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Abstract — Various machine learning and artificial 

intelligence applications have gained prominence, propelled by 

recent technological advancements. Among these applications, 

autonomous robots stand out as particularly significant. Their 

integration is anticipated to yield substantial and 

transformative impacts on society. Current computer vision and 

deep learning research has been instrumental in developing 

automated driving systems. Lane-keeping, a critical aspect of 

autonomous vehicles, has been extensively studied using 

traditional computer vision techniques and novel deep learning 

and artificial intelligence models. This study details the design 

and fabrication of a mobile robot equipped with differential 

wheels and the development of a PID controller for the robot. It 

also presents the implementation of OpenCV and CNN models 

to enable the robot to follow a lane. Experiments were conducted 

in environments with varying lighting conditions. The 

experimental results demonstrate the superior effectiveness of 

the proposed CNN model. 

Keywords— Autonomous robot, Convolutional Neural 

Network, OpenCV, computer vision 

I. INTRODUCTION 

Autonomous robots have experienced significant 
advancements in recent years due to the integration of 
computer vision and artificial intelligence techniques. 
Numerous methods and models have been researched and 
developed for lane tracking, with Convolutional Neural 
Networks (CNNs) particularly prominent. Numerous studies 
[1-7] have explored the application of the CNN architectures 
in self-driving cars. These investigations utilize Raspberry Pi 
microprocessors in conjunction with Pi cameras to collect 
road data, with CNNs providing predictions for steering 
angles to facilitate lane control. Most of these studies highlight 
the superiority of CNNs in robot control based on computer 
vision. Overall, CNN models demonstrate powerful, flexible, 
and automatic computational capabilities. However, they are 
limited by the need for high-quality datasets and substantial 
computational resources, which can hinder real-time 
performance. 

In contrast, traditional techniques, such as those 
employing the OpenCV library, still offer significant 
advantages. These techniques generally require fewer 
computing resources, deliver high real-time performance, and 
are suitable for embedded systems. However, they are 
constrained by predefined rules. Studies [8-12] that rely on 
traditional image processing techniques use OpenCV libraries 
for lane detection and navigation, underscoring the enduring 

utility of these methods. For instance, one article [8] 
emphasizes the importance of traditional computer vision 
techniques in autonomous robotic systems. Additionally, a 
report [13] integrates image processing with OpenCV and 
CNN algorithms to detect road damage. 

In this study, we design and fabricate a differential 
wheeled robot and develop a PID controller. We then build 
and experiment with both OpenCV and CNN models to enable 
the robot to follow lanes under different conditions. We aim 
to elucidate the advantages of CNN models and discuss the 
challenges associated with using OpenCV and CNN for lane 
tracking. The block diagram depicting the architecture of the 
differential drive-wheeled mobile robot is illustrated in Fig. 1. 
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Fig. 1. Block diagram of differential drive wheeled mobile robot. 

II. HARDWARE DESIGN AND FABRICATION

Initially, the differential drive-wheeled mobile robot 
(DDWMR) design was executed using SolidWorks software. 
Fig. 2a depicts the 3D rendering of the robot. Subsequently, 
equipment selection and hardware fabrication ensued. The 
robot frame comprises two 1cm thick wooden panels, 
assembled with 1cm diameter screws, resulting in a maximum 
frame size of 50cm x 41cm x 13cm. The wheel system 
encompasses two differential drive wheels, each boasting a 
diameter of 19 cm, alongside a guide wheel with a diameter of 
7.5 cm. To ensure proper alignment, cushioning materials 
were employed during wheel installation, maintaining the 
robot frame parallel to the ground. Providing movement for 
the robot are two Planet motors equipped with encoders, each 
weighing 450g and operating at a 12V voltage source, 320 
rpm decelerated speed, and 30W capacity, featuring encoders 
with 12 pulses and two channels (A, B). Providing the 
requisite power supply are two Globe batteries weighing 
1.45kg each, with a voltage of 12V. The robot's control system 
integrates an Arduino UNO microcontroller and two 
BTS7960 motor control modules. For implementing computer 
vision algorithms, an Intel Core i5-1135G7 processor with a 
speed of 2.4 GHz and 8GB of internal memory is used. A 
Hikvision DS-U02 camera, featuring a 2MP CMOS sensor 
with a resolution of 1920 x 1080, is mounted on a shaped 
aluminum bar measuring 2cm x 2cm, positioned at 77cm 
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above the ground. The overall weight of the robot totals 
11.78kg, with the completed assembly depicted in Fig. 2b. 

(a) (b) 

Fig. 2. (a) 3D robot drawing on Solidworks 2021 software; (b) image of the 
completed robot. 

III. DESIGN A PID CONTROLLER

We use a PID controller to control the robot's speed. This 
is the most used controller in robotics and industry thanks to 
its simple structure, ease of implementation in simulation, and 
ease of hardware implementation. The mathematical model of 
the PID controller is expressed as follows:  

� � ������ 	 �
 � ������


�
	 ��
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where the variable ��  is the proportional constant, the
variable �
 is the integral constant, and the variable �� is the
derivative constant. The primary challenge in implementing a 
PID controller lies in appropriately adjusting the parameters 
�� , �
 , and �� . Various methods have been proposed for
tuning these parameters, particularly for DC motors [14-19]. 
However, constructing an accurate transfer function proves 
challenging when dealing with Planet motors utilized in 
robotic applications due to insufficient motor parameters. 
Moreover, the transition from simulation to real-world control 
environments presents significant disparities. Consequently, 
we conducted experiments to calibrate the PID controller 
using empirical robot operation data. In the first approach, we 
employed system identification techniques. The input dataset 
comprises 3945 voltage samples provided to the motor, 
ranging from 0V to 10V, with a sampling time of 0.025 
seconds. The output dataset consists of 3945 speed samples 
measured in revolutions per minute (rpm), ranging from 0 rpm 
to 251.12 rpm. Leveraging MATLAB's system identification 
tool, we derived the transfer function, yielding a stability 
enforced of 74.17%: 

���� � 35.19� 	 2.859
�� 	 1.382� 	 0.1046

Utilize MATLAB's PID tuner tool to determine PID controller 
parameters. It is essential to configure the Saturation block 
following the PID controller block to constrain the input 
voltage within the range of 0 V to 10 V. The obtained results 
are as follows: ��� = 0.058, �
� = 0.149, ��� = -0.0002.

In the second approach, a trial and error methodology is 
employed. Initially, the PID controller parameters are 
assigned small values, specifically ��  = �
  = ��  = 0.1.
Subsequent adjustments are made through experimental 
iterations conducted on the robot. These adjustments involve 

varying the ��  value while holding �
  and ��  constant and
observing the resultant output response for refinement. Once 
an appropriate ��  value is determined, it is updated in the
controller, with �� maintained unchanged while adjusting �
.
Eventually, the �
  value is updated, and ��  is adjusted
accordingly. The PID controller parameters obtained through 
this trial and error method are as follows: ���  = 0.2, �
�  =
0.0008 and  ��� = 0.2.

Fig. 3. Comparison of output response of PID controllers calibrated by trial 
and error method and system identification method. 

Two calibrated PID controllers were tested. The desired 
motor speed was set to 50 rpm, and the actual motor speed was 
collected using the two controllers with a sampling time of 
0.025s. The PID controller parameters were tuned using the 
trial and error method for better efficiency (Fig. 3). Therefore, 
the parameter set was selected according to this method. 

IV. EXPERIMENTAL TRACK DESIGN

(a) 

(b) 

(c) 

Fig. 4. The outdoor robot test track: (a) robot experimental track during the 
day; (b) robot experimental track during the day; (c) robot experimental road 
at night. 
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An outdoor robot test track was meticulously designed for 
experimentation purposes. The track consisted of a two-lane 
elliptical road, each lane measuring 0.8 m in width. The total 
length of the road spanned 110 m, and distinct white road 
markings, 10 cm in width, were painted along its surface (Fig. 
4a). Two additional areas with pedestrian markings were 
arranged to create more realistic situations (Fig. 4b). During 
night testing conditions, a 100W street light would illuminate 
the road. Under these conditions, the area marked with the 
number “1” is the most dimly lit area of the test track (Fig. 4c). 

V. LANE DETECTION WITH OPENCV 

Several lane detection algorithms utilizing OpenCV have 
been introduced. In this study, we synthesize these algorithms 
[8-12] and propose a lane detection algorithm that uses 
OpenCV with parameters optimized based on the device status 
and testing environment. Initially, images captured by the 
camera are converted to grayscale format to expedite 
processing compared to color images with three channels (red, 
green, and blue). To mitigate noise, a Gaussian filter is applied 
to the image: 

���, !� � �"#$%&'%
�(% )                             �2� 

The subsequent step involves threshold filtering of the 
image. The threshold is established in daytime conditions with 
ample illumination at * = 200. Conversely, under low-light 
conditions at night, the threshold is adjusted to * = 100: 

���, !� � +1, ,- -��, !� . *
0, ,- -��, !� / *                      �3� 

where -��, !�  presents the image before filtering, ���, !� 
represents the image after filtering. 

Before delineating the edges of the road markings, the 
noise surrounding the object within the image is eliminated, 
thereby smoothing the edges through the erosion operation. 
Subsequently, the dilate operation is employed to accentuate 
the edges of the road markings. A contour-finding algorithm 
was utilized to localize road markings. To control the robot's 
movement within the correct lane, the method of comparing 
the frame's center with the lane's center was employed. The 
robot was required to maneuver such that the frame's center 
coincided with the lane's center. Let ��  and ��  denote the 
centers of the two-lane markings, respectively. The center of 
the lane could be determined as follows: 

�0 � ��� 	 ���
2                                     �4� 

To determine whether the robot was deviating towards the 
left or right side of the lane, the deviation ratio �0 , 
representing the robot's displacement relative to the lane's 
center, was calculated as follows: 

�0 � �0
640                                          �5� 

where 640 is the X-axis coordinate value of the center of the 
frame. The speed deviation to be adjusted �1 is determined: 

�1 � ��0 2 1� 3 15                              �6� 
where 15 is the conversion value from the deviation ratio �0 
to speed deviation �1 . If the initial set value of the robot's 
speed is 45, then the right wheel speed 46  and the left wheel 
speed 47  will be recalculated as follows: 

46 � 45 2 �1
47 � 45 	 �1

                                     �7� 

The basic steps of the lane detection algorithm using OpenCV 
are shown in Fig. 5. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5. The basic steps of the lane detection algorithm using OpenCV: (a)  
Gaussian filter; (b) threshold filtering; (c) erode operator; (d) dilate operator; 
(e) find the contours of the road markings. 

VI. LANE DETECTION WITH CNN 

Recent studies have demonstrated significant 
advancements in applying CNNs for autonomous vehicles. 
Numerous CNN models have been developed successfully for 
lane detection in mobile robots. However, the majority of 
results have been obtained through simulation. Although some 
experimental results have been achieved using robots 
equipped with Raspberry Pi microcontrollers, these 
experiments have been limited to steering angle prediction 
without incorporating motor speed control. Additionally, the 
structural details of the proposed CNN models are often 
inadequately reported [1-7]. One study [20] proposes a CNN 
architecture based on Nvidia's model, consisting of nine 
layers: five convolutional layers, three densely connected 
layers, and one output layer. This model employs the 
Exponential Linear Unit (ELU) activation function and the 
Adam optimizer. When tested on a robot using a Raspberry Pi 
3 Model B+, the model demonstrated acceptable performance 
in steering angle prediction. Another study [21] introduces an 
architecture based on the LeNet CNN, comprising one input 
layer, six interleaved layers (including Convolutional, 
Subsampling, and Fully Connected layers), and one output 
layer, utilizing the Sigmoid activation function. This 
architecture is intended for implementation on a robot using a 
Raspberry Pi 3B+ microcontroller and a PID controller. 
However, experimental results have not yet been reported. A 
further study [22] presents a CNN architecture with eighteen 
layers, including one input layer, six convolutional layers, four 
fully connected layers, several auxiliary layers, and one output 
layer, employing the Rectified Linear Unit (ReLU) activation 
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function. This model is also proposed for use on a robot with 
a Raspberry Pi 3B+ microcontroller and a PID controller, 
though experimental validation is still pending.  

A. Design a CNN Model 

The proposed CNN architecture comprises one input 
layer, five convolutional layers, one flatten layer, three fully 
connected layers, and one output layer. The model begins with 
a series of convolutional layers, specifically a Conv2D layer 
with 24 filters, a kernel size of 5 x 5, a stride of 2 x 2, and an 
Exponential Linear Unit (ELU) activation function applied to 
the input shape of 66 x 200 x 3; a Conv2D layer with 36 filters, 
a kernel size of 5 x 5, a stride of 2 x 2, and an ELU activation 
function; a Conv2D layer with 48 filters, a kernel size of 5 x 
5, a stride of 2 x 2, and an ELU activation function; two 
successive Conv2D layers, each with 64 filters, a kernel size 
of 3x3, and an ELU activation function. Following the 
convolutional layers, the network includes a flatten layer to 
convert the 2D matrix data to a 1D vector. This is followed by 
three densely connected (fully connected) layers with 100, 50, 
and 15 units, each utilizing the ELU activation function. The 
final layer is dense with a single unit and designed for 
regression output. The model is compiled using the Adam 
optimizer with a learning rate of 0.0001 and employs the Mean 
Squared Error (MSE) loss function. This architecture aims to 
provide robust feature extraction and regression capabilities 
suitable for autonomous vehicles' steering angle and speed 
prediction tasks. The architecture will be implemented on an 
Intel Core i5-1135G7 processor, running two parallel models 
to predict the steering angle and the robot's speed. The 
architecture of the proposed CNN model is shown in Table I. 

TABLE I. THE ARCHITECTURE OF THE PROPOSED CNN MODEL 

Layer (Type) Output Shape Parameters 

Input (66, 200, 3) 0 

Conv1 (f=5,s=2) (31, 98, 24) 1,824 

Conv2 (f=5,s=2) (14, 47, 36) 21,636 

Conv3 (f=5,s=2) (5, 22, 48) 43,248 

Conv4 (f=3,s=1) (3, 20, 64) 27,712 

Conv5 (f=3,s=1) (1, 18, 64) 36,928 

Flatten 1152 0 

Fully connected 100 115,300 

Fully connected 50 5,050 

Fully connected 15 765 

Output 1 0 

Total 252,463 

B. Data Collection and Preparation 

For road data collection, a gamepad is utilized to maneuver 
the robot within the right lane while concurrently capturing 
corresponding images, speed, and steering angle data using 
the Hikvision DS-U02 camera. The dataset comprises 20,000 
distinct images, each with dimensions of 1280 x 720 pixels. In 
conjunction with applying deep learning models, data 
augmentation techniques enhance the training dataset by 
randomly transforming existing samples. This augmentation 
strategy serves to expand the training set size and mitigate 
overfitting. Common transformations include zoom, 
horizontal flip, brightness adjustment, random shadow 

addition, and height and width shifts. Additionally, Pixel-wise 
Affine Normalization (PAN), a preprocessing technique, is 
implemented to uniformly rebalance pixel values across the 
entire image, mitigating unwanted variations and enhancing 
the model's generalization capabilities. To facilitate the 
application of the proposed CNN model, additional 
preprocessing steps, such as resizing each image to 66 x 200 
pixels, are performed (Fig. 6). All these techniques are 
executed using the OpenCV library and other Python libraries. 

Fig. 6. Data collection. 

C. Model Training 

Fig. 7. The training error rate of the steering angle prediction. 

Fig. 8. The training error rate of the speed prediction. 

The proposed CNN model requires training with the 
collected data. The input data, which consists of the collected 
and preprocessed images, is partitioned into an 80:20 ratio, 
with 80% allocated for model training and the remaining 20% 
for validation purposes. The CNN model is trained for two 
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tasks: steering angle prediction and speed prediction. This 
dual-task approach enhances the robot's flexibility and 
performance during experiments. For the steering angle 
prediction model, training requires approximately 15 minutes 
for ten iterations. In contrast, training the speed prediction 
model takes approximately 45 minutes for 30 iterations. The 
steering angle values range from -1 to 1, with the loss function 
converging to a minimum value of around 0.1 (Fig. 7). 
Additionally, at a straight-line speed of 60 rpm and 30 rpm on 
curves, the loss function achieves its minimum value of 
approximately 10 (Fig. 8). 

VII. EXPERIMENTAL RESULTS

Experiments were conducted on the proposed robot along 
a designated experimental route. The OpenCV library was 
used to control the robot for lane-following, while the CNN 
model was employed to predict steering angles and speed. 
These computations were performed using an Intel Core i5-
1135G7 processor. A PID controller for robot speed control 
was also implemented on the Arduino UNO microcontroller. 

A. In Daylight Conditions 

One limitation of OpenCV is that the robot could only 
move at a preset speed. This limitation precluded the robot 
from decelerating at road corners, deviating from its lane. The 
experimental process demonstrated that the robot could only 
move stably at a maximum speed of 30 rpm under daytime 
conditions. In contrast, employing a CNN model enabled the 
robot to automatically adjust its speed on different road 
segments, increasing speed on straight roads and decreasing 
speed on corners. Fig. 9 illustrates the change in the steering 
angle and speed of the robot when utilizing the CNN model. 
It can be observed that the minimum speed of the robot was 
approximately 30 rpm, while the maximum speed was around 
60 rpm. This adaptive adjustment allowed the robot to 
maneuver more flexibly and accurately than when using 
OpenCV. 

Fig. 9. Predicted steering angle and predicted speed by CNN. 

Under well-lit conditions, experimental findings 
demonstrate that utilizing the CNN results in more stable 
movement of the robot within the correct lane than when 
employing OpenCV. Moreover, pedestrian crossings, 
obscured road markings, and uneven road surfaces may cause 
the robot to deviate from the lane when using OpenCV. Fig. 
10 compares the robot's steering angle between OpenCV and 
the CNN model, indicating superior stability achieved when 
utilizing the CNN model. Furthermore, the robot tends to drift 
towards the right side of the lane using the CNN model, 
whereas it maintains movement around the lane center with 
OpenCV. Fig. 11 illustrates a case where a robot utilizing 
OpenCV experienced difficulty recognizing the lane when 
passing through an area with pedestrian crossings. It can be 

observed that, at the eighty-fifth second, the robot failed to 
detect the lane correctly and deviated from it. In contrast, 
when employing CNN, the robot accurately predicted the lane 
in the area with pedestrian crossings and continued to move 
within the correct lane. 

Fig. 10. Comparison of steering angle when using CNN model and OpenCV 
in daylight conditions. 

Fig. 11. Comparison of deviation in pixels when using CNN model and 
OpenCV in daylight conditions. 

B. In Nightlight Conditions 

The robot was tested under night conditions, illuminated 
by 100W street lights. When employing OpenCV, adjusting 
the filtering threshold from *  = 200 to *  = 100 became
necessary. In general, both the CNN model and OpenCV 
encountered difficulties under these environmental 
conditions. In most cases, neither the CNN model nor 
OpenCV could control the robot to move within the correct 
lane throughout one lap of the 110m test track. The robot lost 
control in the dimly lit area of the road (the area marked with 
number 1 in Figure 4c). However, the CNN model still 
demonstrated an advantage over OpenCV.  

Fig. 12. Comparison of eccentricity in pixels when using CNN model and 
OpenCV in nightlight conditions. 

Fig. 12 presents the deviation observed when using the CNN 
model and OpenCV. The robot utilizing CNN could move 
within the correct lane for a considerable distance, only losing 
control at the one hundred and tenth second when the robot 
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entered the minor illuminated area of the road. Meanwhile, the 
robot employing OpenCV would move into the wrong lane at 
the seventy-fifth second. 

VIII. CONCLUSIONS

We fabricated a wheeled mobile robot with a differential 
drive system and a PID control scheme optimized through a 
trial-and-error approach. We have synthesized and proposed 
control methodologies utilizing OpenCV and the proposed 
CNN model to enable lane-tracking capabilities. Experiments 
were conducted on a pre-designed experimental track under 
varied outdoor lighting conditions. The results confirm 
previous studies that The CNN model excels in lane 
recognition for autonomous robots, particularly in challenging 
conditions involving lighting interference or image noise due 
to pedestrian or unclear road markings. 

It needs to be further discussed that although the CNN 
model shows superiority, using OpenCV still has significant 
advantages. CNN models are beneficial in complex conditions 
such as lighting noise, shadows, and curves. The CNN model 
can also generalize and recognize better in various situations 
after training on a large and diverse dataset. However, the 
CNN model has notable disadvantages, including the 
requirement for powerful hardware and substantial 
computational resources for training and deployment. 
Building a high-quality and extensive dataset is also expensive 
and time-consuming. Compared to the CNN model, OpenCV 
results in lower accuracy, especially under complex noise 
conditions. OpenCV detects features manually, limiting its 
generalization ability and linking it to specific environmental 
conditions. Nevertheless, OpenCV has significant advantages, 
such as not requiring powerful hardware or large computing 
capacity, making it more suitable for real-time applications. 
Furthermore, OpenCV does not require training data, 
simplifying deployment. These advantages make OpenCV 
ideal for certain types of mobile robots, such as Automatic 
Guided Vehicles (AGVs) operating in fixed environments or 
robots used for educational purposes. 
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