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Abstract This paper presents a method to synthesize the controller for uncertain
nonlinear systems based on a combination of sliding mode control, adaptive control,
and radial basis function (RBF) neural network. We propose an adaptive control law
based on the RBF neural network to identify and compensate for variable param-
eter components, nonlinear function vectors, and external disturbance. The main
linear component is built based on a sliding control. The designed controller has the
advantage of being resistant to the elements of uncertainty and has a high control
quality.
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1 Introduction

In practice, the uncertain nonlinear systems are affected by external disturbances
which are very common. The existence of uncertain parameters adversely affects the
performance of the system. Control design for such a class of objects has attracted
the attention of many researchers in past decades. A combination of the adaptive
control method and the neural network has been shown in the researches [1–4],
in which nonlinear components and external disturbance are identified using the
neural network to generate a compensation control signal for the uncertain compo-
nents. Some researches on adaptive control have been implemented for such variable
nonlinear systems, where variable parameters are identified and adjusted by adap-
tive control law [5–7]. In [8], a control law is built based on sliding mode control in
which uncertain components are considered for control design, and thus the designed
system is stability. The control design using backstepping and fuzzy techniques is
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implemented in [9], where the external disturbance is identified and compensated
by fuzzy logic, the variable parameters are determined based on the backstepping
technique. In the papers [10, 11], identifying and correcting uncertain parameters are
also implemented based on the backstepping control. Thus, there are many different
methods to synthesize control systems for the class of nonlinear objects under the
affection of variable parameters and external disturbance. Many results have been
shown advantages of diffirent methods, however enhancing performmance of the
designed system is still problems of interest to many researches. This paper presents
a method of synthesizing a stable adaptive controller based on combining adaptive
control, sliding control, and RBF neural network.

2 Problem Formulation

Amulti-inputmulti-output (MIMO) nonlinear systemwill be considered in the paper:

ẋ = Ax + [B + �B]u + f(x) + d(t), (1)

where x = [x1, x2...xn]T is state vector; u = [u1, u2...um]T is control vector; A ∈
IRn×n is Hurwitz matrix with fixed elements; B ∈ IRn×m is matrix with fixed ele-
ments; �B ∈ IRn×m matrix matched uncertainty; f(x) = [ f1(x), f2(x), ..., fn(x)]T
is smooth nonlinear vetor, matched uncertainty; d(t) = [d1(t), d2(t), ..., dn(t)]T
is external disturbance vector with slow varible elements, matched uncertainty
|di (t)| ≤ dM .

The block diagram of the designed system using identification structure with
compensation of uncertain component and external disturbance is shown in Fig. 1.
MODEL is the identification model; IDENT is the identification block; COMP is the
compensation block of uncertain components and external disturbance; SMC is the
sliding mode controller.

The control signal can be considered as follow:

u = usmc + uc, (2)

where usmc is control signal vector of SMC; uc is control signal vector for compen-
sation of uncertain component and external disturbance.
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Fig. 1 Block diagram of the designed system

3 Algorithm for Identification and Compensation
of Uncertain Parameters

Uncertain components �B, f(x),d(t) in (1) need to be identified and adjusted
for compensation. The identification model for uncertain parameters in (1) can be
written:

ẋm = Axm + [B + �B̂]u + f̂(x) + d̂(t), (3)

where xm = [xm1, xm2...xmn]T is state vector of themodel;�B̂ is the estimatedmatrix
of �B which is defined by elements �bi j ; f̂(x) = [ f̂1(x), f̂2(x), ..., f̂n(x)]T is the
estimated vector of f(x); d̂(t) = [d̂1(t), d̂2(t), ..., d̂n(t)]T is the estimated vector of
d(t).

From (1) and (3), we have:

ė = Ae + �B̃u + f̃(x) + d̃(t), (4)

where e = x − xm ;�B̃ = �B − �B̂; f̃(x) = f(x) − f̂(x); d̃(t) = d(t) − d̂(t). Iden-
tification progress will be converging when�B̃ → 0, f̃(x) → 0, d̃(t) → 0. Because
A is defined by a Hurwitz matrix, so e → 0, and (4) is stability.

With f(x) is a smooth function vector, by using a RBF neural network for the
approximation. The elements of f(x) can be written:

fi (x) =
L∑

j=1

w∗
i jφi j (x) + εi , (5)
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∀i = 1, n; j = 1, L , where L is number of basis functionwith a large enough number
to guarantee the error |εi | < εmi ,w

∗
i j = const is the ideal weights. The basis functions

are selected by the following form:

φi j (x) = exp

(∥∥x − ci j
∥∥2

2σ 2
i j

)
, (6)

where ci j are the position of the center of the basis functions φi j (x), and σi j are the
standard deviation of the basis functions. The evaluation vector f̂(x) is defined by
(6) with adjusted weights ŵi j :

f̂i (x) =
L∑

j=1

ŵi jφi j (x), i = 1, n. (7)

Training of the RBF neural network is implemented by adjustment of the weights
ŵi j in comparison with the ideal weights w∗

i j :

w̃i j = w∗
i j − ŵi j , (8)

from (5), (7) and (8), we have:

fi (x) = f̂i (x) + εi → f̃ (x) =
L∑

j=1

w̃i jφi j (x) + εi , (9)

εi is the approximate error with a sufficiently small value.

Theorem 1 Equation (4) are stable when the following conditions are satisfied:

‖e‖ >

2
n∑

i=1
εi

∥∥P̄i

∥∥

rmin (Q)
; (10)

uT�B̃TPe +
n∑

i=1

m∑

j=1

�
˙̃bi j�b̃i j = 0; (11)

eTP

⎡

⎢⎢⎢⎢⎢⎢⎣

L∑
j=1

w̃1 jφi j (x)

...
L∑
j=1

w̃njφi j (x)

⎤

⎥⎥⎥⎥⎥⎥⎦
+

n∑

i=1

L∑

j=1

˙̃wi j w̃i j = 0; (12)
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eTPd̃ (t) +
n∑

i=1

˙̃di d̃i = 0. (13)

P is a positive definite symmetric matrix �
Proof. For Eq. (4), the Lyapunov function is selected as follows::

V = eTPe +
n∑

i=1

m∑

j=1

�b̃2i j +
n∑

i=1

L∑

j=1

w̃2
i j +

n∑

i=1

d̃2
i . (14)

The Eq. (4) will be stable if the derivative (14) V̇ < 0. From (14), we have:

V̇ = ˙ePe + eT P ė + 2
n∑

i=1

m∑

j=1

�
˙̃bi j�b̃i j + 2

n∑

i=1

L∑

j=1

˙̃wi j w̃i j + 2
n∑

i=1

˙̃di d̃i . (15)

Substitute (4) into (15):

V̇ = eT
(
ATP + PA

)
e + 2uT�B̃TPe + 2eTPf̃ (x) + 2eTPd̃ (t)+

+2
n∑

i=1

m∑
j=1

�
˙̃bi j�b̃i j + 2

n∑
i=1

L∑
j=1

˙̃wi j w̃i j + 2
n∑

i=1

˙̃di d̃i .
(16)

From (16) and (9), we have:

V̇ = eT
(
ATP + PA

)
e + 2eTPε + 2(uT�B̃TPe +

n∑
i=1

m∑
j=1

�
˙̃bi j�b̃i j )+

+2(eTP

⎡

⎢⎢⎢⎢⎢⎢⎣

L∑
j=1

w̃1 jφi j (x)

...
L∑
j=1

w̃njφi j (x)

⎤

⎥⎥⎥⎥⎥⎥⎦
+

n∑
i=1

L∑
j=1

˙̃wi j w̃i j ) + 2(eTPd̃ (t) + 2
n∑

i=1

˙̃di d̃i ).
(17)

Substitute (11), (12), and (13) into (17)):

V̇ = eT
(
ATP + PA

)
e + 2eTPε. (18)

The Eq. (18) can be written:

V̇ = −eTQe + 2
n∑

i=1

εi P̄ie, (19)

Q = −(ATP + PA), P̄i is the i-th row of the matrix P.
Using inequality transformations [12], the Eq. (19) can be written:
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V̇ = −eTQe + 2
n∑

i=1

εi P̄ie < −rmin(Q)‖e‖2 + 2
n∑

i=1

εi
∥∥P̄i

∥∥ ‖e‖ . (20)

Substitute (10) into (20), we have V̇ < 0, the Eq. (4) is stable. �

The expressions (11), (12), and (13) of the Theorem 1 contain identification algo-
rithms �B, f(x), and d(t).

The Eq. (11) contains slowly variable elements, i.e. �ḃi j ≈ 0. The matrix �B
with uncertain parameters is identified by the matrix �B̂ using the update law:

�
˙̂bi j = u j P̄ie. (21)

From (7) and (12), because of w∗
i j = const , we have ẇ∗

i j = 0. The vector f̂(x) for
identification of the nonlinear function f(x) can be written:

f̂i (x) =
L∑

j=1

ŵi jφi j (x), i = 1, n. (22)

The update weights can be defined:

˙̂wi j = P̄ieφi j (x) . (23)

From (13), because of slow-varying external disturbance ḋ (t) ≈ 0. The vector d̂(t)
for identification of d(t) can be written:

˙̃di (t) = P̄ie. (24)

The received results from (21), (22), (23), and (24) are used to synthesis the com-
pensation control law uc.

The Eq. (1) can be again written as follows:

ẋ = Ax + Bu + IfΣ(t), (25)

where fΣ(t) = �Bu + f(x) + d(t), fΣ(t) = [ f Σ
1 , f Σ

2 , ..., f Σ
n ]T ; In×n hasmaindiag-

onal elements Ii j = 1, i = j = 1, n are rows which corresponds to the vector fΣ(t)
in the case | f Σ

i | 	= 0; other elements Ii j = 0 in the case i 	= j and | f Σ
i | = 0.

Substitute (2) into (25):

ẋ = Ax + Busmc + Buc + IfΣ(t). (26)

The vector uc can be selected:

uc = −Hf̂Σ(t), (27)
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f̂Σ(t) = �B̂u + f̂ (x) + d̂ (t) ; (28)

�B̂, f̂(x), and d̂(t) are presented in (21), (22), (23), and (24).
Substitute (27) into (26):

ẋ = Ax + Busmc − BHf̂Σ(t) + IfΣ(t). (29)

From (29)we can see that uncertain elementswill be compensatedwith the condition:

− BHf̂Σ(t) + IfΣ(t) = 0. (30)

The Eq. (30) will be satisfied with the following condition:

BH = I. (31)

The Eq. (31) will be satisfied with:

H =B+. (32)

where B+ is the pseudo-inverse matrix of B.
Thus, the article has synthesized the compensation control law uc (27) with iden-

tification vectors f̂Σ(t) (28), H (32).
Using the compensation control law (27), the Eq. (29) can be written:

ẋ = Ax + Busmc. (33)

Thus, in this section, the identification and compensation control law uc (27) for the
uncertain components of (1) have been presented, and then (1) is rewritten to (33).
For (33), the control law is synthesized based on the sliding mode control.

4 Synthesis of the Sliding Mode Control Law

The error vector between the state vector x and the desired state vector xd :

x̃ = x − xd → x = x̃ − xd . (34)

Substitute (34) into (33), we have:

˙̃x = Ax̃ + Busmc + Axd − ẋd . (35)

For (35), the hyper sliding surface is chosen as follows [13]:

s = Cx̃, (36)
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where C is the parameter matrix of hyper sliding surface, s = [s1, s2, ..., sn]T .
The next problem is to define the control law usmc which ensures movement of

the system (35) towards the hyper sliding surface (36) and keep it there.
The control signal usmc can be written by:

usmc =
{
us if s 	= 0
ueq if s = 0

, (37)

us is the control signal that moves the system (35) towards the hyper sliding surface
(36); ueq is the equivalent control signal that keeps the system (35) on the hyper
sliding surface (36).

The Eq. (37) can be rewritten as:

usmc = ueq + us, (38)

ueq is defined in [13]:
ṡ = C ˙̃x = 0. (39)

From (35) and (39), we have:

C
(
Ax̃ + Bueq + Axd − ẋd

) = 0. (40)

From (40), the equivalent control signal can be defined as follows:

ueq = −[CB]−1
[
CAx̃ + CAxd − Cẋd

]
. (41)

Next, we define the control signal us that moves the system (35) towards the hyper
sliding surface (36).

For the hyper sliding surface (36), the Lyapunov function can be selected by:

V = 1

2
sT s. (42)

Condition for the existence of slip mode can be written:

V̇ = sT ṡ < 0. (43)

Substitute (35) and (38) into (43), with attention to (39), (40) we have:

V̇ = sT
[
C

(
Ax̃ + Bueq + Axd − ẋd

) + CBus
]

< 0. (44)

Inequality (43) can be written as:

sT [CBus] < 0. (45)
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So to satisfy the condition (43), the control signal from (45) can be defined as follows:

us = −[CB]−1
[
δsgn (s1) , δsgn (s2) , ..., δsgn (sn)

]T
, (46)

δ is a positive coefficient. Substituting (41) and (46) into (37), the control signal can
be defined by usmc as follows:

usmc =
{−[CB]−1

[
δsgn (s1) , δsgn (s2) , ..., δsgn (sn)

]T
i f s 	= 0

−[CB]−1
[
CAx̃ + CAxd − Cẋd

]
i f s = 0

. (47)

Finally, the control signals (27) and (47) are used for (2), and the control laws of
(1) have been synthesized successfully.

5 Results and Discussion

Simulations are implemented on theMatlab environment for the controller (2) where
parameter matrix, nonlinear function vectors, disturbance vectors of the system (1)
are defined as follows:

A =
[−3.7376 0.0779

2.3515 −4.1702

]
;B =

[
0.7014 0.5629
0.7248 0.4541

]
;�B =

[
0.2104 0.1689
0.2174 0.1362

]
;

f (x) =
[
0.02 sin (x1) sin (x2)

0.02x21

]
;d (t) =

[
0.2 sin (0.5t)

0.2 cos (0.7t + 2)

]
.

(48)
With the desired signal xd = [1.5, 1.0]T . The simulation results are shown in Figs. 2,
3 and 4.

The results of the identification of variable parameter components, nonlinear func-
tion vectors, and external disturbance are shown in Fig. 2. The results after using
the compensation signal from the identification rule for uncertain components are
presented in Fig. 3. From Figs. 2 and 3, we can see that the uncertain components
are identified and compensated with an asymptotic error of zero. Figure4 depicts
responses of the system which present the result of tracking the state vectors of the
system with the desired signal vector. These simulation results once again prove the
correctness and effectiveness of the proposed control law.
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Fig. 2 The identification vectors f̂Σ (28)

Fig. 3 The error between (1) and linear model (33) with compensation for uncertain components
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Fig. 4 Responses of the system for the desired signals xd

6 Conclusion

The article has synthesized the controller for a class of nonlinear objects. Lyapunov
stability theory is used to design the adaptive update law which allows identifying
uncertain parameter components, nonlinear function vectors, and external distur-
bance. The identification results are used to generate adaptive control rules that
compensate for the uncertain components. And then, the linear part of the control
law is synthesized based on sliding mode control. The simulation results show that
the variable parameter components, nonlinear function vectors, and external distur-
bance are identified and compensated according to the algorithm proposed by the
article; the output vector of the system tracks to the desired set signal vector with
high controllability.
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