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This paper presents a novel adaptive pipelined neural finite impulse response (PNFIR) filter for nonlinear
signal processing. Unlike traditional pipelined recurrent neural network (PRNN), each module of the
PNFIR filter is a simple architecture that includes a standard FIR filter followed by a nonlinear activation
function. The complete design of proposed filter includes two subsections: The nonlinear part consists of
neural FIR (NFIR) modules which is interconnected in a chained form and simultaneously executed in a
parallel fashion; the linear subsection is a tapped-delay-line (TDL) linear combiner. Based on convex
combination architecture, the adaptive algorithm derived from the gradient descent approach is utilized
to update weights of the nonlinear and linear parts. Moreover, the analysis of stability conditions and
computational complexity is also presented. Numerous simulation experimental results on nonlinear
dynamic systems identification, speech signal and chaotic time series prediction show that the proposed
PNFIR filter has simpler architecture, faster convergence rate, and lower computation complexity than
the PRNN and joint process filter using pipelined feedforward second-order Volterra architecture
(JPPSOV).

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Many physical signals encountered in practice are usually non-
stationary and nonlinear (e.g., nonlinear colored signals, speech
signals, chaotic signals). The processing task of such signals is
increasingly difficult, since the mathematical models to describe
them are often complicated to derive. Linear adaptive techniques
based on the linear model do not perform well for such signals
due to their nonlinearity nature. During the past decades, nonlin-
ear adaptive filter drew attention of many researchers due to its
superior performance when compared with the linear adaptive fil-
ter in many practical applications. Different nonlinear filter design
approaches are suggested to model nonlinear systems [1,2]. How-
ever, to find a unified theory for modeling and characterizing them
accurately is hard. So far, the most widely used nonlinear filters
mainly have the following two categories: polynomial filters (PF)
[1] and neural networks (NN) [2].

It is well known that NN are attractive owing to their learning
and generalization abilities. They emerge as an effective and pow-
erful tool to approximate nonlinear functions and expand signal
processing horizons. Various types of NN such as radial basis func-
tion (RBF) [2–4], multilayer perceptron (MLP) [2,5], and recurrent
neural network (RNN) [2,6] can be found in the literature to the
nonlinear system identification [7,8], channel equalization [9–
12], speech prediction [13–15], active noise control [16,17].

The adaptive nonlinear filters based on NN, especially RNN,
exhibit a wide range of dynamics thanks to its recurrent architec-
tures [6]. This advantage can enable RNNs to accurately model
nonlinear dynamic systems, which are suitable for many practical
applications. However, the major drawbacks of RNN filters are the
heavy computational burden and slow convergence rate. To cope
with these problems, a computationally efficient nonlinear predic-
tor using the pipelined RNN (PRNN) architecture was proposed by
Haykin and Li [18,19]. The application of PRNN have been already
presented in the literature to prediction of speech, identification of
nonlinear dynamic systems, communication systems, e.g,. see [20–
23].

Volterra filter (VF) plays a very important role in polynomial fil-
tering study due to its simple architecture and nonlinear process-
ing capability. Moreover, the global convergence of VF is
guaranteed because it can be considered as a straightforward gen-
eralization of linear adaptive filters. Therefore, the Volterra series-
based model has been widely used in the applications such as the
nonlinear system identification [24], channel equalizer [25], image
processing [26], active noise control [27], acoustic echo cancella-
tion [28], just to mention a few.
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However, since the VF requires a large number of coefficients to
be able to accurately model nonlinear systems, its computational
complexity becomes heavy burden. One main reason is that the
coefficient of the Volterra filter increases geometrically as its mem-
ory length and/or order goes up. To mitigate this disadvantage,
many researchers have developed low-complexity Volterra filters.
Koh and Powers proposed an iterative factorization technique [29];
Lou et al. used a method based on multi-memory decomposition
(MMD) [30]; Panicker and Mathews presented an adaptive
parallel-cascade Volterra filter using the normalized least mean
square (NLMS) [31]; Banat proposed a pipelined Volterra filter uti-
lizing the recursive equation [32]. Especially, an efficient method,
which using pipelined SOV architecture was proposed by Zhao
and Zhang [33], is an adaptive joint process filter using pipelined
feedforward second-order Volterra architecture (JPPSOV). Com-
pared with the direct-form SOV, the JPPSOV exhibits better perfor-
mance and lower computational complexity.

The VF and RNN using pipelined architecture can significantly
reduce the computational complexity. However, because of their
structural characteristics, the computational burden still prohibits
many applications in practice. Moreover, these filters are slow in
converging to the optimal state. Therefore, in order to offer a non-
linear filter which has simple architecture, low computational
complexity and fast convergence rate, we propose a novel pipe-
lined neural FIR (PNFIR) in this paper.

The rest of the paper is organized in the following manner. In
Section 2, we present a motivation for the proposed filter. In Sec-
tion 3, a brief summary of the neural FIR filter is given. Section 4
and 5 present the PNFIR architecture and adaptive algorithm,
respectively. The analysis of stability conditions and computational
complexity of the PNFIR filter is given in Sections 6 and 7. Section 8
illustrates the effectiveness of the proposed filter by comparing it
with JPPSOV and PRNN. Finally, the conclusion is drawn in
Section 9.

A. Notation

In this paper, vectors are represented by capital letters and sca-
lars are denoted by lowercase letters. Time-varying vectors and
scalars show discrete-time index in brackets. A regression vector
is expressed as X nð Þ ¼ x nð Þ; x n� 1ð Þ; :::;½ x n� N þ 1ð Þ�T , where N is
the overall vector length and x(n-i) is entry at the time instant n-
i. All vectors are expressed as column vectors.
Fig. 1. Diagram of adaptive neural FIR filter.
2. Motivation

By embedding memory into a static perceptron, Mandic et al.
developed a series of neural FIR filters (dynamical perceptron) for
nonlinear system identification and non-stationary signal process-
ing [34–38].These nonlinear filters have low computational com-
plexity, simple architecture, and effective nonlinear processing
capability for small-scale applications which is almost equal to tra-
ditional neural networks’. However, its nonlinear processing capa-
bility is only based on the static nonlinearity of perceptron. Thus,
when the task of interest is a difficult one, its nonlinear processing
capability is limited. Indeed, this is the main reason that hinders
the applications of the NFIR filter in practice.

In this paper, we present novel PNFIR architecture for nonlinear
adaptive filter. Based on the nested nonlinearity of cascaded mod-
ules, the overall input–output relation of the nonlinear subsection
is similar to that found in a multilayer perceptron. Consequently,
the capability of nonlinear signal processing of the filter can be
improved. In addition, thanks to the convex combination of the
output of the TDL linear combiner and the output of the standard
FIR filters, the PNFIR would adequately employ advantages of the
221
nonlinear filter and characteristics of the linear filter to improve
its performance. The main differences of the PNFIR compared with
the previous pipelined architectures include the following:

- Each module in the nonlinear subsection of the PNFIR is a sim-
ple architecture that includes a standard FIR filter followed by a
nonlinear activation function.

- The weights update method of the linear and nonlinear parts is
based on convex combination architecture.

3. Brief of neural FIR (NFIR) filter

In order to tackle the disadvantages of the neural network
(heavy computational complexity, complicated architecture, local
minimum point. . .), Mandic et al. presented a series of adaptive
neural FIR (NFIR) filters and realized them as a dynamical feedfor-
ward neuron based on the FIR architecture [34–38]. These filters
have the simple architecture, low computational complexity, and
theirs nonlinear processing capability for small-scale applications
is close to that of traditional neural networks. An NFIR filter is
depicted in Fig. 1. It consists of a standard FIR filter followed by a
nonlinear activation function f :ð Þ, typically a sigmoid.

Let X nð Þ denotes the N input signal vector of the filter is given as
follows

X nð Þ ¼ x nð Þ; x n� 1ð Þ; :::;½ x n� N þ 1ð Þ�T ð1Þ
The weight vector of this filter is defined as

W nð Þ ¼ w1 nð Þ;w2 nð Þ; � � � ;wN nð Þ½ �T ð2Þ
The cost function of the nonlinear gradient descent (NGD) algo-

rithm for a structure shown in Fig. 1 is expressed by

J nð Þ ¼ e2 nð Þ ð3Þ

where eðnÞ ¼ dðnÞ � yðnÞ ¼ dðnÞ � f WTðnÞXðnÞ
n o

is the instanta-

neous output error; d nð Þ is the desired response of the filter; f :f g
is the nonlinear activation function; and :ð ÞT is the vector transpose.
The gradient of J nð Þ with respect to the weight vector W nð Þ is given
by

rwðnÞJðnÞ ¼ 2eðnÞ @ dðnÞ�f WT ðnÞXðnÞf gð Þ
@WðnÞ

¼ �2eðnÞf 0 WTðnÞXðnÞ
n o

XðnÞ
ð4Þ

By using the gradient estimation algorithm along the negative
of the gradient of cost function with respect to weight vector
W nð Þ, the weights updating equation is given as follows

Wðnþ 1Þ ¼ WðnÞ � g
2DW

¼ W nð Þ þ ge nð Þf 0 WT nð ÞX nð Þ
n o

X nð Þ ð5Þ



Fig. 3. Detailed construction of module i.
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where g denotes the learning rate of the algorithm.
Based on the characteristics of the activation function, it can be

seen that when the external signal input is relatively small, it
behaves as an approximate linearity; but when the input signal
is large, its approximation tends to the limits 0 and 1 or �1 and
1 (depending upon the choice of activation function), which leads
to the distortion at the output. Therefore, to ensure the effective-
ness of the NFIR filter, the amplitude of external signal input
should be selected appropriately.

4. The structure of PNFIR filter

Haykin and Li had proposed a nonlinear adaptive predictor
based on pipelined architecture to overcome the computational
complexity of the recurrent neural network (RNN) [18,19]. Follow-
ing their work, many types of nonlinear models based on pipelined
architecture have been proposed and successfully applied in prac-
tice [39–41]. Keeping the view of pipelined architecture, a novel
PNFIR filter is proposed to improve performance of the NFIR non-
linear filter. The operation of the PNFIR is based on modularity
principle.

The proposed PNFIR architecture is illustrated in Fig. 2. It con-
sists of two subsections: nonlinear subsection is the NFIR modules
performing a nonlinear mapping from the input space to an inter-
mediate space, and linear subsection is a tapped-delay-line (TDL)
filter performing a linear mapping from the intermediate space
to the output space. Its output signal is a convex combination of
the output of TDL linear combiner and output of standard FIR fil-
ters. Moreover, this new structure uses an overall feedback signal
(the output of the first module) which performs as the guiding
principle to improve nonlinearity [19].

4.1. Nonlinear subsection

The nonlinear subsection of the proposed structures is com-
posed of M identical NFIR modules. Inputs of each module include
L external input signals and a one-unit delayed signal of the previ-
ous adjacent module output. In the case of moduleM, input signals
consist of L external input signals and a one-unit delayed version of
signal feedback from module 1. All the modules operate similarly,
which have exactly the same numbers of input signal. The detailed
structure of the module i is depicted in Fig. 3.

Let XiðnÞ denote the L + 1 input signal vector of module i and is
given as follows
Fig. 2. The pipelined
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XiðnÞ ¼ ½xðn� iþ 1Þ; xðn� iÞ; :::; xðn� i� Lþ 2Þ; riðnÞ�T ;1 � i

< M ð6Þ
where riðnÞ is the previous adjacent module output or signal feed-
back. In the case of moduleM, it is an overall feedback from module
1.

riðnÞ ¼
y1 n� 1ð Þ i ¼ M

yiþ1 n� 1ð Þ i–M

�
ð7Þ

The synaptic weight vector of module i in the PNFIR architec-
ture is represented as

Hi nð Þ ¼ hi1 nð Þ;hi2 nð Þ; � � � ;hiðLþ1Þ nð Þ� �T
; 1 � i � M ð8Þ

and the output yiðnÞ at the nth time point computed by passing ziðnÞ
through a nonlinear activation function is written as

yiðnÞ ¼ f zi nð Þf g ð9Þ
where f :f g denotes nonlinear activation function, and ziðnÞ is output
of standard FIR filter is defined by

ziðnÞ ¼ HT
i ðnÞXiðnÞ ð10Þ
4.2. Linear subsection

In linear subsection, we define the weight vector W nð Þ of TDL
filter as follows
neural FIR filter.
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W nð Þ ¼ w1 nð Þ;w2 nð Þ; � � � ;wM nð Þ½ �T ð11Þ
where M is the number of the modules in pipelined structure. From
Fig. 2 we can easily see that the corresponding input vector of the
TDL filter consists of the present output of each module, as shown
by

YðnÞ ¼ y1ðnÞ; y2ðnÞ; :::; yMðnÞ½ �T ð12Þ
Thus, the output of linear subsection can be expressed as

ŷ1ðnÞ ¼ WTðnÞYðnÞ ð13Þ
where ŷ1ðnÞ can be considered the output of TDL linear combiner.

4.3. The PNFIR filter output

As shown in Fig. 2, the output of the PNFIR filter is the convex
combination of the output of TDL linear combiner and standard
FIR filters. Thus, its output at time n can be written as

ŷðnÞ ¼ kðnÞŷ1 nð Þ þ ð1� kðnÞÞŷ2 nð Þ ð14Þ
where ŷ2ðnÞ is sum of the outputs of standard FIR filters; ŷðnÞ is a
prediction value of the actual desired sample d(n); and kðnÞ is an
adaptive convex combination parameter which lies between zero
and one. In order to keep kðnÞ in the interval (0,1), it is defined
via a nonlinear activation function as follows

kðnÞ ¼ 1
1þ exp �aðnÞ½ � ð15Þ

where aðnÞ is a variable parameter which can be adaptively
adjusted. Convex combination parameter kðnÞ increases monotoni-
cally with aðnÞ. However, when kðnÞ is too close to 0 or 1, the aðnÞ
will stop updating. To deal with the disadvantage, the values of
aðnÞ can be limited to the interval [�4,4] [42].

5. Adaptive algorithm

Based on the architecture of the proposed PNFIR filter, the sum
of the outputs of standard FIR filters can be computed as

ŷ2ðnÞ ¼
XM
i¼1

ziðnÞ ð16Þ

Hence, the output of the PNFIR filter can be rewritten as

ŷðnÞ ¼ kðnÞŷ1ðnÞ þ ð1� kðnÞÞŷ2ðnÞ

¼ kðnÞ
XM
i¼1

wiðnÞyiðnÞ þ ð1� kðnÞÞ
XM
i¼1

ziðnÞ ð17Þ

The error function eðnÞ between the desired response d(n) and
estimated signal ŷðnÞ is given by

eðnÞ ¼ dðnÞ � y
_ðnÞ

¼ dðnÞ � kðnÞ
XM
i¼1

wiðnÞyiðnÞ � ð1� kðnÞÞ
XM
i¼1

ziðnÞ ð18Þ

Therefore, the cost function of the PNFIR filter at the nth time
point is defined by

JðnÞ ¼ e2ðnÞ

¼ dðnÞ � kðnÞ
XM
i¼1

wiðnÞyiðnÞ � ð1� kðnÞÞ
XM
i¼1

ziðnÞ
" #2

ð19Þ

Taking as objective the minimization of the cost function J nð Þ,
the parameters Hi nð Þ,W nð Þ and aðnÞ of the PNFIR filter are adjusted
by the stochastic gradient estimation algorithm as the following
formulas
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Hiðnþ 1Þ ¼ HiðnÞ � gH

2
rHiðnÞJðnÞ; ð20Þ

Wðnþ 1Þ ¼ WðnÞ � gw

2
rWðnÞJðnÞ ð21Þ

aðnþ 1Þ ¼ aðnÞ � q
2
raðnÞJðnÞ ð22Þ

where gH , gW and q are learning rates of nonlinear subsection, lin-
ear subsection and variable parameter. rHiðnÞJðnÞ, rWðnÞJðnÞ and
raðnÞJðnÞ denote the gradient of JðnÞ with respect to the weight vec-
tor Hi nð Þ, WðnÞ and aðnÞ, respectively.

5.1. Nonlinear subsection

For the nonlinear subsection, the gradient of JðnÞwith respect to
the weight vector HiðnÞ is calculated as follows

rHiðnÞJðnÞ ¼ 2eðnÞ @eðnÞ
@HiðnÞ

¼ 2eðnÞ @ dðnÞ�kðnÞ
PM

i¼1
wiðnÞyiðnÞ�ð1�kðnÞÞ

PM

i¼1
ziðnÞ

� �
@HiðnÞ

ð23Þ

Substituting Eqs. (9) and (10) into Eq. (23) we can get

rHiðnÞJðnÞ¼�2eðnÞ

�
@ kðnÞPM

i¼1wiðnÞf HT
i ðnÞXiðnÞ

n o
þð1�kðnÞÞPM

i¼1H
T
i ðnÞXiðnÞ

� �
@HiðnÞ

¼�2eðnÞ kðnÞwiðnÞf 0 HT
i ðnÞXiðnÞ

n o
þð1�kðnÞÞ

h i
XiðnÞ

ð24Þ
Therefore, the weight updating equation HiðnÞ of PNFIR filter in

accordance with gradient descent approach is given as follows

Hiðnþ 1Þ ¼ HiðnÞ
þ gHeðnÞ kðnÞwiðnÞf 0 HT

i ðnÞXiðnÞ
n o

þ ð1� kðnÞÞ
h i

XiðnÞ
ð25Þ
5.2. Linear subsection

For the linear subsection, the gradient of JðnÞwith respect to the
weight vector WðnÞ is obtained

rWðnÞJðnÞ ¼ 2eðnÞ @eðnÞ
@WðnÞ

¼ 2eðnÞ @ dðnÞ�kðnÞ
PM

i¼1
wiðnÞyiðnÞ�ð1�kðnÞÞ

PM

i¼1
ziðnÞ

� �
@WðnÞ

¼ 2eðnÞ @ dðnÞ�kðnÞWðnÞYðnÞ�ð1�kðnÞÞ
PM

i¼1
ziðnÞ

� �
@WðnÞ

¼ �2eðnÞkðnÞYðnÞ

ð26Þ

Therefore, the weight updating equation W nð Þ of PNFIR filter in
accordance with gradient descent approach is given as follows

Wðnþ 1Þ ¼ WðnÞ þ gweðnÞkðnÞYðnÞ ð27Þ
5.3. Convex combination parameter

For the variable parameter aðnÞ, the gradient of JðnÞwith respect
to the parameter aðnÞ is calculated as follows

raðnÞJðnÞ ¼ 2eðnÞ @eðnÞ
@aðnÞ

¼ 2eðnÞ @ dðnÞ�kðnÞ
PM

i¼1
wiðnÞyiðnÞ�ð1�kðnÞÞ

PM

i¼1
ziðnÞ

� �
@aðnÞ

¼ �2eðnÞ
@ 1

1þexp �aðnÞ½ �
PM

i¼1
wiðnÞyiðnÞ� 1

1þexp �aðnÞ½ �
PM

i¼1
ziðnÞ

� �
@aðnÞ

¼ �2eðnÞðŷ1ðnÞ � ŷ2ðnÞÞkðnÞ 1� kðnÞ½ �

ð28Þ
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Therefore, the update equation of the variable parameter is
derived as follows

aðnþ 1Þ ¼ aðnÞ þ qeðnÞðŷ1ðnÞ � ŷ2ðnÞÞkðnÞ 1� kðnÞ½ � ð29Þ
Table 1
Total computational requirements of NFIR, JPPSOV, PRNN and PNFIR.

Type of filter Arithmetic operations

NFIR 6L3 + 7
PNFIR 2M(L + 1) + 3M + 3(L + 1) + 18
PRNN M1q

4 + 3(M1 + 1)
JPPSOV (2M2 + 5)[(L22 + 5L2 + 6)/2] + 6 M2 + 1

Table 2
Computational requirements of the filters in example 3 of the simulation section.

Type of filter Parameter values Arithmetic operations

NFIR L3 = 2 19
L3 = 30 187

PNFIR L = 2, M = 5 72
PRNN q = 3, M1 = 5 423
JPPSOV L2 = 2; M2 = 5; 181
6. The analysis of stability conditions

According to the adaptive filter theory [43], we know that the
update Eqs. (25) and (27) will not ensure stability unless a strong
condition is imposed on the step sizes gH and gw. In this section,
we give the stability conditions for nonlinear and linear subsec-
tions of PNFIR filter.

6.1. Nonlinear subsection

According to the rule of the Taylor expansion [44], the instanta-
neous error (18) can be expanded as follows

eðnþ 1Þ ¼ e nð Þ þ @e nð Þ
@Hi nð ÞDHi nð Þ þ h:o:t ð30Þ

where h.o.t denotes the higher order terms of the rest of Taylor ser-
ies expansion and can be ignored. Thus, for simplicity, we only con-
sider the first and second terms of the instantaneous squared error
as follows

e2ðnþ 1Þ � e2 nð Þ ¼ ½ @e nð Þ
@Hi nð ÞDHi nð Þ�

2

þ 2
@e nð Þ
@Hi nð ÞDHi nð Þe nð Þ ð31Þ

From (20), the weight correction is obtained by

DHi nð Þ ¼ Hiðnþ 1Þ � HiðnÞ ¼ gH

2
@J nð Þ
@Hi nð Þ ð32Þ

During the training process, the error change DJðnÞ can be given by

DJðnÞ ¼ J nþ 1ð Þ � J nð Þ ¼ e2 nþ 1ð Þ � e2 nð Þ ð33Þ
Substituting Eqs. (31) and (32) into Eq. (33), we can get the fol-

lowing relation

DJðnÞ ¼ ½ @e nð Þ
@Hi nð ÞDHi nð Þ�2 þ 2 @e nð Þ

@Hi nð ÞDHi nð Þe nð Þ
n o

¼ DH2
i nð Þ ½ @e nð Þ

@Hi nð Þ�
2 þ 2

DHi nð Þ
@e nð Þ
@Hi nð Þ e nð Þ

n o
¼ DH2

i nð Þ ½ @e nð Þ
@Hi nð Þ�

2 � 4
gH

@J nð Þ
@Hi nð Þ

@e nð Þ
@Hi nð Þ e nð Þ

� 	 ð34Þ

Therefore, a loosely defined restriction of convergence condi-
tion for nonlinear subsection of the PNFIR filter (DJðnÞ < 0) can
be derived as follows

DH2
i nð Þ @e nð Þ

@Hi nð Þ

 �2

� 4
gH

@J nð Þ
@Hi nð Þ

@e nð Þ
@Hi nð Þ e nð Þ

( )
< 0 ð35Þ

) gH
@ei nð Þ
@Hi nð Þ

 �2

<
4

@J nð Þ
@Hi nð Þ

@ei nð Þ
@Hi nð Þ ei nð Þ ð36Þ

gH <

4
@J nð Þ
@Hi nð Þ

@e nð Þ
@Hi nð Þ e nð Þ


 �
@e nð Þ
@Hi nð Þ

h i2 ¼ 4e nð Þ
@J nð Þ
@Hi nð Þ

@e nð Þ
@Hi nð Þ

¼ 2
@e nð Þ
@Hi nð Þ

h i2 ð37Þ

So, the range of learning rate of nonlinear subsection to guaran-
tee a convergence condition of PNFIR filter is given as follows

0 < gH < 2

sup @e nð Þ
@Hi nð Þ

h i2 )
0 < gH < 2

sup kðnÞwiðnÞf 0ðHT
i ðnÞXiðnÞÞþð1�kðnÞ½ �XiðnÞf g2

ð38Þ
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where ‘‘sup” denotes a supremum operator.

6.2. Linear subsection

Using the methods of analyzing stability condition and conver-
gence performance of NLMS algorithm under small step size
assumptions [43], we can present the range of learning rate to
guarantee a convergence condition of linear subsection for PNFIR
filter as follows

0 < gw <
2

cmax RYYð Þ ð39Þ

RYY ¼ E½Y nð ÞYT nð Þ� ð40Þ
where cmax denotes the max eigenvalue of matrix RYY

7. Computational complexity analysis

In this section, an analysis of the computational complexity of
the proposed PNFIR filter is presented. Assuming L and M are the
external input signals of each module and the number of modules,
respectively. The computational complexity of the PNFIR filter is
required the following major operations

a) Computing the estimation error in Eq. (18) requires (ML + M
+ 2) multiplications and (ML + 2) additions

b) Computing the update of coefficients HiðnÞ in Eq. (25)
requires (2L + 4) multiplications and (L + 1) additions

c) Computing the update of coefficients W nð Þ in Eq. (27)
requires (M + 2) multiplications and M additions

d) Computing the update of variable parameter aðnÞ in Eq. (29)
requires 4 multiplications and 3 additions

Accordingly, the computational complexity of the PNFIR
requires about 2ML + 3M + 3L + 18 arithmetic operations. Besides,
referring to the studies in [37,18], and [33], we obtain the compu-
tational complexity of the NFIR, PRNN, and JPPSOV, respectively.
Therefore, a brief comparison of the number of arithmetic opera-
tions for these adaptive filters is summarized in Table 1. Where
M1 and q are the number of modules and number of output layer
neurons of PRNN, respectively; L3 is the memory length of the
NFIR; L2 and M2 are the external input signals of each module
and number of modules of JPPSOV, respectively. Table 2 offers a
computational complexity comparison for a special case in the
simulation. Here the parameters are selected as in example 3 of
the experiment on nonlinear system identification.



Fig. 4. Illustrating the relation between the mean-square error and the number of
modules for the case of input colored noises.

Fig. 5. Illustrating the relation between the MSE and the L for the case of input
colored noises.
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From Tables 1 And 2, we realize that the computational com-
plexity of the proposed PNFIR is higher than that of NFIR (L = 2),
however the performance obtained of NFIR filter is very low (see
the next section). Increasing the memory length of the filter (such
as NFIR (L = 30)) is also not a feasible solution, because it signifi-
cantly increases computational complexity but achieves trivial
performance. And obviously, the computational requirement of
PNFIR is significantly lower than that of the JPPSOV and PRNN.

8. Simulations

In order to evaluate the performance of the proposed PNFIR fil-
ter, a number of simulations are carried out to verify the effective-
ness of our proposed method including the nonlinear dynamic
systems identification, speech signal and chaotic time series pre-
diction. The performance of the PNFIR filter is compared with NFIR,
PRNN and JPPSOV filters in terms of convergence speed, steady-
state error and signal prediction ability.

In the simulations, the nonlinear active function is chosen to be
the logistic sigmoid function as follows

f ðxÞ ¼ 1
1þ expð�xÞ ð41Þ

and initial value of convex parameter kð0Þ and variable parameter
að0Þ are set to 1 and 0, respectively.

8.1. Identification of nonlinear dynamic system

In the simulation, we have used the unknown system models
[8] as follows

d nð Þ ¼ d n� 1ð Þ
1þ d2 n� 1ð Þ

þ x3 nð Þ ð42Þ

where d nð Þ and x nð Þ are the output and input signal of the unknown
system, respectively.

The measurement noise is assumed to be a mean-zero white
Gaussian noise that was uncorrelated with the input signal, and
the input signal to measurement noise ratio (SNR) is chosen to
be 30 dB. The performance of the different filters will be measured
in terms of the mean square error (MSE) which is obtained by aver-
aging over 100 independent runs.

MSE ¼ 10log10 e2 nð Þ� � ð43Þ
In this experiment we use two kinds of input signals: one is ran-

dom sequence with uniform distribution, and the other is colored
sequences. The range of input signal is chosen as (0, 0.6). The col-
ored signal generated by passing white noise u(n) through an AR
model is given by [38]

x nð Þ ¼ 1:79x n� 1ð Þ � 1:85x n� 2ð Þ þ 1:27x n� 3ð Þ
� 0:41x n� 4ð Þ þ u nð Þ ð44Þ

where u(n) is mean-zero white Gaussian noise with variance one.

Example 1: Choice of the number of modules

The number of modules of the proposed PNFIR filter is an
important parameter, which directly affects the performance and
the computational cost of the filter. Fig. 4 shows the relation
between the MSE and the number of modules for colored input sig-
nal with M increasing from 2 to 12, assuming that the external
input signal L = 2, the learning rate of nonlinear and linear subsec-
tion of PNFIR filter are set to gH ¼ 0:5, gw ¼ 0:01, respectively; the
parameter of convex function is chosen as q ¼ 0:01. From Fig. 4, we
can clearly see that the MSE is the lowest whenM equals 5 to 8 and
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increases as M is greater than 8. According to the adaptive filtering
theory [43], the main reason for the increase in MSE may be the
overparameterized estimated problem. The choice of M controls
the trade-off between computational complexity and performance,
thus, we here choose M to be equal to 5.

Example 2: Choice of the number of external inputs

Fig. 5 describes the influence of the number of external input in
the PNFIR filter on the MSE performance for colored input signal
with L increasing from 1 to 10, assuming that the number of mod-
ules M = 5; the learning rate of PNFIR are set to gH ¼ 0:6, gw ¼ 0:01
and q ¼ 0:1. For a specific level of L, Fig. 5 shows that the MSE
decreases when L is chosen in the range of 2 to 4, and increases
when L is greater than 4. The reason for increasing MSE (when
L > 4) can be explained as the overparameterized estimated prob-
lem in adaptive filter processing. Similar to the parameter M, the
parameter L is also chosen based on the compromise between
computational complexity and performance, thus here we choose
L = 2.



Fig. 7. Comparison of MSE for random input signal.
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According to the aforementioned discussion and the results of
the studies in [18,33], a summary of the parameters for PNFIR,
PRNN, JPPSOV and NFIR filters is provided in Table 3.

Example 3: To further illustrate the function and advantage of
the convex combination architecture, a simulation experiment
have been conducted to compare the performance of the PNFIR
and that of the PNFIR with kðnÞ ¼ 1(i.e., the linear and nonlinear
parts of PNFIR are updated like the algorithm in [33]). In this
experiment, the input is the random sequence with uniform
distribution. The learning rate of the PNFIR filter and the PNFIR
(kðnÞ ¼ 1) filter are selected the same and are set to gH ¼ 0:6,
gw ¼ 0:01; The learning rate of the parameter a(n) is chosen
as q ¼ 0:6. From Fig. 6, it is clear that the PNFIR architecture
using convex combination algorithm achieves better perfor-
mance than using the algorithm as in [33].
Example 4: In this example, we test the performance of the fil-
ters when the input is the random sequence as used in example
3. The learning rate of the PNFIR filter are set to gH ¼ 0:6,
gw ¼ 0:01, and q ¼ 0:6. The learning rate of nonlinear and linear
subsection of PRNN filter are chosen as g1H ¼ 0:001 and
g1w ¼ 0:004, respectively. The learning rate of nonlinear and
linear subsection of JPPSOV filter are set to g2H ¼ 0:2 and
g2w ¼ 0:5, respectively. The learning rate of NFIR is set to
g3 ¼ 0:031 with L3 = 2 and g3 ¼ 0:61 with L3 = 30. Fig. 7 shows
the averaged MSE performance curves for the random input
signal.
Example 5: In this example, the performance of the NFIR,
JPPSOV, PRNN, and PNFIR filters are investigated with the col-
ored input signal. The learning rates of the filters are: for the
PNFIR (gH = 0.5, gw = 0.001 and q = 0.01); for the PRNN
(g1H = 0.001 and g1w = 0.002); for the JPPSOV (g2H = 0.1 and
g2w = 0.9); for the NFIR (g3 = 0.1 with L3 = 2 and g3 = 0.9 with
Table 3
The parameters of all the nonlinear filters.

Parameters PNFIR JPPSOV PRNN NFIR

Number of external input 2 2 2 2 and30
forgetting factor c – – 0.97 –
Number of output layer neurons 1 – 3 1
Number of modules 5 5 5 –

Fig. 6. Comparison of MSE of the PNFIR and PNFIR with kðnÞ ¼ 1.
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L3 = 30). Fig. 8 shows the averaged MSE performance curves
for the colored input signal.

Figs. 7 and 8 show the MSE performance of the filters for the
random input signal and the colored input signal, respectively.
According to these two figures, we can see that in the same condi-
tions, the PNFIR filter is superior to the NFIR filter. The NFIR filter
can increase performance within a certain value by extending its
memory length. Moreover, increasing the memory length would
make its computational complexity become heavy. In addition,
the PNFIR exhibits a faster convergence rate than that of the PRNN
and JPPSOV filters.

8.2. Prediction of chaotic time series

To illustrate the effectiveness of proposed PNFIR filter for pre-
diction of chaotic time series, a nonlinear signal predicting system
is implemented in Fig. 9. Input signal x(n) of system is the Mackey–
Glass chaotic time series which are generated by a delay differen-
tial equation as follows [45]
Fig. 8. Comparison of MSE for colored input signal.



Fig. 10b. Predicted values of JPPSOV.

Fig. 10c. Predicted values of PRNN.

Fig. 9. Structure of PNFIR predictor.
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dy tð Þ
dt

¼ ay t � sð Þ
1þ y t � sð Þ10 � by tð Þ ð45Þ

where s is the delay time. The system is chaotic when s > 16:8. The
data set was constructed using parameter a ¼ 0:2, b ¼ 0:1, and
s ¼ 17.

The squared root of the MSE is used to evaluate the prediction
accuracy, which is defined by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

y tð Þ � ŷ tð Þð Þ2
s

ð46Þ

where ŷðtÞ is the estimated value of yðtÞ at time t.
In the simulation, to obtain the best result of nonlinear predic-

tors, their parameters’ values are chosen after several trials. The
parameters of PNFIR are chosen as gH ¼ 0:9; gw ¼ 0:9 and
q ¼ 0:9. The learning rate of nonlinear and linear subsection of
PRNN and JPPSOV filters are set to g1H ¼ 0:04, g1w ¼ 0:9 and
g2H ¼ 0:9, g2w ¼ 0:9, respectively. The training chaotic time
sequence length is 400. The range of input signal is chosen as (0,
0.1).

Figs. 10, 11 and Table 4 depict the results of the predictors, the
predicted error and the final RMSE value of all of the nonlinear pre-
dictors, respectively. From these results, we can observe that the
predicting capability of the PNFIR is better than that of JPPSOV,
but slightly less than that of PRNN. However, it should be noted
that in order to achieve such good predictability, PRNN has to
pay a much more computational cost than PNFIR.

Therefore, these results clearly reveal that the PNFIR is capable
of efficiently capturing the underlying dynamics from the chaotic
time series.
Fig. 11. Comparison of predicted errors.Fig. 10a. Predicted values of PNFIR.
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Table 4
Comparing the RMSE for all the nonlinear
filters.

Prediction model RMSE

PNFIR 0.0078
PRNN 0.0064
JPPSOV 0.0090

Table 5
Comparing of the RP for nonlinear filters.

Prediction model RP

PNFIR 18.1017
JPPSOV 16.6485
PRNN 16.5766
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8.3. Speech adaptive prediction

To evaluate the performance of the proposed PNFIR in the pre-
diction of speech signals, we applied the nonlinear adaptive predic-
tor to the case of speech signals which is made up of 4000 points.
The measure used to evaluate the performance of the predictor is
the one-step forward prediction gain defined as

Rp ¼ 10log10
r̂2

x

r̂2
e

 !
ð47Þ

where d̂
2
x , d̂

2
e are the estimated variance of the input speech signal

and error signal, respectively. They are calculated as follows

r̂2
x ¼ 1

N

XN
i¼1

x2 ið Þ; r̂2
e ¼ 1

N

XN
i¼1

e2 ið Þ
Fig. 12. Original speech signals, predicting values by PNFIR, PRNN and JPPSOV.

Fig. 13. Predicting error by PNFIR, PRNN and JPPSOV.
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The SNR of observation noise is chosen to be 50 dB. The param-
eters of PNFIR are chosen as gH ¼ 0:8, gw ¼ 0:7 and q ¼ 0:1. The
learning rate of nonlinear and linear subsection of PRNN and
JPPSOV are set to g1H ¼ 0:9; g1w ¼ 0:9 and g2H ¼ 0:6; g2w ¼ 0:1,
respectively.

Fig. 12 shows four curves of 4000 samples of the speech signals
including original speech, predicting by the PNFIR, predicting by
the PRNN and predicting by the JPPSOV. Fig. 13 depicts corre-
sponding predicting errors. The results obtained from Figs. 12
and 13 show that the performance of PNFIR is better than that of
PRNN and JPPSOV.

In addition, according to the one-step forward prediction gain
Rp of all the predictors (Table 5), it can be seen that the gain Rp

of PNFIR is better than that of the JPPSOV and PRNN. Thus, the
PNFIR also has a good tracking capability for speech signals.
9. Conclusions

A novel nonlinear adaptive filter named pipelined neural FIR
(PNFIR) is presented in the paper. Since the PNFIR filter includes
a number of neural FIR modules, its architecture is simple and easy
to implement. Moreover, based on nested nonlinearity of cascaded
modules and the advantages of convex combination function, the
nonlinear processing capability of PNFIR can be improved. The sim-
ulation results demonstrate that the proposed PNFIR filter exhibits
faster convergence rate, lower computational complexity and bet-
ter ability to efficiently approximate nonlinear systems than PRNN
and JPPSOV filters. However, it should be noted that the PNFIR fil-
ter is more efficiently used under the amplitude of external input
signal is small. In conclusion, those characteristics are believed to
make the PNFIR filter be a potential choice for the problems of non-
linear signal processing.
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