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Abstract
Developing a simple structure using low-cost material that enables both large-scale fabrication and broadband absorption 
response is highly desirable but very challenging for achieving high-performance metamaterial absorber. Herein, we propose 
and numerically investigate an ultra-broadband and wide-angle insensitive perfect metamaterial absorber in the ultraviolet 
to near-infrared (UV–NIR) region based on a simple metal–dielectric–metal structure. The proposed absorber structure con-
sists of a periodic array of a tungsten hexagonal prism and a tungsten ground plane separated by a silicon dioxide dielectric 
substrate. The proposed absorber achieves an ultra-broadband absorption response in the range of 275–1000 nm with an 
absorptivity above 90% and a relative bandwidth of 106.8% at normal incidence, which covers from the UV to NIR region. 
The absorption efficiency is maintained with the figure of merit �

OBW
 higher than 90% for a wide incident angle up to 40o for 

transverse electric (TE) polarization and 65o for transverse magnetic (TM) polarization. The effects of structural parameters 
and different metallic materials on the absorption performance are presented. In addition, the physical mechanism is ana-
lyzed using the surface density and distributions of electric and magnetic fields that are attributed to both localized surface 
plasmon (LSP) and propagating surface plasmon (PSP) resonances. Owing to outstanding merits of simple structure, low 
cost, and high absorption performance, the designed absorber can be suitable for many applications in the UV–NIR spectrum 
such as thermal emitters and solar cells.
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Introduction

Metamaterial absorber (MA) is a fast-growing field with 
various potential applications like sensors [1–3], thermal 
emitters [4, 5], and solar cells [6–8], since Landy et al. first 
proposed a nearly perfect absorber in 2008 [9]. The MA 
usually operates at a specific frequency and has a narrow 

bandwidth owing to its resonance nature. Therefore, many 
design approaches have been developed to extend the band-
width of MAs such as using fractal structures [10–12], load-
ing with lumped devices [13–15], and multilayer metal–die-
lectric stacks [16–23]. However, these approaches remain a 
significant limit in design and/or fabrication regards costly 
and time-consuming. Recently, the simple design of broad-
band MA structures based on a single stack of metal–dielec-
tric–metal configuration has been proposed, but most of the 
these studies only focused on visible (VIS) [12, 24, 25], VIS 
to near-infrared (NIR) [26–28], and UV–VIS region [29]. 
Therefore, the MA design that can extend the absorption 
band from the UV into the infrared (IR) region to efficiently 
absorb the solar radiation energy has been demonstrated. 
For instance, Huang et al. proposed the metamaterial per-
fect absorber, which consists of a periodic array of tung-
sten (W) cylinders covered by a silicon carbide (SiC) layer 
and a silicon dioxide (SiO2 ) layer and exhibits an efficient 
ultra-broadband absorption from UV to NIR (200–900 nm) 
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[30]. Liu et al. designed the multilayer silicon/iron (Si/Fe) 
absorber with an average absorptivity of over 96% in the 
range of 300–3000 nm under the normal incident, which 
covers from the ultraviolet to mid-infrared (UV–MIR) region 
[28]. Even though these MA exhibited the ultra-broadband 
band and high absorption efficiency, their fabrication pro-
cesses are complex. Therefore, the design of MA remains a 
significant challenge to achieve simultaneously simple struc-
ture for fabrication, low cost, high absorption efficiency and 
performance.

In this study, we propose a simple design of an ultra-
broadband and wide-angle insensitive MA using a dielec-
tric–metallic–dielectric structure operating in the UV–NIR 
region. The proposed MA is composed of a periodic array 
of a tungsten hexagonal prism and a silicon dioxide dielec-
tric substrate backed with a tungsten ground plane. The 
designed absorber exhibits an ultra-broadband absorption 
response with an absorptivity than 90% in the range from 
275 nm to 1000 nm and a relative bandwidth of 106.8% 
at normal incidence. Moreover, this design is realized for 
a wide incident angle and polarization insensitivity. The 
effects of structural parameters and different metallic mate-
rials on absorption performance and the physical mecha-
nism of the proposed MA are numerically investigated in 
detail in the following sections.

Structure Design and Method

Figure 1 illustrates a schematic of the proposed ultra-
broadband MA. The designed MA structure is com-
posed of a two-dimensional periodic arrangement of unit 
cells along x- and y- axes (Fig. 1a). The unit cell con-
sists of a metallic hexagonal prism placed on the top of a 

dielectric substrate with a metallic ground plane, as shown 
in Fig. 1b. Both the metallic layers of the unit cell is made 
by tungsten (W). The hexagonal prism has a prism base 
edge (R) of 100 nm and a prism height ( tm ) of 50 nm. 
The unit cell has a period constant (P) of 290 nm. The 
dielectric substrate is made by silicon dioxide (SiO2 ) with 
thickness (d) of 40 nm. The thickness of the continuous 
bottom layer ( td ) is chosen to be 150 nm to blocked the 
transmission of the incident light. The thickness of the 
metallic ground layer is usually chosen in such a way that 
it is greater than the skin depth of the incident light. The 
dielectric constants of tungsten are taken from Palik [31], 
while silicon dioxide from Ghosh [32].

To investigate the performance of the designed ultra-
broadband MA structure, we use the commercial computer 
simulation technology (CST) Microwave Studio software 
with a frequency-domain solver. In the simulation setup, 
the periodic boundary conditions are assigned to unit cell 
for the x and y directions, and the open boundary condition 
is fixed to the z-direction. The simulation is performed in 
free space.

The absorption ( A(�) ) of a MA is calculated as Eq. (1).

where, R(�) and T(�) are frequency-dependent transmission 
and reflection coefficients, which are determined from the 
frequency-dependent S-parameters S11(�) and S12(�) with 
R(�)=||S11(�)

||
2 and T(�) = ||S12(�)

||
2 . Due to the continuous 

metallic covering on the bottom layer of the MA structure, 
the transmission of EM wave is blocked ( T(�) = 0 ). There-
fore absorption is simply defined as Eq. (2).

(1)A(�) = 1 − R(�) − T(�) = 1 − ||S11(�)
||
2
− ||S12(�)

||
2

(2)A(�) = 1 − ||S11(�)
||
2

Fig. 1   (a) Schematic of the proposed ultra-broadband MA and (b) Magnified 3-D view unit cell of the MA
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The wideband absorption characteristic of a MA can be 
evaluated from the relative absorption bandwidth (RBW) 
defined as Eq. (3).

where fU and fL are the upper and lower limits of a wave-
length range with the absorptivity above 90%.

Results and Discussion

a.   Absorption performance at normal incidence and 
oblique incidence

Figure 2 shows the absorption, reflection, and transmis-
sion spectra of the proposed MA at normal incidence. The 
T(�) is plotted on the right axis and it is nearly zero in the 
entire simulation range of 250-1250 nm. The R(�) yields a 
value of below 0.1 in the range of 275-1000 nm, as plotted in 
the left axis in Fig. 2. Therefore, the proposed MA structure 
achieves an ultra-broadband absorption response with the 
absorptivity above 90% ranging from 275 nm to 1000 nm, 
which covers from UV to the NIR region. Furthermore, three 
district absorption peaks can be observed at 286 nm, 400 
nm, and 750 nm with the corresponding absorptivity of 0.96, 
0.98, and 0.98, respectively. The proposed MA achieves the 
RBW value of 106.8%, which proves an ultra-broadband 
absorption characteristic.

For practical applications, the absorber structure need 
maintain its absorption performance with a wide incident 
angle due to the fact that the electromagnetic (EM) wave 
is obliquely incident onto the surface of the absorber struc-
ture. The reflection coefficients for the TE polarization 

(3)RBW = 2 ×
fU − fL

fU + fL
,

( Γ
⟂
 ) and the TM polarization ( Γ∥ ) under the oblique inci-

dence angle are defined by Eqs. (4) and (5) [12, 25, 33].

where �i and �t are the incidence and transmission angle, 
respectively. From Eqs. (4) and (5), it indicates that the 
reflection coefficient changes with varying the incident 
angle. It means that the absorption coefficient of MA also 
depends on the incident angle. To prove that the absorption 
spectra of the proposed MA with various the incident angle 
for TE and TM polarizations are investigated as shown in 
Fig. 3. The incident angle is varied in the range of 0-80o 
with a step size of 5o . As seen in Fig. 3, it is found that the 
absorptivity is decreased with increasing the incidence angle 
for both TE and TM polarizations. However, the absorptivity 
is still more than 80% with incidence angle up to 45o and 70o 
in the whole wavelength range of 275–1000 nm for TE and 
TM polarizations, respectively. It indicates that the proposed 
MA has a wide-angle characteristic.

To further analyze the performance characteristics of 
the proposed MA, the figure of merit (FOM) and opera-
tional bandwidth (OBW) is evaluated. The FOM (�OBW ) 
can be related to OBW  as Eq. (6) [17, 25].

In this proposed MA, the operation wavelength is deter-
mined in the fixed range of 275–1000 nm, which is equal  
to the OBW of 725 nm. The plots of (�OBW ) as a function 
of the incident angles for TE and TM polarizations as pre-
sented in Fig. 4. The �OBW is 0.957 at normal incidence, and 
decreases slightly to 0.926 for TE polarization and 0.952 for 
TM polarization at incident angle of 30o . The �OBW remains 
above 0.9 with incidence up to 40o and 65o and 0.8 with 
incidence up to 55o and 79o for TE and TM polarizations, 
respectively.

Furthermore, the dependence of absorption spectra 
on the polarization angles in the range of 0–90o with a 
step size of 15o under normal incidence is simulated as 
shown in Fig. 5. Under both TE and TM polarizations, 
with increasing the polarization angle from 0 o to 90o for 
the normal incident angle, the ultra-broadband perfect 
absorption response (above 90%) is unchanged in the 
entire wavelength band. It confirms that the proposed MA 
shows polarization-insensitive characteristics due to its 
symmetry structure.

(4)Γ
⟂
=

Zmcos�i − Z0cos�t

Zmcos�i + Z0cos�t

(5)Γ∥ =
Zmcos�t − Z0cos�i

Zmcos�t + Z0cos�i

(6)�OBW =
1

�U − �L
∫

�U

�U

A(�)d� =
1

OBW ∫
�U

�U

A(�)d�

Fig. 2   Absorption, reflection, and transmission spectra of the pro-
posed ultra-broadband MA
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b.   Absorption Mechanism

The impedance matching is a prerequisite to exhibit a 
resonant behavior. When the impedance of MA (Zm) and 
the impedance of free-space (Z0) are matched, the reflection 
coefficient (Γ) , defined as Eq. (7), becomes zero to realize 

the perfect absorbance. Ideally, the MA impedance can be 
controlled by the permeability (�m) and permittivity (�m) 
of medium. The effective impedance (Zeff ) can be extracted 
using scattering parameters from Eq. (8) [24, 25, 33, 34].

Figure 6 shows the retrieved effective impedance (Zeff ) 
of proposed MA which consists of the real and imaginary 
part of (Zeff ) . As seen in Fig. 6, the real and imaginary part 
becomes unity and zero at the wavelength range of 275 
nm to 1000 nm, respectively, which confirms the imped-
ance matching and the presence of perfect ultra-broadband 
absorption.

(7)Γ =
Zm − Z0

Zm + Z0

with Zm = Z0

√
�m

�m

(8)Zeff =
Zm

Z0

=

√√√
√ (1 + S11)

2 − S2

12

(1 − S11)
2 − S2

12

=
1 + S11

1 − S11

Fig. 3   The selected absorption spectra and absorption map of the proposed MA with various incident angles for (a, c) TE and (b, d) TM polari-
zations, respectively

Fig. 4   The �
OBW

 of the proposed MA with various incident angles for 
TE and TM polarizations
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To further investigate the physical mechanism, we have 
simulated the current density, distributions of the electric 
field, and magnetic field of the proposed MA at the various 

resonant wavelengths of 286 nm, 400 nm, and 750 nm in 
the YOZ plane for TE polarization as presented in Fig. 7. 
It is clear from Fig. 7a–c, the current density accumulates 
in the top and bottom metal layers which affirms the pres-
ence of the surface plasmon resonance (SPR) [24]. It was 
reported that the electric current concentrates only on both 
metallic layers sandwiched by a dielectric layer that means 
the origins of the energy loss in the dielectric layer which 
results in the broadband absorption [26]. From the dis-
tribution of electric field at various wavelengths 286 nm, 
400 nm, and 750 nm as shown in Fig. 7d–f, It is clear that 
the light is coupled to the edge of the W prism and local-
ized in the air-gap of the adjacent W prism. This indicates 
that the surface plasmon polaritons (SPPs) are excited in 
the metamaterial absorber [26, 28]. Meanwhile, there is 
an intrinsic difference in the magnetic field distributions 
of the resonant wavelengths as seen in Fig. 7g–k. At the 
short resonant wavelength of 286 nm, the magnetic field 
is not only intensively concentrated in the metallic cor-
ners of the adjacent W prism, but also distributed between 

Fig. 5   The selected absorption spectra and absorption map of the proposed MA with various polarization angles under (a, c) TE and (b, d) TM 
polarizations, respectively

Fig. 6   Normalized impedance of the proposed MA under normal 
incidence
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the adjacent cells (Fig. 7g). Thus, the perfect absorption 
at this resonant wavelength is caused by the excitation 
of a propagating surface plasmon (PSP) resonance. At a 
longer resonant wavelength of 750 nm, the magnetic field 
is confined within the gap between the W prism and the W 
ground plane (Fig. 7k). It means that the localized surface 
plasmon (LSP) resonance is contributed to the resonance 
wavelength of 750 nm. Finally, at resonant wavelength 
of 400 nm, it can be seen that electric field is not only 
mainly confined within the gap between both metallic 
layers but also appeared in the area between adjacent W 
prism (Fig. 7h), indicating that the perfect absorption in 
this resonant wavelength of 750 nm is due to the combina-
tions of the PSP and LSP resonances.

c.   Parametric Analysis

We studied the effects of different structure param-
eters on the absorption spectra and the corresponding 
�OBW  of the proposed MA as shown in Figs.  8 and 9, 

respectively. The �OBW  is calculated in the wavelength 
range from 275 to 1000 nm. Based on this study, the 
optimized structure can be reached as shown in Fig. 1. 
Figures 8a and 9a show the variations of absorption spec-
trum and the corresponding �OBW  as a function of the 
thickness of dielectric layer (h) and the other parameters 
shown Fig. 1 are fixed. When h value increases from 30 
nm to 60 nm, the absorption bandwidth and the �OBW  of 
the MA increases and reaches an optimum value at 40 
nm, and then decreases as further increasing of the h 
value. The same trends can be observed in Figs. 8b and 
9b by varying the periodic unit cell (P), that obtains opti-
mum value at P = 150 nm. Figures 8c and 9c shows the 
variation in absorption performance caused by changing 
the prism height ( t  ). The absorption bandwidth of the 
proposed MA increases with increasing the t  value from 
40 nm to 75 nm while the �OBW  first increases, reach an 
optimum value at 60 nm, and then decrease as the prism 
height ( t  ) further increase. Meanwhile, the �OBW  of the 
proposed MA decreases with increasing the prism base 

Fig. 7   (a–c) Current density, 
(d–f) electric field distribu-
tion on the XOY plane, and (g, 
h, k) magnetic field distribu-
tion on the XOZ plane of a unit 
cell of the proposed absorber 
under normal incidence at 
various resonant wavelengths 
of 286 nm, 400 nm, and 750 
nm, respectively. The x- and 
y-directions are taken form 
–145 nm to 145 nm
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edge ( R ) from 75 nm to 125 nm as shown in Fig. 9d. 
However, the proposed MA exhibits the largest absorp-
tion spectrum when the thickness of the R value is 100 
nm as observed in Fig. 8d. The variations of the absorp-
tion spectra with changing the structural parameters can 
explain by the variations in the impedance of the MA. 
The input impedance of the MA changes with varying 
the structure parameters, leading to the changing of 
wavelength range that occurring the impedance match-
ing, resulting in the changing of the perfect absorption 
response of the MA.

Finally, the effect of various metallic materials such 
as noble metal (Au) and cheap metals (Cu, Ni, W) on the 
absorption spectra of the proposed MA is analyzed, as 

depicted in Fig. 10. As shown in Fig. 10, the bandwidth 
of the proposed MA shrinks in the lower absorption wave-
length region when Cu and Au are used as metallic layers 
of the designed structure. Meanwhile, with Ni-based MA, 
the absorption spectrum is extended to a longer absorption 
wavelength, but the absorptivity is significantly decreased 
in the range of 520–880 nm. This observation is caused by 
the intrinsic dispersion property of metallic materials [28]. 
The wavelength-dependent dispersion constant of W and Ni 
metals shows the relatively flat compared with that of Cu and 
Au metals in the wavelength in the range of 250-1000 nm, as 
proved in Fig. 11. Thus, both cheap metals of Ni and W can 
become a good candidate for the design of waveband MA 
operating in the UV–NIR region.

Fig. 8   Absorption spectra variations in various structural parameters for the proposed MA at the normal incidence: (a) thickness of dielectric 
layer (h), (b) periodic unit cell (P), (c) prism height (t), and (d) prism base edge (R)
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Fig. 9   The �
OBW

 variations in various structural parameters for the proposed MA at the normal incidence: (a) thickness of dielectric layer (h), (b) 
periodic unit cell (P), (c) prism height (t), and (d) prism base edge (R)

Fig. 10   Effect of metallic materials on the absorption spectra of the 
proposed MA under normal incidence

Fig. 11   Dielectric dispersion curve for various metallic materials, 
where �′ and �′′ is the real and imaginary part of dielectric dispersion, 
respectively. Refractive index database for W and Au from ref. [31], 
Ni from ref. [35], and Cu from ref. [36]
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Conclusion

We have proposed and numerically investigated an ultra-
broadband and wide-angle insensitive perfect metamate-
rial absorber in the UV–NIR region based on a metal– 
dielectric–metal structure. The proposed MA structure con-
sists of a periodic array of a tungsten hexagonal prism and 
a silicon dioxide dielectric substrate backed with a tungsten 
ground plane. The proposed MA showed an ultra-broadband 
absorption in the range of 275-1000 nm with an absorptiv-
ity above 90% , OBW of 725 nm, and a relative bandwidth 
of 106.8% at normal incidence. The physical mechanism of  
the MA was revealed by the input impedance and the surface  
current density, and the distributions of electric and magnetic  
fields. Moreover, the effect of the structural parameters and dif-
ferent metallic materials on the absorption performance have 
been presented. The designed structure exhibited the insensi-
tive polarization and ultra-broadband absorption response with 
�OBW higher than 90% for a wide incident angle up to 40o for 
TE polarization and 65o for TM polarization. The designed 
structure is very simple, low cost, and good absorption perfor-
mance, and thus it can be a good candidate for many applica-
tions in the UV–NIR spectrum such as thermal emitters and 
thermophotovoltaics.
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