¼ WðnÞ � 1
2
lrWðnÞJðnÞ ð17Þ

where l is the learning rate; rWðnÞJðnÞ is the gradient of cost func-
tion J(n) with respect to the weight vector W nð Þ, which can be cal-
culated by

rWðnÞJðnÞ ¼ @JðnÞ
@WðnÞ ¼

@Eðe2ðnÞÞ
@WðnÞ þ cWðnÞ ffi @e2ðnÞ

@WðnÞ þ cWðnÞ

¼ �2eðnÞ @dsðnÞ
@WðnÞ þ cWðnÞ ð18Þ

We can define partial derivatives in (18) as follows

@dsðnÞ
@WðnÞ ¼

XPs
l¼0

@dsðnÞ
@yðn� lÞ

@yðn� lÞ
@WðnÞ ð19Þ

Assuming that the step size is small, the coefficients W(n) are
slowly adjusted, and thus we have

@yðn� lÞ
@WðnÞ � @yðn� lÞ

@Wðn� lÞ
¼ @yðn� lÞ

@a0ðn� lÞ :::
@yðn� lÞ

@aN�1ðn� lÞ
@yðn� lÞ

@b10ðn� lÞ :::
@yðn� lÞ

@b2N�1ðn� lÞ
�

@yðn� lÞ
@c1ðn� lÞ :::

@yðn� lÞ
@cN�1ðn� lÞ

@yðn� lÞ
@d11;0ðn� lÞ :::

@yðn� lÞ
@d1N�1;N�1ðn� lÞ

@yðn� lÞ
@d21;0ðn� lÞ :::

@yðn� lÞ
@d2N�1;N�1ðn� lÞ

@yðn� lÞ
@d31;0ðn� lÞ :::

@yðn� lÞ
@d3N�1;N�1ðn� lÞ

�T
ð20Þ

Similar to the bilinear Fx-LMS algorithm [11], we also assume
that the recursion of the past output gradients is negligible, and
thus the (20) is obtained as follows

@yðn�lÞ
@WðnÞ � ½xðn� lÞ:::xðn� l�Nþ1Þsinðpxðn� lÞÞ:::sinðpxðn� l�Nþ1ÞÞ
cosðpxðn� lÞÞ:::cosðpxðn� l�Nþ1ÞÞyðn� l�1Þ:::y
ðn� l�Nþ1Þxðn� lÞyðn� l�1Þ:::
xðn� l�Nþ1Þyðn� l�Nþ1Þsinðpxðn� lÞÞyðn� l�1Þ:::
sinðpxðn� l�Nþ1ÞÞyðn� l�Nþ1Þ
cosðpxðn� lÞÞyðn� l�1Þ:::cosðpxðn� l�Nþ1ÞÞyðn� l�Nþ1Þ�T ¼Uðn� lÞ

ð21Þ

Substituting (21),(19) and (18) into (17), we have

W nþ 1ð Þ ¼ ð1� lcÞWðnÞ þ leðnÞ
XPs
l¼0

gðn; lÞUðn� lÞ ð22Þ

where gðn; lÞis the (l + 1)th component of the virtual secondary path
coefficient vectorGðnÞ.

Let k = n-l + Ps, so that n = k + l-Ps. Thus, the last term in
(22),eðnÞPPs

l¼0gðn; lÞUðn� lÞ, is expressed as

eðnÞ
XPs
l¼0

gðn; lÞUðn� lÞ ¼
XPs
l¼0

eðkþ l� PsÞgðkþ l� Ps; lÞ
" #

Uðk� PsÞ

ð23Þ
Let us define vector Gadj(n) as an adjoint virtual secondary path

filter with coefficients vector as

Gadj nð Þ ¼ gadjðn; PsÞgadjðn� 1; Ps� 1Þ:::gadjðn� Ps;0Þ� �T ð24Þ
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We can see the relationship between the virtual secondary path
filter G(n) and the adjoint virtual secondary path filter Gadj(n) as
follows: Gadj(n) not only reverses the orders of the coefficients of
G(n), but it also delay the time-varying coefficients.

Obviously, the term on the right-hand side of the Eq. (23),PPs
l¼0eðkþ l� PsÞgðkþ l� Ps; lÞ, can be determined by filtering

the error signal e(n) through adjoint virtual secondary path filter
Gadj(n). Thus, we further define the filtered error as

ef ðnÞ ¼
XPs
l¼0

eðnþ l� PsÞgðnþ l� Ps; lÞ

¼
XPs
l¼0

eðn� ðPs� lÞgadjðn; Ps� lÞ ð25Þ

where gadj(n,l) is the (l + 1)th component of the vector Gadj(n). Con-
sequently, by combining (25), (23) and (22) we yields

W nþ 1ð Þ ¼ ð1� lcÞWðnÞ þ lef ðnÞUðn� PsÞ ð26Þ
To increase flexibility during the update process, the update

equation in (26) can be divided into following sub-equations

A nþ 1ð Þ ¼ ð1� lacÞAðnÞ þ laU1ðn� PsÞef ðnÞ ð27aÞ
B nþ 1ð Þ ¼ ð1� lbcÞBðnÞ þ lbU2ðn� PsÞef ðnÞ ð27bÞ
C nþ 1ð Þ ¼ ð1� lccÞCðnÞ þ lcU3ðn� PsÞef ðnÞ ð27cÞ
D nþ 1ð Þ ¼ ð1� ldcÞDðnÞ þ ldU4ðn� PsÞef ðnÞ ð27dÞ
As discussed above, the coefficient vector of the BFLANN filter

consists of the linear coefficients vector A(n), the sinusoidal coeffi-
cients vector B(n), the feedback coefficients vector C(n) and the
cross-term coefficients vector D(n). Among these coefficient vec-
tors, the cross-terms coefficient vector D(n) is the largest. For
example, when the memory length of external input is N = 7, the
lengths of vectors A(n), B(n), C(n), and D(n) are respectively 7, 14,
6 and 126. Therefore, in order to match BFLANN’s reality, we only
apply the partial update technique for the update equation of the
cross-terms part, as illustrated in Fig. 1. In this way, only a fraction
of the total weights of the cross-terms is updated during every iter-
ations. Therefore, the update equations of the MmLBFE-LMS algo-
rithm is composed of the equations 27 (a-c) and the following
equation

D nþ 1ð Þ ¼ ð1� ldcÞDðnÞ þ ldUðnÞU4ðn� PsÞef ðnÞ ð28Þ

where the coefficient selection matrix U(n) defined by

UðnÞ ¼

k1ðnÞ 0 � � � 0
0 k2ðnÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � kLU4 ðnÞ

2
66664

3
77775 ð29Þ

with

kjðnÞ ¼
1 if u4jðnÞ

�� �� 2 max
16k6LU4

ð u4kðnÞj j;MÞ
0 otherwise

(
ð30Þ

where LU4 = 3 N(N � 1) is the length of the cross-terms coefficients
D(n); u4j(n) is the jth element of the cross-terms signal vector U4(n)
in (10); and 1 �M � LU4 is the pre-selected M-max parameter. The
parameters M need to appropriately choose to achieve a good com-
promise between computational complexity and performance.
3. Stability of the MmLBFE-LMS algorithm

From (16), we find that the cost function of the MmLBFE-LMS

algorithm uses the penalty term ck WðnÞ k2 which ensures that
W(n) will reach the minimum value of e2(n) and at the same time

prevents the terms k WðnÞ k2 from becoming too large. More
specifically, in equations (27a-d), the weights A(n), B(n), C(n), and
D(n) are not only updated by the gradients related U1(n-Ps)ef(n),
U2(n-Ps)ef(n), U3(n-Ps)ef(n), and U4(n-Ps)ef(n), but also decays to a
certain extent by multiplying the term 0 < (1-mc) < 1 at each itera-
tion. Obviously, this can avoid the problem of instability when the
weights become too large.

In addition, to ensure the stability of the algorithm, the condi-
tion for the step-size parameter m should also be considered.

We first assume that the autocorrelation matrix R = E{Uf(n)Uf
T(n)},

where Uf(n) is the input signal filtered through the estimate of the
secondary path, which is derived from (19). To get a condition of
the step-size parameter m, we analyze the symmetric matrix R

intoR ¼ QKQT , where K ¼ diagðk1; k2; :::; knÞ is the matrix of the
eigenvalue, and Q is matrix of the eigenvector of R. We then define
the parameter error vector as V(n) =W(n) –W0, where W0 is the
optimal weight, and define the vectors rotated as

V 0ðnÞ ¼ QTVðnÞ; U0
f ðnÞ ¼ QTUf ðnÞ ; W 0

0 ¼ QTW0 ð31Þ
For the convenience of analysis, we rewrite the weights update

equation (26) as

W nþ 1ð Þ ¼ ð1� lcÞWðnÞ þ leðnÞUf ðnÞ ð32Þ
Using the assumptions defined above and the relation d(n) =

UfT(n)W0+e0(n) (where e0(n) is the measurement noise), (32) can
be expressed as follows

V 0ðnþ 1Þ ¼ ½I � lðcI þKÞ�V 0ðnÞ � lcW 0
0 þ le0ðnÞU0

f ðnÞ ð33Þ
Taking the expected value of (33) with the independence

assumption of V 0ðnÞ and U0
f ðnÞ, and using the relation E{Uf(n)

e0(n)} = cW0 obtained by minimizing the expected value of (16)
with respect to W0 = E{W(n)}, (33) can be rewritten as

EfV 0ðnþ 1Þg ¼ ½I � lðcI þKÞ�EfV 0ðnÞg ð34Þ
Clearly, from (34), the boundedness of the step-size m is guaran-

teed by the following condition

0 < l <
2

cþ kmax
ð35Þ

where kmax denotes the largest eigenvalue of R. Following the adap-
tive filter theory [35], we getkmax < trðRÞ ¼ PN

i¼1ki ¼ Nd2x , where d2x
is input signal power. Therefore, a practical bound on the step-
size m can be found from (35) as

0 < l <
2

Nd2x þ c
ð36Þ
4. Computational complexity analysis

For the convenience of analysis, we name the algorithms which
were proposed for BFLANN in the study [27] and for the GFLANN in
the study [25] are bilinear Fs-LMS (BFs-LMS) and generalized
Fs-LMS (GFs-LMS), respectively.

In this section we would conduct the computational complexity
analysis of the BFs-LMS, GFs-LMS, Fs-LMS, and proposed MmLBFE-
LMS algorithms in terms of the number of multiplications and
additions for both the linear secondary path (LSP) and the nonlin-
ear secondary path (NSP). Assume that N and M is the memory
length and the pre-selected M-max parameter of the MmLBFE-
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LMS, respectively; Ng and Nd are the memory length and cross-
term selection parameter of the GFs-LMS; Nf and B are the memory
length and the order of expansion function of the FLANN; Ps is the
memory size of the virtual secondary path; Lb is the expanded
memory length of BFLANN.

4.1. Computational complexity for NANC/LSP

The MmLBFE-LMS algorithm requires major operations as
follows.

Step 1: The operations for generating the cross-terms require 6
(N-1) multiplications.

Step 2: The operations for generating the adaptive BFLANN filter
output, which require L multiplications and L-1 additions, where
L = 3N+(N-1) + 3N(N-1) denote the expanded memory length.

Step 3: Calculate ef(n), the filtered error of the new virtual sec-
ondary path filter, which require Ps multiplications and Ps-1
additions

Step 4: The operations for updating filter coefficients requires
M + 4N-1 multiplications and M + 4N-2 additions.

Similarly, we can also obtain the computational complexity of
GFs-LMS, Fs-MS and BFs-LMS for NANC/LSP case. Table 1 summa-
rizes the total computational load of the NANC/LSP with the pro-
posed MmLBFE-LMS, BFs-LMS [27], GFs-LMS [25] and Fs-LMS
[15] algorithm.

4.2. Computational complexity for NANC/NSP

When the secondary path is nonlinear, the virtual secondary fil-
ter is time-varying, and thus we cannot take advantage of the delay
relationship existing in the nonlinear states. For the BFs-LMS, GFs-
LMS and Fs-MS algorithms, we need to calculate the cost of filter-
ing each element through the virtual secondary path. For the pro-
posed MmLBFE-LMS algorithm, computational complexity does
not depend on the secondary path whether nonlinear or linear.
Hence, the total computational load of the MmLBFE-LMS, BFs-
LMS [27], GFs-LMS [25] and Fs-LMS [15] algorithms for the
NANC/NSP case is summarized as in Table 2.

5. Computer simulation

In order to prove the effectiveness of our proposed algorithm for
the BFLANN-based ANC system, several simulation results are pro-
Table 1
Total computational requirement for NANC/LSP case.

Algorithms for
ANC

Multiplications additions

Fs-LMS 14Lf + 7Ps + 1 14Lf + 7(Ps-1)-1
GFs-LMS (3 + 2Nd)Ps

+ 2Nd
2 + 6Ng + 4Nd + 1

2Nd
2 + 6Ng + 2Nd+(2Nd + 3)

(Ps-1)-1
BFs-LMS 2Lb + [6(Nb-1) + 4]Ps + 6

(Nb-1) + 1
2Lb + [6(Nb-1) + 4](Ps-1)-2

MmLBFE-LMS L + 6(N-1) + Ps + M + 4N L + Ps + M + 4 N-2

Table 2
Total computational requirement for NANC/NSP case.

Algorithms for
ANC

Multiplications additions

Fs-LMS 14Lf + 7LfPs + 1 14Lf + 7Lf(Ps-1)-1
GFs-LMS [Nd(Nd + 1) + 3Ng](Ps + 2)

+ 2Nd + 1
[Nd(Nd + 1) + 3Ng]
(Ps + 1)-1

BFs-LMS 2Lb + LbPs + 6(Nb-1) + 1 2Lb + Lb(Ps-1)-1
MmLBFE-LMS L + 6(N-1) + Ps + M + 4N L + Ps + M + 4N-2
vided in this section. The performance of the MmLBFE-LMS algo-
rithm is compared with the Fs-LMS, BFs-LMS and GFs-LMS
algorithms for both NANC/LSP and NANC/NSP cases. In the exper-
iments, the performance of the different filters will be measured
in terms of the normalized mean-square error (NMSE) which is
obtained by averaging over 100 independent runs.

NMSE ¼ 10log10 Eðe2 nð ÞÞ=d2d
� � ð37Þ

where d2d is the variance of the primary noise at the cancellation
point, e2(n) is the square of the error at nth iteration and E(.) is
the expectation operator.

The memory length of the external input signal of Fs-LMS GFs-
LMS, BFs-LMS and MmLBFE-LMS algorithms are chosen as Nf = 10,
Ng = 10, Nb = 6, and N = 6, respectively. The function expansion of
the input signal is third-order type (B = 3) for the Fs-LMS and
first-order type (B = 1) for GFs-LMS, BFs-LMS and MmLBFE-LMS.
The parameter for expanding nonlinear function of GFs-LMS is cho-
sen as Nd = 9. The pre-selected M-max parameter is chosen as
M = 30. The ensemble curves are smoothed with a rectangular win-
dow of length equal to 20 samples, in order to better discern the
curves behavior.

Experiment 1: In this case, we simulate NANC system with the
nonlinear secondary path and the primary path exhibits high non-
linear behavior. Here, the primary path P(z) is modeled by a Vol-
terra series whose input x(n) and output d(n) relationship is
described as

dðnÞ ¼ xðnÞ þ 0:8xðn� 1Þ þ 0:3xðn� 2Þ þ 0:4xðn� 3Þ
�0:8xðnÞxðn� 1Þ þ 0:9xðnÞxðn� 2Þ
þ0:7xðn� 3Þxðn� 3Þ � 3:9x2ðn� 1Þxðn� 2Þ
�2:6x2ðn� 1Þxðn� 3Þ þ 2:1x2ðn� 2Þxðn� 3Þ

ð38Þ

and the secondary path has the input y(n) to output ds(n)
relationship

dsðnÞ ¼ yðnÞ þ 0:35yðn� 1Þ þ 0:09yðn� 2Þ � 0:5yðnÞyðn� 1Þ
þ 0:4yðnÞyðn� 2Þ ð39Þ

The reference signal is white Gaussian noise. The learning rate
of Fs-LMS is set to gf1 = 0.01, gf2 = 0.0005 for the linear and
nonlinear parts, respectively. Learning rate of GFs-LMS are
gg1 = 0.6, gg2 = 0.0035 and gg3 = 0.07 for the linear, the sin(.) cos
(.) functions and the cross-terms parts, respectively. The learning
rate of the BFs-LMS algorithm are set gb1 = 0.15, gb2 = 0.005 for
0 0.5 1 1.5 2 2.5 3

x 10
4

-25

-20

-15

-10

-5

0

5

Iterations

N
M

S
E

(d
B

)

NON-ANC
Fs-LMS
GFs-LMS
LBFs-LMS
MmLBFE-LMS

MmLBFE-LMS
GFs-LMS

BFs-LMS

Fs-LMS

Fig. 2. Learning curves of different algorithms for NANC/NSP, the secondary path is
the Volterra model.



Table 3
Noise attenuation (dB) for experiment 2.

Controllers for NANC
system

Noise attenuation (dB)
for case 1

Noise attenuation (dB)
for case 2

Fs-LMS 14.8907 35.4191
GFs-LMS 20.6545 40.3898
BFs-LMS 21.7961 40.4678
MmLBFE-L MS 21.7709 40.3114
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the feedforward coefficients respectively, gb3 = 0.01 and gb4 = 0.08
for the feedback coefficient and the cross-term coefficients, respec-
tively. The learning rate of the MmBLFE-LMS algorithms are set
la = 0.1, lb = 0.003, lc = 0.025 and ld = 0.1.

Fig. 2 illustrates the averaged NMSE performance curves of the
algorithms for the reference signal is white Gaussian noise.

To compare computational complexity, in this section we
assume that the length of the secondary path increases from 3 to
10. Hence, the number of additions and multiplications required
in each of the algorithm is plotted in Fig. 3 as a function of Ps. From
Figs. 2 and 3, it is clear that the proposed MmLBFE-LMS algorithm
has the lowest computational complexity with a better perfor-
mance than that of GFs-LMS and the equivalent of BFs-LMS
algorithm.

Experiment 2: In practical NANC system, the secondary path
can be seen as the nonlinear effect of the power amplifier and loud-
speaker at the output of the filter, and thus it can be modeled by a
Hammerstein filter with a memoryless nonlinearity and the linear
filter as

vðnÞ ¼ tanhðyðnÞÞ
dsðnÞ ¼ vðnÞ þ 0:2vðn� 1Þ þ 0:05vðn� 2Þ ð40Þ

The reference signal is the noise generated by a fan, and its
mathematical model can be approximately described with a logis-
tic chaotic signal as follows

xðnþ 1Þ ¼ kxðn� 1Þ½1� xðn� 1Þ� ð41Þ

where k = 4 and x(0) = x(1) = 0.9 are selected. For simplicity, we
assume that the amplitude of the reference signal is limited to the
range (�0.4 to 0.4) and the length of the signal is equal to 60,000
samples. In this example, the two cases of the primary path have
been selected.

Case 1: The primary path is assumed to be exhibiting high non-
linear behavior and modeled similar to the example 1. The learning
rate for all the filters are chosen as: the Fs-LMS (gf1 = 0.002,
gf2 = 0.0001); the GFs-LMS (gg1 = 0.006, gg2 = 0.0005;
gg3 = 0.006); the BFs-LMS (gb1 = 0.005, gb2 = 0.0004; gb3 = 0.005
and gb4 = 0.007); the MmLBFE-LMS (la = 0.003, lb = 0.001,
lc = 0.002 and ld = 0.004).

Case 2: The primary path is linear and taken as following model
P(z) = z�3-0.3z�4 + 0.2z�5. The learning rate for all the filters are
(a)
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Fig. 3. Comparison of computational load per sample fo
chosen as: the Fs-LMS (gf1 = 0.4, gf2 = 0.003); the GFs-LMS
(gg1 = 0.035, gg2 = 0.003; gg3 = 0.1); the BFs-LMS (gb1 = 0.45,
gb2 = 0.01; gb3 = 0.02 and gb4 = 0.01); the MmLBFE-LMS
(la = 0.45, lb = 0.01, lc = 0.2 and ld = 0.1).

Table 3 shows the results of the noise attenuation at the cancel-
lation point of the controllers for both cases. Here, the noise atten-
uation is the ratio between the mean noise power values without
and with ANC. Note that the mean noise power of the controllers
are measured in the last 10,000 samples and selected with the
same convergence rate.

It is clear that the proposed MmLBFE-LMS algorithm achieves
the noise attenuations equivalent to BFs-LMS and better the GFs-
LMS and Fs-LMS algorithms in the case of the primary path exhi-
bits a high nonlinear behavior. In the case of the linear primary
path, the noise attenuation at the cancellation point of the pro-
posed MmLBFE-LMS algorithm does not improve compared to
BFs-LMS and GFs-LMS, however it can offer reduced computational
complexity.

Experiment 3: In this experiment, we assume that the behavior
of the primary noise at the cancellation point is modeled as a third-
order polynomial as follows [7]

dðnÞ ¼ uðn� 2Þ þ 0:8u2ðn� 2Þ � 0:4u3ðn� 2Þ ð42Þ

where u(n) is obtained by u(n) = x(n)*f(n) and * denotes the con-
volution operation, f(n) is the impulsive response of the transfer
function as

f ðzÞ ¼ z�3 � 0:3z�4 þ 0:2z�5 ð43Þ

The reference noise x(n) is a sinusoidal wave of 500 Hz sampled
at the rate of 8000 samples/s, which is obtained by
(b) 
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r algorithms (a) multiplications and (b) additions.
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xðnÞ ¼ sin
2p500n
8000

	 

þ mðnÞ ð44Þ

where m(n) denotes a Gaussian noise of 40 dB SNR. The secondary
path transfer function is taken as the non-minimum-phase model

SðzÞ ¼ z�2 þ 1:5z�3 � z�4 ð45Þ
The learning rate for all the filters are chosen as: the Fs-LMS

(gf1 = 0.0045, gf2 = 0.0022); the GFs-LMS (gg1 = 0.004, gg2 =
0.002; gg3 = 0.0007); the BFs-LMS (gb1 = 0.006, gb2 = 0.0025;
gb3 = 0.008 and gb4 = 0.005); the MmLBFE-LMS (la = 0.006,
lb = 0.0025, lc = 0.008 and ld = 0.006). Fig. 4 depicts the perfor-
mance comparison of NMSE for algorithms for NANC/LSP case. It
is clear that the proposed MmLBFE-LMS algorithm exhibits a NMSE
equivalent to that of the BFs-LMS algorithm and much better than
the GFs-LMS and Fs-LMS algorithms. In addition, results obtained
from Table 4 show that the MmLBFE-LMS algorithm requires less
computational complexity in comparison with the BFs-LMS and
GFs-LMS algorithms.

Experiment 4: To evaluate the tracking capability of the
proposed algorithm, in this experiment we use the primary path,
secondary path and reference signal similar to experiments 3.
Fig. 5 compares algorithms in a tracking situation when after
4000 sample, the primary path response is shifted to the right by
12 samples and the reference signal is abruptly increased by a
Gaussian noise of 35 dB SNR. According to this simulation, the pro-
posed MmLBFE-LMS algorithm tracks as fast as the competitive
algorithms

Experiment 5: With the aim to further test the effectiveness of
the proposed algorithm to real-world situations, in this experi-
ment, we adopt the real measured secondary and primary path
which was set by Kuo’s experiment as in [1]. The amplitude
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Fig. 4. Learning curves of different algorithms for NANC/LSP, the reference signal is
a sinusoidal wav, the secondary path is chosen as the non-minimum-phase model,
the primary path is nonlinear.

Table 4
Computational requirements for NANC/LSP case.

Algorithms Multiplications Additions

Fs-LMS 176 167
GFs-LMS 364 323
BFs-LMS 424 360
MmLBFE-LMS 199 177
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Fig. 6. The amplitude response and phase response for the measured primary path
and secondary path.
response and phase response of such primary path and secondary
path are shown as in Fig. 6.

The reference input signal is a mixture of three sine signals with
normalized frequencies of 0.02, 0.04, 0.08, and normalized to have
a unit power. The SNR at the noise cancelling point is set to 40 dB.
The reference signal is then assumed to be strongly distorted by
the nonlinear function described as follows
f x nð Þ½ � ¼ 0:2x nð Þx n� 1ð Þ þ 0:8x nð Þ ð46Þ
The learning rate for all the filters are chosen as: the Fs-LMS

(gf1 = 0.0000035, gf2 = 0.0000022); the GFs-LMS (gg1 =
0.0000075, gg2 = 0.000001; gg3 = 0.000009); the BFs-LMS
(gb1 = 0.000035, gb2 = 0.0000014; gb3 = 0.00007 and gb4 =
0.000012); the MmLBFE-LMS (la = 0.000025, lb = 0.0000015,
lc = 0.000055 and ld = 0.000018). Fig. 7 shows the performance
comparison of NMSE for algorithms under the real measured sec-
ondary and primary paths. It is apparent that there is a significant
improvement of the performance in both BFs-LMS and proposed
MmLBFE-LMS algorithms compared to Fs-LMS and GFS-LMS
algorithms. However, the proposed MmLBFE-LMS algorithm
requires lower computational costs than the BFs-LMS algorithm.
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6. Conclusion

This paper presents a novel MmLBFE-LMS algorithm to reduce
the computational complexity of the BFLANN-based ANC system.
The proposed algorithm exploits the superiority of the filtered-
error method in the active noise control and uses a data-
dependence partial update strategy to optimally exploit the
cross-terms, which can reduce the computational cost of BFLANN.
Moreover, based on leaky technique, this algorithm can limit the
gain of filtering weights, and thus can mitigate the instability prob-
lem of BFLANN-based ANC system. Stability and computational
complexity of the MmLBFE-LMS algorithm is analyzed. Simulation
results demonstrated that the proposed solution can significantly
reduce the computational cost of the BFs-LMS algorithm without
degrading noise-canceling performance. In conclusion, the
MmLBFE-LMS algorithm can be considered a suitable candidate
for the BFLANN-based ANC system.
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