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Received:  04/02/2023 This paper introduces a control system synthesis method for linear MIMO 

systems with variable parameters and the impact of unmeasured external 

disturbances, which is very common in industrial fields. For practical 

applications, optimal control methods are often used for the system to 

achieve the desired quality parameters. However, this method is limited 

because it only guarantees the system's robustness when there are uncertain 

dynamic components and many external effects. Therefore, with the above 

class of systems, the article synthesizes control rules based on the 

combination of optimal control and adaptive control to compensate for 

uncertain components. The results are adaptive control law compensating for 

the influence of variable parameter components, external disturbances, and 

optimal controller for dynamic components with fixed parameters. The 

article's proposed control system is simple, easy to implement, has high 

control quality, and ensures optimal ability, adaptability, and good 

interference resistance. Simulation results on Matlab Simulink software show 

the correctness and effectiveness of the research results. 
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  04/02/2023 Bài báo giới thiệu phương pháp tổng hợp hệ thống điều khiển cho một lớp đối 

tượng MIMO tuyến tính có các tham số thay đổi và chịu tác động của nhiễu 

bên ngoài không đo được, rất thường gặp trong các lĩnh vực công nghiệp. Đối 

với các ứng dụng thực tế, để hệ thống đạt được những chỉ tiêu chất lượng 

mong muốn thường sử dụng phương pháp điều khiển tối ưu. Mặc dù vậy, 

phương pháp này tồn tại hạn chế là không đảm bảo tính bền vững cho hệ 

thống khi có các thành phần động học bất định và nhiều tác động bên ngoài. 

Do đó, với lớp các đối tượng nói trên, bài báo thực hiện tổng hợp luật điều 

khiển trên cơ sở kết hợp giữa điều khiển tối ưu và điều khiển thích nghi bù trừ 

các thành phần bất định. Các kết quả thu được là luật điều khiển thích nghi bù 

trừ ảnh hưởng của thành phần tham số động học thay đổi, nhiễu ngoài và bộ 

điều khiển tối ưu cho thành phần động học có các tham số cố định. Hệ thống 

điều khiển do bài báo đề xuất đơn giản, dễ thể hiện kỹ thuật, có chất lượng 

điều khiển cao, đảm bảo khả năng tối ưu, thích nghi và kháng nhiễu tốt. Tính 

đúng đắn và hiệu quả của các kết quả nghiên cứu được minh chứng bằng mô 

phỏng trên phần mềm Matlab Simulink. 
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1. Introduction 

Multiple-Input Multiple-Output (MIMO) Linear Systems are commonly encountered in 

industry, transportation, and energy,... During the working process, the dynamic parameters of 

the system change due to: the evolution of the load; environment; vibration of the actuator,... In 

many cases, the system may suffer from unmeasured external disturbances. In response to the 

increasing requirements for product quality, in the past years, there has been much research on 

synthesizing control systems for the above plants with good results [1] – [15]. However, some 

outstanding issues still need to be satisfactorily resolved. In [1] – [4], for the adaptive control 

algorithm to converge, it is necessary to know the limit of the variable parameter components, 

but in many cases, this cannot be done. The robust control method based on sliding mode control 

[5]–[9] has a significant chattering effect when the uncertainty component varies greatly, 

adversely affecting the system's control quality. Fuzzy logic-based many approaches have been 

investigated because of their capability to make inferences under uncertainty [10] – [12]. 

However, synthesizing fuzzy control rules depends on expert knowledge, so applying these 

controllers to the area without expert knowledge will be difficult. The optimal control method 

[13] – [15] is only effective when the dynamic parameters of the plant change insignificantly. 

Besides, the above papers have not mentioned the impact of external disturbances when the 

system is placed in the actual working environment. Below, the article introduces a method of 

synthesizing an optimal adaptive controller for a class of MIMO linear systems with variable 

parameter composition and affected by external disturbances. The control system proposed by 

this paper has good adaptability, anti-interference ability, and high control quality. The research 

results are simulated using Matlab Simulink software to demonstrate the correctness and 

effectiveness of the proposed method. 

2. Synthesis of optimal adaptive control systems 

Suppose that a class of MIMO linear systems has the equation: 

( ) ( ) ( )t t t=  +  +  +  +   x A ΔA x B ΔB u d , (1) 

where:  1 2, ,...,
T

nx x x=x  is state vector;  1 2, ,...,
T

mu u u=u  is control vector; 

( )  1 2, ,...,
T

nt d d d=d  is external disturbance vector, 
1

n

i m

i

d d
=

 ; A , ( )tΔA  are a pair of matrices 

of dimension n n ; A  is a matrix with constant elements and is a Hurwitz matrix; ( )tΔA  is a 

matrix with elements ija  that change uncertainty, , 1,i j n= ; B , ( )tΔB  are a pair of matrices of 

dimension n m ; B  is a matrix with constant elements; ( )tΔB  is a matrix with elements ijb  

that change uncertainty, 1,i n= , 1,j m= . It is assumed that: dynamic parameters and external 

disturbance change slowly and, in the transient process, do not change significantly, i.e. time 

derivatives 0ija  , ( ) 0,ijb t   ( ) 0id t  . 

To solve the optimization problem, we first need to define the objective function, which 

represents the optimal criterion. Starting from the requirements of the control process, we 

determine the goals to be achieved from the perspective of physical nature and build an objective 

function that reflects the goals to be achieved. In the control problem, most of the objective 

functions are chosen as squared state vectors. To clarify the problem, we consider the control 

plant with the following variable parameters: 

( ) ( )t t= +x A x B u . (2) 

Suppose we choose an objective function of the form: 
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( )
0

ft
T

t
J t dt=  x Q x , (3) 

where ( )tQ  is a positive semi-deterministic matrix.  

However, if we only focus on minimizing the objective function (3) without considering other 

factors, then for the objective function (3) to reach its extreme value, it may require the control 

function ( )tu  to be infinitely large. This leads to a technical impossibility and, of course, no 

practical significance.  

To solve this problem, one adds the squared form of the control vector to the objective 

function as follows: 

( ) ( )
0

ft
T T

t
J t t dt = +  x Q x u R u , (4) 

with ( )tR  is a positive semi-deterministic matrix. 

In the case when the endpoint ft  is fixed, the objective function is usually chosen: 

( ) ( ) ( ) ( )
0

ft
T T T

f f
t

J t t t t dt = + + x Sx x Q x u R u , (5) 

where S  is a diagonal matrix with elements 0ijs  . 

With the plant (2), the objective functional minimization problem (5) is a common optimal 

control problem and the control laws are known [16]-[18] as follows: 

( ) ( ) ( ) ( )1

op

Tt t t t−= −u R B P x , (6) 

where ( )tP  is the solution of the Riccati equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1T Tt t t t t t t t t t t−= − − − +P P A A P Q P B R B P , (7) 

with the boundary condition: ( )ft =P S . (8) 

We see that with control law (6), Riccati equation (7), boundary condition (8), and the optimal 

criterion (5), the synthesis of the control system for plant (2) will encounter many difficulties to 

implement in engineering. In particular, this difficulty will increase when the system is affected 

by external disturbance. 

The above complications and problems will be eliminated if matrices A , B , Q , R  are 

constant matrices and ft =   [17], [18]. This means that we somehow identify and compensate 

for the variable parameter components ( )tΔA , ( )tΔB  and unmeasured external disturbance 

( )td  of plant (1) so that equation (1) becomes: 

= +x Ax Bu . (9) 

For the plant (9) the known optimal control law [16], [18] is as follows: 
1

op

T−= −u R B Px , (10) 

where P  is the solution of the Riccati equation: 
1T T−= − − − +P PA A P Q PBR B P . (11) 

We see that the control law (10) is easy to implement technology. Following this approach, 

the article builds a control algorithm for the class of system (1) based on optimal and adaptive 

control. The optimal adaptive control law for class (1) has the form: 

op ad= +u u u , (12) 

where: opu  is the optimal control law; adu  is an adaptive control law. 

The identification model for uncertain parameters in (1) can be written: 
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( ) ( ) ( )M M
ˆ ˆ ˆt t t   = + + + +

  
x A ΔA x B ΔB u d , (13) 

where:  M M1 M2 M, ,...,
T

nx x x=x  is state vector of the model; ( )ˆ tΔA and ( )ˆ tΔB  (with the 

corresponding elements ˆ
ija  and ˆ

ijb ) are the estimated matrices of ( )tΔA , ( )tΔB , 

respectively; ˆ ( )td  (has elements ˆ
id ) is the estimated vector of ( )td . 

Transforming equations (1) and (13), we get the error equation: 

( ) ( ) ( )t t t= + + +e Ae ΔA e ΔB u d , (14) 

where: 

  1 2 M, , ,
T

ne e e= = −e x x ; (15) ( ) ( ) ( )ˆ
ijt a t t = = − ΔA ΔA ΔA ; (16) 

 ( ) ( ) ( )ˆ
ijt b t t = = − ΔB ΔB ΔB ; (17) ( ) ( ) ( )ˆ

it d t t = = − d d d . (18) 

The identification process will converge when ( ) 0t →ΔA ; ( ) 0t →ΔB ; ( ) 0t →d . Because 

A  is a Hurwitz matrix, so 0→e ; in other words, system (14) is stable. 

Theorem: The variable parameter components and unmeasured external disturbance in (1) 

will be compensated if the adaptive control law adu  is selected as follows: 

( )ad
ˆ ˆˆ

T

ij ij ia b d t     = −  +  +       
u G x u , (19) 

with adaptive update laws: 
0ˆ

ij j i ija e dt a = + Pe ; , 1,i j n= ; (20) 

0ˆ
ij j i ijb u dt b = + Pe ; 1,i n= ; 1,j m= ; (21) 

ˆ
i id P dt=  e ; 1,i n= . (22) 

where P  is a positive definite symmetric matrix; 
iP  is the i-th row of the matrix P ; 

+=G B , 

with +
B  is the pseudo-inverse matrix of B . 

Proof: 

For equations (14), the Lyapunov function is selected as follows: 

2 2 2

1 1 1 1 1

n n n m n
T

ij ij i

i j i j i

V a b d
= = = = =

= +  +  +  e Pe , (23) 

where P  is a positive definite symmetric matrix. 

Take the derivative of both sides of the equation (23), we have: 

1 1 1 1 1

2 2 2
n n n m n

T T

ij ij ij i i

i j i j i

V a b b d d
= = = = =

= + +  +   +  e Pe e Pe . (24) 

The system (13) will be stable if the derivative of the Lyapunov function 0V  . 

Substituting (14) into (24): 

( ) ( )

1 1 1 1 1

2 2 2 .

T T T T T T T T

n n n m n

ij ij ij ij i i

i j i j i

V t t

a a b b d d
= = = = =

   = + + + + + + + +   

+   +    +  

e A e ΔA u ΔB d Pe e P eA ΔAe ΔBu d

  

(25) 

Continuing the transformation (25), we have: 
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( ) ( )

1 1 1 1 1

2 2 2

2 2 2 .

T T T T T T

n n n m n

ij ij ij ij i i

i j i j i

V t

a a b b d d
= = = = =

= + + + + +

+   +   +  

e A P PA e e ΔAPe u ΔB Pe e Pd

 
 

(26) 

From (26), withdraw the condition for 0V   as follows: 

( ) 0T T + e A P PA e ; (27) 

1 1

2 2 0
n n

T T

ij

i j

a a
= =

+   =e ΔA Pe ; (28) 

1 1

2 2 0
n m

T T

ij ij

i j

b b
= =

+   =u ΔB Pe ; (29) 

( )
1

2 2 0
n

T

i i

i

t d d
=

+ =e Pd . (30) 

Returning to inequality (27), since A  is a Hurwitz matrix, we have:  
T + = −A P PA Q ; (31) 

with Q  is a positive definite matrix.  

From (31), we see that condition (27) is completely satisfied. 

Next, solving equations from (28) to (30), we have: 

ij j ia e =− Pe ; , 1,i j n= ; (32) 

ij j ib u = − Pe ; 1,i n=  and 1,j m= ; (33) 

i id = −Pe ; 1,i n= ; (34) 

where 
iP  is the i-th row of the matrix P . 

If simultaneously satisfied from (32) to (34), then the derivative 0V  , so the system (14) is 

stable. 

From (16) and (32), with the attention that the matrix ( )tΔA  contains slowly variable 

elements, i.e. 0ija   . Identify law for the uncertain parameters in the matrix ( )tΔA : 

0ˆ ( )ij ij j i ija a t e dt a  = + Pe ; (35) 

with , 1,i j n= ; 0

ija  is initialization value. 

From (17) and (33), with the attention that the matrix ( )tΔB  contains slowly variable 

elements, i.e. ( ) 0ijb t  . Identify law for the uncertain parameters in the matrix ( )tΔB : 

0ˆ
ij ij j i ijb b u dt b  = + Pe ; (36) 

with 1,i n= ; 1,j m= ; and 0

ijb  is initialization value. 

From (18) and (34), because of slow-varying external disturbance ( ) 0id t  . The 

unmeasurable external disturbance vector identification law ( )td  has the following elements: 

( ) ( ) ( )ˆ ˆ
i i i i id t d t d t dt= → = Pe Pe ; 1,i n= . (37) 

Next, based on the recognition algorithms, we build an adaptive control law adu  to 

compensate for the influence of the variable parameter components and external disturbance. 

We set: 
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( ) ( ) ( ) ( )t t t t= + +f ΔA x ΔB u d , (38) 

with ( ) ( ) ( ) ( )1 2, ,...,
T

nt f t f t f t=   f . 

From (38), we rewrite (1) to: 

( )t= + +x Ax Bu If , (39) 

where n nI  has main diagonal elements, 1ijI =  are rows which corresponds to the vector 

( )tf  in the case ( ) 0if t  ; other elements 0ijI =  in the case i j  and ( ) 0if t = , ( ), 1,i j n= . 

Substituting (12) into (39), we have: 

( )op ad t= + + +x Ax Bu Bu If . (40) 

From the results of identification from (35) to (37), attention (38), and combination (40), we 

choose: 

( )ad
ˆ t= −u Gf . (41) 

where G  is the gain matrix; ( ) ( )ˆ ˆˆ ˆ
T

ij ij it a b d t    =  +  +     
f x u . 

Uncertainty components will be compensated by bringing (41) to (40) if: 

( ) ( )ˆ 0t t− + =BGf If . (42) 

To satisfy (42) means:  

=BG I . (43) 

From (43), we choose 
+=G B , where +

B  is the pseudo-inverse matrix of B  [19]. 

With the control vector adu  (41) fed to the input of plant (1), the variable parameter 

components and external disturbance are compensated, and then (1) takes the form: 

op= +x Ax Bu . (44) 

Thus, the expressions (35), (36), (37) with the adaptive law (41) are fed to the input of the 

plant (1) to compensate for the variable parameter components and external disturbance, and then 

(1) becomes (44). 

The theorem is proven. 

For (44), the optimal control law is known in (10). From there, the optimal-adaptive control 

law for plant (1) is an expression (12) in which opu  and adu  are expressed in (10) and (41). 

Thus, the article has synthesized the optimal-adaptive law for the class of MIMO linear systems 

(1); the system has optimal properties, good adaptability, and highanti-interference ability. 

3. Results and discussion 

Assume that the control object is represented in the form of equation (1) with the dynamic 

parameter matrices and the external disturbances vector as follows: 

-4.0626 0.0847

2.5560 -4.5329

 
=  
 

A ; ( )
-1.0157 0.0212

sin 0.25
0.6390 -1.1332

t
 

=  
 

ΔA ; 

0.7624 0.6118

0.7878 0.4936

 
=  
 

B ; ( )
0.1906 0.1530

sin 0.25
0.1970 0.1234

t
 

=  
 

ΔB ; 

( )
( ) ( )

( ) ( )

0.35sin 1.2 0.2sin 0.5 1.5

0.50cos 1.0 2.0 0.3sin 0.8

t t
t

t t

 + + 
=  

+ + 
d . 

(45) 

Simulation is performed on Matlab Simulink software. The results of identifying variable 

parameter components and external disturbances ( )tf  (38) using the expressions (20), (21), and 
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(22) of the Theorem are shown in Figure 1. Using controller (12) with opu , adu  shown in (10) 

and (19), the results of compensating for the effects of variable parameter components and 

external disturbances are shown in Figure 2, the result of the state vector of the system following 

the desired set signal vector ( ) ( )d 1.0 2.5t t=   x  is shown in Figure 3. 
 

  

Figure 1. The results of identifying variable parameter components and external disturbances ( )tf   

  
Figure 2. The error between plant (1) after compensating for variable parameter components, 

external disturbances by the adaptive control law adu  (19), and the model (9) 

  
(a) (b) 

Figure 3. (a) Responses of the system for the desired signals ( ) ( )d 1.0 2.5t t=   x ; 

(b) Compare the system's response when using the optimal-adaptive controller proposed by the article  

( op-adx ) and the normally optimal controller ( opx ) 

Figure 1 shows that the variable parameter components and external disturbances have been 

identified with high accuracy according to the proposed algorithm. From the identification 

results, performing compensation by adaptive control law (19) makes the system (1) become the 

system (19) with a small error 3

c 10e −  shown in Figure 2. The optimal control law (10) has 

made the system track to the desired set signal dx  shown in Figure 3 (a) with guaranteed control 

quality. The advantages of the adaptive optimal control system proposed by the article are shown 

through comparison with the normally optimal control system with simulation results shown in 

Figure 3 (b). This comparison shows the high efficiency of the control algorithms proposed by 

the article for the class of MIMO linear systems with variable parameter components, having the 

impact of unmeasurable external disturbances, and overcoming the shortcomings pointed out in 

[1] – [15]. 
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4. Conclusion 

This paper has developed a method to synthesize an optimal-adaptive control system for a 

class of MIMO linear systems with variable parameter components and unmeasurable external 

disturbances. The theorem was proposed and proved to ensure that the system is invariant with 

uncertain components for the class MIMO system with equation (1). The control laws for the 

class of system (1) are synthesized with a combination of optimal control and adaptive control. 

The proposed article control law is simple and easy to implement in engineering; it ensures the 

system has high control quality and has good adaptability, optimization, and anti-interference 

ability. The simulation results once again proved the correctness and effectiveness of the 

proposed method. 
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