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Preface

The rapid growth of technology and industrialization has brought great challenges and
opportunities for green technology and sustainable development. In this context, the 7th
International Conference on Green Technology and Sustainable Development (GTSD
2024) organized on July 25–26, 2024, at Ho Chi Minh City University of Technology
and Education, HoChiMinhCity, Vietnam, emerges as a crucial platform for discussion,
innovation, and cooperation.

GTSD 2024 gathers plenty of the leading experts, researchers, and practitioners from
many countries including Germany, France, South Korea, Indonesia, Malaysia, Cambo-
dia, Hong Kong, Thailand, India, Sri Lanka, Bangladesh, Poland, Turkey, Vietnam, and
so on to express their novel findings and practical solutions for green technology and
sustainable development. GTSD 2024 received 312 submissions, and after completing
the peer-review process, 220 papers have been selected to be presented at GTSD 2024.
The paper documented in this book covers a wide range of topics, from renewable energy
systems, smart grid, artificial intelligence, robotics and intelligent systems, and compu-
tational intelligence and their applications for sustainable development, climate change
mitigation, and environmental policy. The contents of these studies expressed cutting-
edge technology and novel ideas related to green technology and provided actionable
insights for boosting sustainable development in various sectors.

We hope that the knowledge and innovations documented in this book will be moti-
vations for further research of green technology and sustainable development and related
fields.

Finally, we extend our heartfelt thanks to all the participants, authors, reviewers,
and organizers who contributed to the success of GTSD 2024. Your contributions are
invaluable in our shared journey towards a sustainable world.

Sincerely,

Yo-Ping Huang
Wen-June Wang
Hieu-Giang Le

An-Quoc Hoang
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Design of Adaptive Sliding Mode Controller
Based on Neural Network for Robot

Manipulator

Le Van Chuong(B) and Mai The Anh

Vinh University, Vinh City, Nghe An, Vietnam
chuonglv@vinhuni.edu.vn

Abstract. This article presents a method for synthesizing a robot manipulator’s
adaptive sliding mode controller based on a neural network. In actual working
conditions, the robot’s dynamic equation has strong nonlinearity, the parame-
ters change uncertainly, and in many cases, the robot is affected by unmeasured
external disturbances. Using an RBF neuron network and adaptive control, we
propose a solution to approximate and compensate for the uncertain components
and external disturbances. The robust control term based on sliding mode control
is designed to overcome approximation errors with chattering in the control signal
reduced to a minimum. The simulation outcomes indicate that the robot controller
suggested in this article possesses high quality, adaptability, and robust resistance
to interference.

Keywords: Robot Manipulator · Sliding Mode Control · Adaptive Control ·
RBF Neural Network

1 Introduction

The surge in demand for heightened product quality and labor efficiency has propelled
the widespread integration of robot manipulators in the industry and many other fields.
Therefore, improving the ability of robots to operate accurately has become an urgent
problem in which control laws play an essential role. Due to the dynamic characteris-
tics with many uncertain factors and often influenced by external disturbances, in recent
years, many studies on synthesizing control systems for robots typically combine control
methods such as sliding mode control, adaptive control, fuzzy control, and neural net-
works. Based on existing research, neural networks are widely utilized because they can
estimate uncertainty in nonlinear dynamics. Researchers in [1–4] used the RBF neural
network to estimate the manipulator uncertainty model to address model uncertainty.
Then, these papers propose a neural network-based adaptive terminal sliding mode con-
troller for precise trajectory tracking of the manipulator. Studies [5–7] have shown that
fuzzy adaptive controllers can improve robot performance; however, fuzzy controllers
depend on expert knowledge, making their application in environments where such
knowledge is not available difficult. In the papers [8–10], the authors combined the PD

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Y.-P. Huang et al. (Eds.): GTSD 2024, LNNS 1199, pp. 61–68, 2024.
https://doi.org/10.1007/978-3-031-76232-1_6
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controller with an adaptive sliding mode controller based on a neural network. To syn-
thesize the sliding mode control law, estimating the upper bound value of the external
disturbances components with a constant is necessary. However, in reality, this is only
sometimes possible. Besides, if this upper blocking value is significant, the sliding mode
control law will cause a strong chattering phenomenon.

In the following sections, our article will present a method for synthesizing a control
system for robot manipulators. We design the control law by integrating a traditional PD
controller and an adaptive slidingmodecontroller using theRBFneural network to ensure
adaptability and resistance to uncertain factorswithout knowing the upper blocking value
of the external disturbances. Finally, we perform experimental simulations to evaluate
the proposed method’s effectiveness and draw a conclusion.

2 Problem Formulation

The following second-order nonlinear differential equation can describe the dynamics
of a robot manipulator with n- degrees of freedom (n- DOF) [11]:

D(q)q̈ + C(q, q̇)q̇ + g(q) + f (q̇) + τ d(t) = τ (t), (1)

where q ∈ R
n, q̇ ∈ R

n, q̈ ∈ R
n are the vectors of joint angular positions, angular

velocity, and angular acceleration, respectively; τ (t) ∈ R
n is the vector of control torque

produced by the actuators;D(q) ∈ R
n×n is the positive definite symmetric inertia matrix;

C(q, q̇) ∈ R
n×n is thematrix that expresses theCoriolis and centrifugal forces;g(q) ∈ R

n

is the vector of gravitational torques; f (q̇) ∈ R
n is the vector of the friction force;

τ d(t) ∈ R
n is the vector generated by external disturbances, which changes slowly, is

unmeasurable, and is bounded.
Errors between the robot’s trajectory (1) and the desired trajectory qd exist:

qe = qd − q. (2)

The control goals are qe → 0 and q̇e → 0 as t → ∞. The problem is synthesizing
a controller for the robot (1) tracking the desired trajectory while resisting uncertainty
components in the dynamic model and unmeasured external disturbances.

3 Controller Design

Define the sliding mode function as [12]:

s = q̇e + �qe, (3)

where s ∈ [s1, s2, . . . , sn]T ; Λ ∈ R
n×n is the Hurwitz matrix. From (2) and (3) we have:

q̇ = q̇d + �qe − s. (4)

Differentiate both sides of Eq. (4):

q̈ = q̈d + �q̇e − ṡ. (5)
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From (1) continuing to transform (5) we have:

D−1(q)
[−C(q, q̇)q̇ − g(q) − f (q̇) − τ d(t) + τ (t)

] = q̈d + �q̇e − ṡ. (6)

Continuingwith the transformation of (6) and focusing on (4), we obtain the dynamic
equation of the system as follows:

D(q)ṡ = −τ (t) − C(q, q̇)s + δ(x) + τ d(t), (7)

where δ(x) = D(q)
[
q̈d + �q̇e

] + C(q, q̇)
[
q̇d + �qe

] + g(q) + f (q̇); x =
[
qe q̇e qd q̇d q̈d

]T
.

The function δ(x) depends on the influence of the robot’s mathematical model and
the operating environment. In particular, the system may be affected in many cases by
unmeasured external disturbances τ d(t).

The control lawwas assumed to include the PD controller, the non-linearity compen-
sating control δ̂(x), the term for compensating unmeasured external disturbances τ̂ d(t),
and the robust control term based on sliding mode control r(t) is proposed as:

τ (t) = Ks + δ̂(x) + τ̂ d(t) − r(t); (8)

where K ∈ R
n×n is a gain matrix, which is a constant matrix satisfying the condition

K = KT > 0; δ̂(x) is an approximate of δ(x); τ̂ d(t) is an approximate of τ d(t); the
control component r(t) ∈ R

n is designed to overcome approximation errors.
Next, the RBF neural network, which can approximate any non-linear function, is

used to approximate the function δ(x). The RBF neural network output is defined as
follows [13]:

δi(x) =
m∑

j=1

w∗
ijhij(x) + εi; (9)

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m with m represents the number of basis functions,
chosen sufficiently large to ensure approximation error εi; w∗

ij denotes the ideal weight.
The basis function is chosen as [13]:

hij(x) = exp

(∥∥x − cij
∥∥2

2b2ij

)

; (10)

where cij is a vector with a dimension equal to the dimension of the vector x, representing
the center of the ij basis function, and bij represents the spread of the ij basis function.
The approximation of the nonlinear function δ̂i(x) is established as:

δ̂i(x) =
m∑

j=1

ŵijhij(x); (11)

where ŵij is the estimate of the ideal weighting w∗
ij. Deviation of the adjusted weight ŵij

compared to the ideal weight w∗
ij will be:

w̃ij = w∗
ij − ŵij. (12)
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The process of approximating the nonlinear function δ̂i(x) is adjusting the weight
ŵij of the RBF neural network against the ideal weight w∗

ij so that w̃ij → 0.
From (7) and (8) we have:

D(q)ṡ = −Ks − C(q, q̇)s + δ̃(x) + τ̃ d(t) + r(t), (13)

where

δ̃(x) = δ(x) − δ̂(x); δ̃(x) = [
δ̃1(x), δ̃2(x), . . . , δ̃n(x)

]T ; (14)

τ̃ d(t) = τ d(t) − τ̂ d(t); τ̃ d(t) = [τ̃d1, τ̃d2, . . . , τ̃dn]
T . (15)

From (9), (11) and (12) we have:

δ̃(x) =
[ m∑

j=1
w̃1jh1j(x)

m∑

j=1
w̃2jh2j(x) . . .

m∑

j=1
w̃njhnj(x)

]T
+ ε. (16)

where ε = [
ε1 ε2 . . . εn

]T
; ‖ε‖ ≤ εM and εM is a very small value; i = 1, 2, . . . , n.

To determine the stability conditions of the system (13), we select a Lyapunov
function in the following form:

V = 1

2
sTD(q)s + 1

2λ1

n∑

i=1

m∑

j=1

w̃2
ij +

1

2λ2

n∑

i=1

τ̃ 2di(t), (17)

where λ1, λ2 are positive coefficients.
Taking the derivative of both sides of an Eq. (17), we obtain:

V̇ = 1

2
sT Ḋ(q)s + sTD(q)ṡ + 1

λ1

n∑

i=1

m∑

j=1

w̃ij ˙̃wij + 1

λ2

n∑

i=1

τ̃di(t) ˙̃τdi(t). (18)

By substituting expressions (13), (14), (15), and (16) into (18), we obtain:

V̇ = 1

2
sT

[
Ḋ(q) − 2C(q, q̇)

]
s − sTKs + sT [ε + r(t)]

+
n∑

i=1

m∑

j=1

siw̃ijhij(x) + 1

λ1

n∑

i=1

m∑

j=1

w̃ij ˙̃wij +
n∑

i=1

si τ̃di(t) + 1

λ2

n∑

i=1

τ̃di(t) ˙̃τdi(t).

(19)

Note that for robot manipulators, we have Ḋ(q) − 2C(q, q̇) as a skew-symmetric
matrix [11], so sT

[
Ḋ(q) − 2C(q, q̇)

]
s = 0. We select:

˙̃wij = −λ1sihij(x); i = 1, 2, . . . , n; j = 1, 2, . . . ,m; (20)

˙̃τdi(t) = −λ2si; i = 1, 2, . . . , n; (21)
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r(t) = −εMsgn(s). (22)

From (20), (21) and (22) continuing to transform expression (19), we have:

V̇ = −sTKs + sTε − sT εMsgn(s). (23)

Because sTε − sT εMsgn(s) = sTε − εM‖s‖ ≤ 0, the results final:

V̇ ≤ −sTKs ≤ 0, (24)

and system (13) is stable.
From (12), because w∗

ij = const so ẇ∗
ij = 0:

δ̂i(x) =
m∑

j=1

ŵijhij(x); ˙̂wij = λ1sihij(x); i = 1, 2, . . . , n; j = 1, 2, . . . ,m. (25)

From (15), take note that external disturbances change slowly, thus τ̇di ≈ 0:

˙̂τdi(t) = λ2si; i = 1, 2, . . . , n. (26)

Thus,with expressions (8), (22), (25), and (26), the article has synthesized a controller
for the robot manipulator (1) to track the desired trajectory.With the proposed controller,
the system ensures adaptability and robustness with uncertain dynamic components
without knowing the upper bounded value of external disturbances in advance. The
sliding mode control law (22) only depends on the approximation error of the RBF
neural network (arbitrarily small and given), so the chattering phenomenon is reduced
to a minimum. The block diagram of the control system for the robot manipulator is
shown in Fig. 1. Next, the article performs simulations to evaluate the effectiveness of
the proposed robot manipulator control system.

Fig. 1. The control system’s block diagram for a robot manipulator.
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4 Simulation Example

In this section, the article applies the proposed controller to the 6-DOF Thermo CRS
A465 robot manipulator, focusing on the first three degrees during simulation, assuming
the fixation of the last three degrees of the robot. By selecting the parameters of the robot
manipulator as suggested in [14], the dynamic model is described using Eq. (1).

D(q) =
⎡

⎢
⎣
b3s2s3 + b6c

2
2 + b7c

2
3 + b5 0 0

0 0.5b3c23 + b13 0.5b3c23 + b14
0 0.5b3c23 + b17 b16

⎤

⎥
⎦; g(q) =

⎡

⎢
⎣

0
b8s2 + b9s3

b9s3

⎤

⎥
⎦;

C(q, q̇) =
⎡

⎢
⎣

b1 b2q̇1s2c2 + b3q̇1s2c3 b3q̇1s2c3 + b4q̇1s3c3
2b11q̇1s3c2 + 2b12q̇1s2c3 − 0.5b3q̇1s2+3 0.5b3q̇2s3−2 + b10 0.5b3q̇3s2−3

2b12q̇1s3c3 − 0.5b3q̇1s2c3 0.5b3q̇2s3−2 − b15 b15

⎤

⎥
⎦;

with si = sin(qi); ci = cos(qi); c23 = c2c3 + s2s3; s2+3 = s2c3 + c2s3;s3−2 =
c2s3 − s2c3; s2−3 = s2c3 − c2s3 and the parameters bk with k = 1, 2, . . . , 17 are given
in Table 1.

Table 1. The parameters of the Thermo CRS A465 robot manipulator.

Parameter Value Parameter Value Parameter Value

b1 0.4701 b7 − 0.0054 b13 0.1991

b2 0.1094 b8 − 0.0051 b14 0.0603

b3 0.0151 b9 0.0097 b15 0.7218

b4 0.0591 b10 0.7741 b16 0.1033

b5 0.0626 b11 0.2345 b17 0.0906

b6 0.0229 b12 0.0731

Assume the friction force vector, the external disturbance vector in (1), and the
desired trajectory have the form:

f (q̇) =
⎡

⎢
⎣
0.1sgn(q̇1)
0.1sgn(q̇2)
0.1sgn(q̇3)

⎤

⎥
⎦; τd(t) =

⎡

⎢
⎣
1.5 sin(0.6t + 0.3)
1.2 cos(0.8t − 0.6)
1.1 sin(0.9t + 0.5)

⎤

⎥
⎦; qd =

⎡

⎢
⎣
cos(0.1t) − 2.1 sin(0.3t)
cos(0.1t) − 1.5 sin(0.5t)
1.8 sin(0.2t) − cos(0.5t)

⎤

⎥
⎦.

By using the control algorithms in (8), (22), (25), and (26), the simulation results are
shown in Figs. 2 and 3.

The results in Fig. 2 show that the uncertain components and unmeasured external
disturbances have been approximated with an approximation error approaching zero
value.Next, Fig. 3 shows thatwith control law (8), The trajectory of the robotmanipulator
has adhered to the desired trajectory. Notably, upon approximating and compensating for
uncertainty components and external disturbances, the sliding mode control component
only depends on the approximation error of the RBF neural network; consequently,
the chattering phenomena in control signals have been reduced to a minimum. These
simulation outcomes reaffirm our article’s proposed control law’s accuracy and efficacy.
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Fig. 2. The result of the approximation and the corresponding error of uncertain components.

Fig. 3. Trajectory tracking and control signal of the robot manipulator.

5 Conclusion

The article has designed a control system for robot manipulators by integrating tradi-
tional PD controllers and adaptive sliding mode controllers using neural networks. We
synthesized identification law and compensated for uncertain components and external
disturbances using adaptive control theory and RBF neural networks. The advantages
of our proposed controller are that it does not need to pre-estimate the limit amplitude
of unmeasured external disturbance components. Thanks to this, we achieved robust
control laws based on sliding mode control with minimized chattering phenomena. The
proposed control system is adaptive, robust, and capable of tracking the desired trajec-
tory with high control quality. Simulation outcomes validate the accuracy and efficacy
of the proposed approach.
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