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Diffusion Partitioned-Block Frequency-Domain
Adaptive Filter Over Multitask Networks

Hongyu Han, Yishu Peng, Fenglian Zhang, Dinh Cong Le, and Sheng Zhang, Senior Member, IEEE

Abstract—As a generalization of the frequency-domain adap-
tive filter (FDAF) algorithm, partitioned-block frequency-domain
adaptive filter (PBFDAF) results in minimal signal path delay.
In this paper, we propose the diffusion normalized PBFDAF al-
gorithm based on an unsupervised clustering strategy to address
the low complexity implementation issues in multitask networks.
Each node adaptively adjusts the combination weight coefficients
by minimizing the instantaneous mean square deviation (MSD)
in frequency-domain. The simulation results demonstrate that
the proposed algorithm achieves superior performance.

Index Terms—Adaptive networks, frequency-domain, diffusion
strategy, adaptive combination weight.

I. INTRODUCTION

D ISTRIBUTED adaptive estimation problem has been
widely studied during the past decades, and applied to

many fields, such as target tracking and localization, envi-
ronmental monitorings, and active noise control [1]–[3]. In
the adaptive single-task networks, all agents estimate a single
parameter vector from streaming data by various collaborative
manners, such as consensus strategies, incremental strategies,
and diffusion strategies. Due to the superior robustness and
adaptation ability of diffusion strategy, many algorithms based
that have been proposed, including diffusion least-mean square
(D-LMS), diffusion decorrelation normalized LMS, and their
improved variants [4]–[6].

Different from the single-task scenarios, multitask networks
need to infer multiple parameter vectors cooperatively. Each
cluster has different unknown parameter vector but similarities
exist in connected clusters. In general, the multitask networks
algorithms are divided into two types. First, multitask networks
have been clustered and all extra information is assumed to
be obtained. In this scenario, the multitask D-LMS algorithms
developed in [7], [8] promote inter-cluster cooperation by
incorporating regularizer terms in cost functions. Based on
this, many improved versions have been presented, for exam-
ple, multitask affine projection [9], multitask recursive least
squares [10], robust multitask adaptive filtering algorithms
[11], and so on. In the case where there is no knowledge
of the cluster structure, the D-LMS with adaptive clustering
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minimizes the instantaneous mean square deviation (MSD)
to dynamically adjust the combination weight matrix [12],
[13]. Later, the new diffusion clustering schemes [14] were
proposed, which compare the weight estimates of neighboring
nodes to determine whether they belong to the same cluster. In
addition, the federated multitask learning and graph federated
multitask learning have been studied recently in [15], [16].

In practical applications with multi-tap filters, such as
acoustic echo cancellation and channel equalization, the full-
band filters will cause a very large amount of computation
burden in the time-domain. With the resort to fast fourier
transform (FFT), the frequency-domain implementations based
on overlapped-block convolution are efficient methods to
solve the problem [17]–[19]. There are mainly two kinds
of frequency-domain algorithms, namely, unconstrained and
constrained versions. The performance analysis for full mod-
eling and under-modeling scenarios can be found in [20], [21].
Unfortunately, due to the collection of input and output block
data, the traditional frequency-domain algorithms with large
FFT points suffer from serious signal path delay. To over-
come this drawback, the partitioned-block frequency-domain
adaptive filter (PBFDAF) was designed [22]–[26].

In order to reduce the computational burden of each
node in multitask networks, this paper designs the diffusion
partitioned-block frequency-domain algorithms without prior
information about clustering. First, we derive the diffusion
normalized PBFDAF (D-NPBFDAF) algorithm and analyze
its stability. Then, we propose the improved D-NPBFDAF
algorithm with adaptive combination weight matrix, which is
determined by minimizing instantaneous MSD in frequency-
domain. Simulations are carried out to illustrate the superior
performance of the proposed algorithms.

II. MULTITASK PROBLEM AND D-NPBFDAF

We consider a strongly-connected network with N agents,
and each agent k has access to measurement data dk(n) and
L × 1 input regression vector xk(n), related via a linear
regression model of the form

dk(n) = xT
k (n)wo

k + vk(n), k = 1, 2, · · · , N (1)

where n is the time index, (·)T represents the trans-
pose operation, wo

k is the L × 1 unknown parameter
vector to be estimated at node k, and vk(n) is addi-
tive zero-mean white noise with variance σ2

v,k. In the D-
NPBFDAF algorithm, the filter coefficients wk(n) are par-
titioned to P subfilters of length M = L/P , namely,
wk,p(n) = [wk,pM (n), wk,pM+1(n), · · · , wk,(p+1)M−1(n)]T ,
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where p denotes the p-th subfilter. The output of the filter is
given by

d̂k(n) =

P−1∑
p=0

xT
k,p(n)wk,p(n), (2)

where xk,p(n) = [xk(n− pM), xk(n− pM − 1), · · · , xk(n−
(p + 1)M + 1)]T . The equation (2) can be implemented by
using FFT for each sub-block. The frequency-domain matrix
Xk,p(j) of the p-th partition at node k is diag(xF

k,p(j)), where
xF
k,p(j) = F [xk((j−p)M), xk((j−p)M−1), · · · , xk((j−p−

2)M+1)]T , j is the block index, and diag(·) denotes the diag-
onal matrix consisting of diagonal entries (·). F is the fourier
transform matrix with the (`, n) entry 1√

2M
e
−i2π`n

2M , `, n =

0, 1, · · · , 2M − 1, and (·)F denotes the vector in frequency-
domain. The later delay block input vectors are obtained via
block index shifting without involving any computation as

Xk,p+1(j) = Xk,p(j − 1), p = 0, · · · , P − 2 (3)

With the fast implementation of linear convolution, the
block vector dk(j) = [dk(jM), dk(jM − 1), · · · , dk(jM −
M + 1)]T can be computed in frequency-domain as

dk(j) =
[
IM 0M

]
F ∗

P−1∑
p=0

Xk,p(j)wo,F
k,p + vk(j)

=
[
IM 0M

]
F ∗Xk(j)wo,F

k + vk(j), (4)

where (·)∗ denotes the complex conjugate transpose
operator, Xk(j) =

[
Xk,0(j) Xk,1(j) · · · Xk,P−1(j)

]
is a 2M × 2L input matrix, wo,F

k =[
(wo,F

k,0 )T (wo,F
k,1 )T · · · (wo,F

k,P−1)T
]T

is a 2L × 1

vector with wo,F
k,p =

√
2MF ∗

[
(wo

k,p)T 01×M
]T

, and
vk(j) = [vk(jM), vk(jM − 1), · · · , vk(jM −M + 1)]T is
the noise vector.

To obtain robust estimation for wo,F
k , the following global

cost function is built

min
wFk

E{‖dk(j)− X̄k(j)wF
k ‖2ck}+

∑
`∈Nk\k

bk,`‖wF
k −ϕF

l (j)‖2,

s. t.FwF
k,p =

[
×

0M×1

]
, p = 0, · · · , P − 1 (5)

where Xk(j) =
[
IM 0M

]
F ∗Xk(j), wF

k =[
(wF

k,0)T (wF
k,1)T · · · (wF

k,P−1)T ]T
with

wF
k,p =

√
2MF ∗

[
(wk,p)T 01×M

]T
, E{·} and ‖ · ‖

denote mathematical expectation and Euclidean norm,
respectively. ϕF

l (j), ` ∈ Nk\k is the intermediate estimate
available from a neighbor. bk,` and ck represent nonnegative
combination coefficients and positive constant, respectively.

Following the analogous procedure used in [18], the update
of the D-NPBFDAF is

ϕF
k (j) =Q[wF

k (j − 1) + µkΛ
−1

k (j)X
∗
k(j)(dk(j)

−Xk(j)wF
k (j − 1))], (6)

wF
k (j) =

∑
`∈Nk

ck,`ϕ
F
l (j), (7)

where the constrained matrix Q = IP ⊗Q with Q
∆
= F ∗DF

and D = IM ⊕ 0M , ⊗ is the Kronecker product, and ⊕
constructs a block diagonal matrix by two matrices. µk is the
step-size, ck,` = µkbk,` if ` ∈ Nk\k, ck,` = 0 if ` /∈ Nk,
ck,k = ck and ck,k = 1−µk

∑
`∈Nk\k

bk,`. For sufficiently large

M , the normalized matrix Λk(j) = E{X∗k(j)Xk(j)} can be
approximated by a diagonal matrix and calculated as

Λk(j) = IP ⊗Λk(j), (8)

Λk(j) = βΛk(j − 1) +
(1− β)

2
X∗k,0(j)Xk,0(j), (9)

where 0 � β < 1 is the forgetting factor. Note that the
unconstrained version sets Q = I2L, while the unnormalized
version sets Λk(j) = I2L. The constrained version has a
smaller steady-state error than the unconstrained version [20],
[22]. In the case of colored inputs, the normalized version can
accelerate convergence.

III. STABILITY ANALYSIS

We start with a global weight-error relation for the D-
NPBFDAF algorithm. The frequency-domain weight error
vectors ϕ̃F

k (j) and w̃F
k (j) at each node k are introduced:

ϕ̃F
k (j) = wo,F

k −ϕF
k (j), w̃F

k (j) = wo,F
k −wF

k (j) (10)

The equation (6) can be written as

ϕF
k (j) = Q[wF

k (j − 1) + µkΛ
−1

k (j)X∗k(j)eF
k (j)], (11)

where eF
k (j) is the frequency-domain error vector defined by

eF
k (j) = HXk(j)w̃F

k (j − 1) + vF
k (j), (12)

with H = FDF ∗ and the frequency-domain noise vector
vF
k (j) = F [vk(jM), · · · , vk(jM −M + 1), 01×M ]T .
From (7) and (11), ϕ̃F

k (j) and w̃F
k (j) are recursively

expressed as

ϕ̃F
k (j) = Q[w̃F

k (j − 1)− µkΛ
−1

k (j)X∗k(j)eF
k (j)], (13)

w̃F
k (j) =

∑
`∈Nk

ck,`ϕ̃
F
l (j) + wo,F

k −
∑
`∈Nk

ck,`w
o,F
l , (14)

where wo,F
k = Qwo,F

k .
Replacing eF

k (j) in (13) by (12), we get

ϕ̃F
k (j) =Q[w̃F

k (j − 1)− µkΛ
−1

k (j)X∗k(j)HXk(j)w̃F
k (j − 1)]

− µkQΛ
−1

k (j)X∗k(j)vF
k (j). (15)

Define the global weight-error vectors w̃F (j), ϕ̃F (j), the
optimal weight vector wo,F and gF (j):

w̃F (j) =


w̃F

1 (j)
w̃F

2 (j)
...

w̃F
N (j)

 , ϕ̃F (j) =


ϕ̃F

1 (j)
ϕ̃F

2 (j)
...

ϕ̃F
N (j)

 ,wo,F =


wo,F

1

wo,F
2
...

wo,F
N

 ,
(16)

gF (j) = col{Λ−1

1 (j)X∗1(j)vF
1 (j), · · · ,Λ−1

N (j)X∗N (j)vF
N (j)},
(17)
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and the matrices:

Q =IN ⊗Q, C = C⊗ I2L, (18)
M =diag{µ1I2L, · · · , µNI2L}, (19)

X(j)=diag{Λ−1

1 (j)X∗1(j)HX1(j),· · ·,Λ−1

N (j)X∗N (j)HXN (j)},
(20)

where col{·} constructs a column vector of its vector argu-
ments, ck,` is the (k, `) entry of the matrix C, and C1N×1 =
1N×1.

Then, we have

ϕ̃F(j) = Qw̃F (j − 1)−QMX(j)w̃F (j − 1)−QMgF (j),
(21)

w̃F (j) = Cϕ̃F (j) + (I2NL − C)wo,F . (22)

Based on (21) and (22), we get

w̃F (j) =CQ(I2NL −MX(j))w̃F (j − 1)− CQMgF (j)

+ (I2NL − C)wo,F . (23)

To facilitate the convergence analysis, we introduce the
following statistical assumptions, which are widely adopted
in the literature [20]–[23].

Assumption 1: The frequency-domain input signals xF
k,p(j)

for p = 0, 1, · · · , P − 1 are spatially and temporally in-
dependent zero-mean stationary random sequences for k =
1, · · · , N .

Assumption 2: The frequency-domain noise signal vectors
vF
k,j are spatially and temporally independent zero-mean sta-

tionary random variables for k = 1, · · · , N and are indepen-
dent of xF

k,p(j) for p = 0, 1, · · · , P − 1.
Taking expectation of both sides of (23) with Assumptions

1 and 2, we get the mean weight error recursion as

E{w̃F (j)} =CQ(I2NL −ME{X(j)})E{w̃F (j − 1)}
+ (I2NL − C)wo,F . (24)

Theorem 1: (Mean stability) The D-NPBFDAF algorithm is
mean stable if the step-size meets the condition:

ρ(Q(I2NL −ME{X(j)})) < 1. (25)

Taking the limits of both sides of (24), we attain the steady-
state E{w̃F (∞)} as

E{w̃F (∞)}
= (I2NL − CQ(I2NL −ME{X(j)}))−1(I2NL − C)wo,F .

(26)

Obviously, wF
k (∞) will converge to a biased solution, which

depends on the combination coefficients ck,`. Thus, selecting
appropriate combination coefficients can reduce the steady-
state bias and improve the convergence performance.

IV. ADAPTIVE COMBANITION WEIGHT MATRIX

In this section, we extend the adaptive clustering strategy
[13] to frequency-domain to further improve the steady-state
performance of the D-NPBFDAF algorithm.

Algorithm 1: ACD-NPBFDAF

Initialization: wF
k (0) = 02L×1, µk , Q = IP ⊗Q, Q

∆
= F ∗DF

D = IM ⊕ 0M
For j = 1, 2, 3 · · ·

At node k, k = 1, 2, · · · , N
xk,0(j)=[xk(jM), xk(jM − 1),· · ·, xk(jM − 2M + 1)]T

dk(j) = [dk(jM), dk(jM − 1), · · · , dk(jM −M + 1)]T

Signal FFT transform step:
xFk,0(j)=Fxk,0(j)

xFk,p+1(j) = xFk,p(j − 1), p = 0, 1, · · · , P − 2

Xk,p(j) = diag(xFk,p(j)), p = 0, 1, · · · , P − 1

Xk(j) =
[
Xk,0(j) Xk,1(j) · · · Xk,P−1(j)

]
yFk (j) = Xk(j)w

F
k (j − 1)

yk(j) =
[
IM 0M

]
F ∗yFk (j)

ek(j) = dk(j)− yk(j)

eFk (j) = F

[
IM
0M

]
ek(j)

Normalized matrix update step:
Update of Λk(j) using (8) and (9)

Weight update step:
ϕFk (j) = Q[wF

k (j − 1) + µkΛ
−1
k (j)X∗k(j)e

F
k (j)]

Calculating the combination coefficients step:
zFk (j) = Xk(j)ϕ

F
k (j)

zk(j) =
[
IM 0M

]
F ∗zFk (j)

rk(j) = dk(j)− zk(j)

rFk (j) = F

[
IM
0M

]
rk(j)

gk(j) = Λ
−1
k (j)X∗k(j)r

F
k (j)

gk(j) = gk(j)/(‖gk(j)‖+ ε)

ck,`(j) =
‖ϕFk (j)+µkgk(j)−ϕF` (j)‖−2∑

n∈Nk
‖ϕF
k

(j)+µkgk(j)−ϕFn (j)‖−2

Combination step:
Update of wF

k (j) using (7)
End

The adaptive combination weight matrix C is obtained by
minimizing the instantaneous MSD at each node k as

min
ck

E{‖ŵo,F
k −

∑
`∈Nk

ck,`ϕ
F
` (j)‖2}

subject to cT
k 1N×1 = 1, ck,` > 0

ck,` = 0, if ` /∈ Nk (27)

where ck = [ck,1, ck,2, · · · , ck,N ]T , and ŵo,F
k is a estimator

for wo,F
k .

The expression (27) can be written as

E{‖ŵo,F
k −

∑
`∈Nk

ck,`ϕ
F
` (j)‖2}

=
∑
`∈Nk

∑
m∈Nk

ck,`ck,mE{(ŵo,F
k −ϕF

` (j))∗(ŵo,F
k −ϕF

m(j))}.

(28)

Let Φk(j) be a N × N matrix at each node k, and the
(`,m)th entry is formed by

[Φk(j)]`,m =

{
E{(ŵo,F

k −ϕF
` (j))∗(ŵo,F

k −ϕF
m(j))}, `,m ∈ Nk

0, otherwise
(29)

where Φk(j) is a positive semi-definite matrix. Then, the cost
function (27) can be written as

min
ck

cT
k Φk(j)ck

subject to cT
k 1N×1 = 1, ck,` > 0

ck,` = 0, if ` /∈ Nk. (30)
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We replace Φk(j) by its instantaneous value and diagonal
matrix in order to make the problem more tractable. The
problem can be formulated as

min
ck

N∑
`=1

c2k,`‖ŵ
o,F
k −ϕF

` (j)‖2

subject to cT
k 1N×1 = 1, ck,` > 0

ck,` = 0, if ` /∈ Nk. (31)

The solution is given by

ck,`(j) =
‖ŵo,F

k −ϕF
` (j)‖−2∑

m∈Nk
‖ŵo,F

k −ϕF
m(j)‖−2

, for ` ∈ Nk. (32)

The solution (32) has an intuitive interpretation for the
obtained combination parameter ck,`(j), which is inversely
proportional to the square of the Euclidean distance between
the weight estimator of node k and ϕF

` (j).
The expression (32) requires the knowledge of the weight

vector ŵo,F
k , which is generally not available beforehand.

Hence, it is necessary to consider the estimator of wo,F
k in

expression (32). Using the similar scheme in [13], we obtain
ŵo,F

k as

ŵo,F
k (j) = ϕF

k (j)− µkOJk(w) |w=ϕFk (j), (33)

where Jk(w) = E{‖dk(j)−Xk(j)w‖2}.
Using the instantaneous value gk(j)

∆
= X

∗
k(j)(dk(j) −

Xk(j)ϕF
k (j)) to approximate the true gradient OJk(w), we

attain the following estimator:

ŵo,F
k (j) = ϕF

k (j) + µkgk(j). (34)

Substituting this expression into (32) yields

ck,`(j) =
‖ϕF

k (j) + µkgk(j)−ϕF
` (j)‖−2∑

m∈Nk
‖ϕF

k (j) + µkgk(j)−ϕF
m(j)‖−2

,

for ` ∈ Nk. (35)

With similar analysis manipulations in [13], we can also
provide an intuitive interpretation of (35), namely, the combi-
nation coefficients determined by (35) consider the similarity
between intermediate and neighborhood estimates, and the
slope of Jk(w) to reduce MSD. The D-NPBFDAF with
adaptive clustering (ACD-NPBFDAF) is summarized in Al-
gorithm 1, where parameter ε in the normalized gradient
gk(j) = gk(j)/(‖gk(j)‖2 + ε) is a small positive number
to avoid division by zero.

As we known, the D-LMS has a complexity of O(MP )
for per input sample while the ACD-NPBFDAF requires
O(log2(2M)) computation load [22], [24], [25]. Thus, for a
large value of M , the computational efficiency of the proposed
algorithm is obvious. In addition, the signal delay is reduced as
compared to the original diffusion FDAF (D-FDAF) algorithm
(i.e., P = 1) [18].
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Fig. 1. Node profile. (a) Network topology with N = 16; (b) Network signal,
noise powers, and correlation index.
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Fig. 2. Convergence performance of different P . (a) Using white input
signals; (b) Using colored input signals.

V. NUMERICAL SIMULATIONS

In this section, we use Monte-Carlo simulations to vali-
date the effectiveness of the proposed algorithm. We con-
sider a multitask network with 16 nodes. The network is
divided into four clusters : C1 = {1, 2, 3, 4, 5}, C2 =
{7, 13, 14, 15, 16}, C3 = {8, 9, 10, 11}, C4 = {6, 12}, where
nodes in the same cluster estimate the common parameter
vector without any prior information about clusters. The length
of filter is L = 512. The coefficient vectors of the form
wo

Ci
= wo + δwCi are chosen as wo = 0.5 + zk, where

zk and wCi are zero-mean L × 1 random vectors generated
by Gaussian distribution with covariance matrices 0.04IL and
0.25IL, respectively. δ is 1 in cluster C1, and −1, 2,−5 for
cluster C2, C3, C4, separately. The settings of the network
are showed in Fig. 1. The input regression vector xk(n)
and observation noise vk(n) are zero-mean i.i.d Gaussian
distributed with covariance matrix σ2

x,kIL and variance σ2
v,k,

respectively. All simulated curves are investigated with the
network MSD (NMSD), defined as

NMSD(j) =
1

N

N∑
k=1

E{‖wo
k − wk(j)‖2}. (36)

In the first experiment, we study the effect of P on
convergence rate in the case of white and colored input
signals. The colored input signal is generated by xk(n) =
akxk(n−1)+

√
1− a2

ks(n), where ak denotes the correlation
index at node k given in Fig. 1, s(n) is a zero-mean white
Gaussian signal. The algorithmic parameters in Fig. 2(a) are
µk = 0.00085 and ε = 0.01. In Fig. 2(b), the step-size
is selected as µk = 0.0002. From Fig. 2, we observe that
as the number of partitions increases, the ACD-NPBFDAF
algorithm exhibits a faster convergence rate but larger steady-
state deviation. It is because the block size M is the update
period of the algorithm in essence. A large parameter P results
in a small update period and provides fast convergence rate,
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Fig. 3. Convergence performance of different diffusion algorithms. (a) Using
white input signals; (b) Using colored input signals.

and vice versa. Meanwhile, the proposed ACD-NPBFDAF
outperforms the non-cooperative counterpart for both white
and colored input signals.

In the second experiment, the proposed ACD-NPBFDAF
algorithm is compared with the D-LMS with uniform com-
bination policy [4], D-LMS with adaptive weights [12], D-
LMS with adaptive clustering [13], normalized D-FDAF with
adaptive clustering (i.e., ACD-NPBFDAF with P = 1), and
unnormalized ACD-PBFDAF. In Fig. 3(a), the parameters
of the ACD-NPBFDAF are µk = 0.00085 and P = 64.
To achieve the same steady-state error, other algorithmic
parameters are µk = 0.0017 and P = 64 for the unnormalized
ACD-PBFDAF, µk = 0.032 for the normalized D-FDAF with
adaptive clustering (ACD-NFDAF), µk = 0.0003 for the D-
LMS with uniform combination policy, µk = 0.0004 and νk =
0.1 for the D-LMS with adaptive weights, and µk = 0.0001
for the D-LMS with adaptive clustering. In Fig. 3(b), the
changed parameter settings are µk = 0.0001 for the D-LMS
with adaptive weights and adaptive clustering, µk = 0.007 for
the ACD-NFDAF, µk = 0.0016 for the unnormalized ACD-
PBFDAF, and µk = 0.0002 for the ACD-NPBFDAF. Note
that the D-LMS with uniform combination policy has a large
mean-square deviation due to the indiscriminate cooperation
among neighboring nodes. The D-LMS with adaptive weights
also performs poorly in this scenario where the tasks to be
estimated are not well-separated. It is clear that the ACD-
NPBFDAF algorithm achieves faster convergence speed or
less signal path delay than competing algorithms. The fast
convergence speed is achieved by utilizing the normalization
matrix Λk(j), which assigns an individual step-size to each
frequency bin.

VI. CONCLUSION

In this paper, we have proposed the ACD-NPBFDAF algo-
rithm over multitask networks. It mainly includes five steps:
signal FFT transform, normalized matrix update, weight up-
date, calculating the combination coefficients and combination.
Compared with time domain diffusion algorithms, the pro-
posed algorithm has lower computation complexity, especially
for the multi-tap filter. Furthermore, the ACD-NPBFDAF
algorithm provides less signal path delay than the D-FDAF
algorithm. The simulation results verify the effectiveness.
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