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1. Introduction

Multiple-Input Multiple-Output (MIMO) Linear Systems are commonly encountered in
industry, transportation, and energy,... During the working process, the dynamic parameters of
the system change due to: the evolution of the load; environment; vibration of the actuator,... In
many cases, the system may suffer from unmeasured external disturbances. In response to the
increasing requirements for product quality, in the past years, there has been much research on
synthesizing control systems for the above plants with good results [1] — [15]. However, some
outstanding issues still need to be satisfactorily resolved. In [1] — [4], for the adaptive control
algorithm to converge, it is necessary to know the limit of the variable parameter components,
but in many cases, this cannot be done. The robust control method based on sliding mode control
[5]-[9] has a significant chattering effect when the uncertainty component varies greatly,
adversely affecting the system's control quality. Fuzzy logic-based many approaches have been
investigated because of their capability to make inferences under uncertainty [10] — [12].
However, synthesizing fuzzy control rules depends on expert knowledge, so applying these
controllers to the area without expert knowledge will be difficult. The optimal control method
[13] — [15] is only effective when the dynamic parameters of the plant change insignificantly.
Besides, the above papers have not mentioned the impact of external disturbances when the
system is placed in the actual working environment. Below, the article introduces a method of
synthesizing an optimal adaptive controller for a class of MIMO linear systems with variable
parameter composition and affected by external disturbances. The control system proposed by
this paper has good adaptability, anti-interference ability, and high control quality. The research
results are simulated using Matlab Simulink software to demonstrate the correctness and
effectiveness of the proposed method.

2. Synthesis of optimal adaptive control systems

Suppose that a class of MIMO linear systems has the equation:
X=[ A+AA(t) |x+[B+AB(t) ju+d(t), (1)

T . T .
where:  X=[X,X,..X,] is state vector; U=[u,U,,..u,] is control vector;

d(t)=[d,,dy,...,d, ] is external disturbance vector, Zn:|di|<dm ; A, AA(t) are a pair of matrices

i=1
of dimension nxn; A is a matrix with constant elements and is a Hurwitz matrix; AA(t) is a
matrix with elements Aa; that change uncertainty, i, j =1n; B, AB(t) are a pair of matrices of
dimension nxm; B is a matrix with constant elements; AB(t) is a matrix with elements Ab;;

that change uncertainty, i=1n, j=1m. It is assumed that: dynamic parameters and external
disturbance change slowly and, in the transient process, do not change significantly, i.e. time
derivatives Ad; ~0, A (t)~0, d;(t)~0.

To solve the optimization problem, we first need to define the objective function, which
represents the optimal criterion. Starting from the requirements of the control process, we
determine the goals to be achieved from the perspective of physical nature and build an objective
function that reflects the goals to be achieved. In the control problem, most of the objective
functions are chosen as squared state vectors. To clarify the problem, we consider the control
plant with the following variable parameters:

x=A(t)x+B(t)u. )
Suppose we choose an objective function of the form:
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J= J: x'Q(t)xdt, (3)

where Q(t) is a positive semi-deterministic matrix.

However, if we only focus on minimizing the objective function (3) without considering other
factors, then for the objective function (3) to reach its extreme value, it may require the control

function u(t) to be infinitely large. This leads to a technical impossibility and, of course, no

practical significance.
To solve this problem, one adds the squared form of the control vector to the objective
function as follows:

(YTt T
J _Lo [X"Q(t)x+u"R(t)u]dt, (4)
with R(t) is a positive semi-deterministic matrix.
In the case when the endpoint t, is fixed, the objective function is usually chosen:

J=x"(t,)Sx(t, )+.[ttf [X'Q(t)x+u"R(t)u]dt, (5)
where S is a diagonal matrix with elements s; > 0.

With the plant (2), the objective functional minimization problem (5) is a common optimal
control problem and the control laws are known [16]-[18] as follows:

Uy =—R7(t)BT (1)P(t)x(1), (6)

where P(t) is the solution of the Riccati equation:
P(t)=-P(t)A(t)- AT (t)P(t)-Q(t)+P(t)B()R™(1)BT (1)P(t), )
with the boundary condition: E(tf ) =S. (8)

We see that with control law (6), Riccati equation (7), boundary condition (8), and the optimal
criterion (5), the synthesis of the control system for plant (2) will encounter many difficulties to
implement in engineering. In particular, this difficulty will increase when the system is affected
by external disturbance.

The above complications and problems will be eliminated if matrices A, B, Q, R are

constant matrices and t, =co [17], [18]. This means that we somehow identify and compensate
for the variable parameter components AA(t), AB(t) and unmeasured external disturbance
d(t) of plant (1) so that equation (1) becomes:

X=Ax+Bu. 9)
For the plant (9) the known optimal control law [16], [18] is as follows:
u,, =—R7B"Px, (10)
where P is the solution of the Riccati equation:
P=-PA-A'P-Q+PBRB'P. (1)

We see that the control law (10) is easy to implement technology. Following this approach,
the article builds a control algorithm for the class of system (1) based on optimal and adaptive
control. The optimal adaptive control law for class (1) has the form:

U=Ug,, + Uy, (12)
where: u,, is the optimal control law; u,, is an adaptive control law.
The identification model for uncertain parameters in (1) can be written:
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=[A+AA(t) |x, +[ B+AB(t) ju+d(1), (13)
where: Xy =[Xy1 Xy Xun ] IS State vector of the model; AA(t)and AB(t) (with the
corresponding elements A&; and AB,J.) are the estimated matrices of AA(t), AB(t),

respectively; d(t) (has elements d, ) is the estimated vector of d(t).
Transforming equations (1) and (13), we get the error equation:

é=Ae+AA(t)e+AB(t)u+d(t), (14)

where:
e=[e.8,,...&,] =x—%, (15) AA(t)=[4; [=AA(1)-AA(t);  (16)
AB(t)=[b; |=AB(t)-AB(t); (17) d(t)=[d, |=d(t)-d(1). (18)
The identification process will converge when AA(t)—0; AB(t)—0; d(t)— 0. Because

A is a Hurwitz matrix, so e — 0; in other words, system (14) is stable.
Theorem: The variable parameter components and unmeasured external disturbance in (1)

will be compensated if the adaptive control law u,, is selected as follows:

A A T
Uy =—G[[Aéij]x+[Abij]u+[di (t)] } (19)
with adaptive update Iaws
A4 = [e,Pedt+Aa); i, =1 (20)
AB; = [u;Pedt + Ab,f,':_n j=1,_; (21)
d, = [Pedt; i=1n. (22)

where P is a positive definite symmetric matrix; P, is the i-th row of the matrix P; G=B",

with B* is the pseudo-inverse matrix of B.
Proof:
For equations (14), the Lyapunov function is selected as follows:

V=e'Pe+Y DAL+ > Ab7+>d?, (23)
i=1 j=1 i=1 j=1 i=1
where P is a positive definite symmetric matrix.

Take the derivative of both sides of the equation (23) we have:

V =¢"Pe+e’ PeJrZZZAa1J +222Ab Ab, +22d,d,. (24)
i=1 j=1 i=1 j=1
The system (13) will be stable if the derivative of the Lyapunov function V <0.
Substituting (14) into (24):
Y, :[eTAT +e'AAT +u'AB" +d" (t)}Pe+eTP[eA+AAe+A]~3u+(~l(t)]+

+222Aa A&, +A222Ab Ab, +22 (25)

i=1 j=1 i=1 j=1
Continuing the transformation (25), we have:
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V =e' (AP +PA)e+2e" AAPe+2u' AB" Pe + 2¢" Pd (t) +

+23° 5 A4,A, +2> > Ab,Ab, + 23 d,d,. (26)
i=1 j=1 i=1 j=1 i=1
From (26), withdraw the condition for V <0 as follows:
e’ (A'P+PA)e<0; (27)
2e"AATPe+2) > AG;Ad=0; (28)
i=1 j=1
2u"AB Pe+2)" " Ab, A, =0; (29)
i=1 j=1

dd, =0. (30)

M-

2e"Pd(t)+2
i=1
Returning to inequality (27), since A is a Hurwitz matrix, we have:
A'P+PA=-Q; (31)
with Q is a positive definite matrix.

From (31), we see that condition (27) is completely satisfied.
Next, solving equations from (28) to (30), we have:

A8, =—e,Pe; i, | =1n; (32)
Ab, =—uPe; i=Ln and j=1m; (33)
d =—Pe:i=1n; (34)

where P, is the i-th row of the matrix P .

If simultaneously satisfied from (32) to (34), then the derivative V <0, so the system (14) is
stable.

From (16) and (32), with the attention that the matrix AA(t) contains slowly variable
elements, i.e. Ag; ~0 . Identify law for the uncertain parameters in the matrix AA(t) :
Aay = A4, (1) :jejﬁiedt +Aay ; (35)
with i,jzl,_n; Aai? is initialization value.
From (17) and (33), with the attention that the matrix AB(t) contains slowly variable
elements, i.e. Ab,j (t) ~0. Identify law for the uncertain parameters in the matrix AB(t):
Ab, = Ab, :J.ujlsiedt +AbY; (36)
with i=Ln; j=1m:and Ab? is initialization value.
From (18) and (34), because of slow-varying external disturbance d'i (t)zo. The

unmeasurable external disturbance vector identification law d(t) has the following elements:

d(t)=Pe >  d(t)=d(t)=[Pedt;i=1n. (37)
Next, based on the recognition algorithms, we build an adaptive control law u, to

compensate for the influence of the variable parameter components and external disturbance.
We set:
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f(t)=AA(t)x+AB(t)u+d(t), (38)

with £(t)=[ ,(t), f,(t),.... f, ()] .
From (38), we rewrite (1) to:
X=Ax+Bu+If(t), (39)
where 1 eR™ has main diagonal elements, I; =1 are rows which corresponds to the vector
f(t) in the case | f, (t)| =0 ; other elements I; =0 inthe case i = j and |f,(t)=0,(i,j=1n).
Substituting (12) into (39), we have:
X =Ax+Bu, +Bu,, +If(t). (40)
From the results of identification from (35) to (37), attention (38), and combination (40), we

choose:
U, =—Gf (t). (41)
where G is the gain matrix; f(t)=[ A4; |x+ [ABU. }u + [&i (t)T .
Uncertainty components will be compensated by bringing (41) to (40) if:
~BGf (t)+1f(t)=0. (42)
To satisfy (42) means:
BG=I. (43)
From (43), we choose G =B", where B* is the pseudo-inverse matrix of B [19].
With the control vector u,, (41) fed to the input of plant (1), the variable parameter
components and external disturbance are compensated, and then (1) takes the form:
X=Ax+Bu,,. (44)

Thus, the expressions (35), (36), (37) with the adaptive law (41) are fed to the input of the
plant (1) to compensate for the variable parameter components and external disturbance, and then
(1) becomes (44).

The theorem is proven.

For (44), the optimal control law is known in (10). From there, the optimal-adaptive control

law for plant (1) is an expression (12) in which u,, and u,, are expressed in (10) and (41).

Thus, the article has synthesized the optimal-adaptive law for the class of MIMO linear systems
(2); the system has optimal properties, good adaptability, and highanti-interference ability.

3. Results and discussion

Assume that the control object is represented in the form of equation (1) with the dynamic
parameter matrices and the external disturbances vector as follows:

-4.0626 0.0847 -1.0157 0.0212 | .

= © AA= sin(0.25t);
2.5560 -4.5329 0.6390 -1.1332

{0.7624 0.6118} B {0.1906 0.1530

0.7878 0.4936 0.1970 0.1234
- 0.35sin(1.2t) +0.2sin (0.5t +1.5)
| 0.50c0s (1.0t +2.0)+0.3sin (0.8t) |

Simulation is performed on Matlab Simulink software. The results of identifying variable
parameter components and external disturbances f(t) (38) using the expressions (20), (21), and

}sin(O.ZSt) : (45)

d(t
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(22) of the Theorem are shown in Figure 1. Using controller (12) with u,,, U,, shown in (10)

and (19), the results of compensating for the effects of variable parameter components and
external disturbances are shown in Figure 2, the result of the state vector of the system following

the desired set signal vector X, :[1.0(t) 2.5(t)] is shown in Figure 3.

1 T
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Figure 1. The results of identifying variable parameter components and external disturbances f(t)
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Figure 2. The error between plant (1) after compensating for variable parameter components,

external disturbances by the adaptive control law U, (19), and the model (9)
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Figure 3. () Responses of the system for the desired signals X, = [1.0(t) 2.5('[)] ;

(b) Compare the system's response when using the optimal-adaptive controller proposed by the article
(Xopaa ) @nd the normally optimal controller (X, )

Figure 1 shows that the variable parameter components and external disturbances have been
identified with high accuracy according to the proposed algorithm. From the identification
results, performing compensation by adaptive control law (19) makes the system (1) become the
system (19) with a small error e, ~10™® shown in Figure 2. The optimal control law (10) has

made the system track to the desired set signal x, shown in Figure 3 (&) with guaranteed control

quality. The advantages of the adaptive optimal control system proposed by the article are shown
through comparison with the normally optimal control system with simulation results shown in
Figure 3 (b). This comparison shows the high efficiency of the control algorithms proposed by
the article for the class of MIMO linear systems with variable parameter components, having the
impact of unmeasurable external disturbances, and overcoming the shortcomings pointed out in

(1] - [15].
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4. Conclusion

This paper has developed a method to synthesize an optimal-adaptive control system for a
class of MIMO linear systems with variable parameter components and unmeasurable external
disturbances. The theorem was proposed and proved to ensure that the system is invariant with
uncertain components for the class MIMO system with equation (1). The control laws for the
class of system (1) are synthesized with a combination of optimal control and adaptive control.
The proposed article control law is simple and easy to implement in engineering; it ensures the
system has high control quality and has good adaptability, optimization, and anti-interference
ability. The simulation results once again proved the correctness and effectiveness of the
proposed method.
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