
Autonomous robot using computer vision with CNN
and OpenCV: an experimental comparison

Duong Dinh Tu*
Department of Automatic Control

Vinh University
Nghean, Vietnam

duongdinhtu@vinhuni.edu.vn
*Corresponding author

Mai The Anh
Department of Automatic Control

Vinh University
Nghean, Vietnam

anhmt@vinhuni.edu.vn

Ho Sy Phuong
Department of Automatic Control

Vinh University
Nghean, Vietnam

hophuong@vinhuni.edu.vn

Nguyen Xuan Hung
Department of Automatic Control

Vinh University
Nghean, Vietnam

xuanhung19@outlook.com.vn

Dang Thai Son
Institute of ET

Vinh University
Nghean, Vietnam

sondt@vinhuni.edu.vn

Tran Huy Hoang
Department of Automatic Control

Vinh University
Nghean, Vietnam

tranhuyhoang02022002@gmail.com

Abstract — Various machine learning and artificial

intelligence applications have gained prominence, propelled by

recent technological advancements. Among these applications,

autonomous robots stand out as particularly significant. Their

integration is anticipated to yield substantial and

transformative impacts on society. Current computer vision and

deep learning research has been instrumental in developing

automated driving systems. Lane-keeping, a critical aspect of

autonomous vehicles, has been extensively studied using

traditional computer vision techniques and novel deep learning

and artificial intelligence models. This study details the design

and fabrication of a mobile robot equipped with differential

wheels and the development of a PID controller for the robot. It

also presents the implementation of OpenCV and CNN models

to enable the robot to follow a lane. Experiments were conducted

in environments with varying lighting conditions. The

experimental results demonstrate the superior effectiveness of

the proposed CNN model.

Keywords— Autonomous robot, Convolutional Neural

Network, OpenCV, computer vision

I. INTRODUCTION

Autonomous robots have experienced significant
advancements in recent years due to the integration of
computer vision and artificial intelligence techniques.
Numerous methods and models have been researched and
developed for lane tracking, with Convolutional Neural
Networks (CNNs) particularly prominent. Numerous studies
[1-7] have explored the application of the CNN architectures
in self-driving cars. These investigations utilize Raspberry Pi
microprocessors in conjunction with Pi cameras to collect
road data, with CNNs providing predictions for steering
angles to facilitate lane control. Most of these studies highlight
the superiority of CNNs in robot control based on computer
vision. Overall, CNN models demonstrate powerful, flexible,
and automatic computational capabilities. However, they are
limited by the need for high-quality datasets and substantial
computational resources, which can hinder real-time
performance.

In contrast, traditional techniques, such as those
employing the OpenCV library, still offer significant
advantages. These techniques generally require fewer
computing resources, deliver high real-time performance, and
are suitable for embedded systems. However, they are
constrained by predefined rules. Studies [8-12] that rely on
traditional image processing techniques use OpenCV libraries
for lane detection and navigation, underscoring the enduring

utility of these methods. For instance, one article [8]
emphasizes the importance of traditional computer vision
techniques in autonomous robotic systems. Additionally, a
report [13] integrates image processing with OpenCV and
CNN algorithms to detect road damage.

In this study, we design and fabricate a differential
wheeled robot and develop a PID controller. We then build
and experiment with both OpenCV and CNN models to enable
the robot to follow lanes under different conditions. We aim
to elucidate the advantages of CNN models and discuss the
challenges associated with using OpenCV and CNN for lane
tracking. The block diagram depicting the architecture of the
differential drive-wheeled mobile robot is illustrated in Fig. 1.

Camera OpenCV/CNN

Steering

Speed

Speed left

Speed right

INTEL CORE I5-1135G7 PROCESSOR

PID Driver Left motor

Encoder

PID Driver Right motor

Encoder

ARDUINO UNO

Fig. 1. Block diagram of differential drive wheeled mobile robot.

II. HARDWARE DESIGN AND FABRICATION

Initially, the differential drive-wheeled mobile robot
(DDWMR) design was executed using SolidWorks software.
Fig. 2a depicts the 3D rendering of the robot. Subsequently,
equipment selection and hardware fabrication ensued. The
robot frame comprises two 1cm thick wooden panels,
assembled with 1cm diameter screws, resulting in a maximum
frame size of 50cm x 41cm x 13cm. The wheel system
encompasses two differential drive wheels, each boasting a
diameter of 19 cm, alongside a guide wheel with a diameter of
7.5 cm. To ensure proper alignment, cushioning materials
were employed during wheel installation, maintaining the
robot frame parallel to the ground. Providing movement for
the robot are two Planet motors equipped with encoders, each
weighing 450g and operating at a 12V voltage source, 320
rpm decelerated speed, and 30W capacity, featuring encoders
with 12 pulses and two channels (A, B). Providing the
requisite power supply are two Globe batteries weighing
1.45kg each, with a voltage of 12V. The robot's control system
integrates an Arduino UNO microcontroller and two
BTS7960 motor control modules. For implementing computer
vision algorithms, an Intel Core i5-1135G7 processor with a
speed of 2.4 GHz and 8GB of internal memory is used. A
Hikvision DS-U02 camera, featuring a 2MP CMOS sensor
with a resolution of 1920 x 1080, is mounted on a shaped
aluminum bar measuring 2cm x 2cm, positioned at 77cm

979-8-3503-7979-2/24/$31.00 ©2024 IEEE
881

above the ground. The overall weight of the robot totals
11.78kg, with the completed assembly depicted in Fig. 2b.

(a) (b)

Fig. 2. (a) 3D robot drawing on Solidworks 2021 software; (b) image of the
completed robot.

III. DESIGN A PID CONTROLLER

We use a PID controller to control the robot's speed. This
is the most used controller in robotics and industry thanks to
its simple structure, ease of implementation in simulation, and
ease of hardware implementation. The mathematical model of
the PID controller is expressed as follows:

� � ������ 	 �
 � ������

�
	 ��

�����
�� �1�

where the variable �� is the proportional constant, the
variable �
 is the integral constant, and the variable �� is the
derivative constant. The primary challenge in implementing a
PID controller lies in appropriately adjusting the parameters
�� , �
 , and �� . Various methods have been proposed for
tuning these parameters, particularly for DC motors [14-19].
However, constructing an accurate transfer function proves
challenging when dealing with Planet motors utilized in
robotic applications due to insufficient motor parameters.
Moreover, the transition from simulation to real-world control
environments presents significant disparities. Consequently,
we conducted experiments to calibrate the PID controller
using empirical robot operation data. In the first approach, we
employed system identification techniques. The input dataset
comprises 3945 voltage samples provided to the motor,
ranging from 0V to 10V, with a sampling time of 0.025
seconds. The output dataset consists of 3945 speed samples
measured in revolutions per minute (rpm), ranging from 0 rpm
to 251.12 rpm. Leveraging MATLAB's system identification
tool, we derived the transfer function, yielding a stability
enforced of 74.17%:

���� � 35.19� 	 2.859
�� 	 1.382� 	 0.1046

Utilize MATLAB's PID tuner tool to determine PID controller
parameters. It is essential to configure the Saturation block
following the PID controller block to constrain the input
voltage within the range of 0 V to 10 V. The obtained results
are as follows: ��� = 0.058, �
� = 0.149, ��� = -0.0002.

In the second approach, a trial and error methodology is
employed. Initially, the PID controller parameters are
assigned small values, specifically �� = �
 = �� = 0.1.
Subsequent adjustments are made through experimental
iterations conducted on the robot. These adjustments involve

varying the �� value while holding �
 and �� constant and
observing the resultant output response for refinement. Once
an appropriate �� value is determined, it is updated in the
controller, with �� maintained unchanged while adjusting �
.
Eventually, the �
 value is updated, and �� is adjusted
accordingly. The PID controller parameters obtained through
this trial and error method are as follows: ��� = 0.2, �
� =
0.0008 and ��� = 0.2.

Fig. 3. Comparison of output response of PID controllers calibrated by trial
and error method and system identification method.

Two calibrated PID controllers were tested. The desired
motor speed was set to 50 rpm, and the actual motor speed was
collected using the two controllers with a sampling time of
0.025s. The PID controller parameters were tuned using the
trial and error method for better efficiency (Fig. 3). Therefore,
the parameter set was selected according to this method.

IV. EXPERIMENTAL TRACK DESIGN

(a)

(b)

(c)

Fig. 4. The outdoor robot test track: (a) robot experimental track during the
day; (b) robot experimental track during the day; (c) robot experimental road
at night.

882

An outdoor robot test track was meticulously designed for
experimentation purposes. The track consisted of a two-lane
elliptical road, each lane measuring 0.8 m in width. The total
length of the road spanned 110 m, and distinct white road
markings, 10 cm in width, were painted along its surface (Fig.
4a). Two additional areas with pedestrian markings were
arranged to create more realistic situations (Fig. 4b). During
night testing conditions, a 100W street light would illuminate
the road. Under these conditions, the area marked with the
number “1” is the most dimly lit area of the test track (Fig. 4c).

V. LANE DETECTION WITH OPENCV

Several lane detection algorithms utilizing OpenCV have
been introduced. In this study, we synthesize these algorithms
[8-12] and propose a lane detection algorithm that uses
OpenCV with parameters optimized based on the device status
and testing environment. Initially, images captured by the
camera are converted to grayscale format to expedite
processing compared to color images with three channels (red,
green, and blue). To mitigate noise, a Gaussian filter is applied
to the image:

���, !� � �"#$%&'%
�(%) �2�

The subsequent step involves threshold filtering of the
image. The threshold is established in daytime conditions with
ample illumination at * = 200. Conversely, under low-light
conditions at night, the threshold is adjusted to * = 100:

���, !� � +1, ,- -��, !� . *
0, ,- -��, !� / * �3�

where -��, !� presents the image before filtering, ���, !�
represents the image after filtering.

Before delineating the edges of the road markings, the
noise surrounding the object within the image is eliminated,
thereby smoothing the edges through the erosion operation.
Subsequently, the dilate operation is employed to accentuate
the edges of the road markings. A contour-finding algorithm
was utilized to localize road markings. To control the robot's
movement within the correct lane, the method of comparing
the frame's center with the lane's center was employed. The
robot was required to maneuver such that the frame's center
coincided with the lane's center. Let �� and �� denote the
centers of the two-lane markings, respectively. The center of
the lane could be determined as follows:

�0 � ��� 	 ���
2 �4�

To determine whether the robot was deviating towards the
left or right side of the lane, the deviation ratio �0 ,
representing the robot's displacement relative to the lane's
center, was calculated as follows:

�0 � �0
640 �5�

where 640 is the X-axis coordinate value of the center of the
frame. The speed deviation to be adjusted �1 is determined:

�1 � ��0 2 1� 3 15 �6�
where 15 is the conversion value from the deviation ratio �0
to speed deviation �1 . If the initial set value of the robot's
speed is 45, then the right wheel speed 46 and the left wheel
speed 47 will be recalculated as follows:

46 � 45 2 �1
47 � 45 	 �1

 �7�

The basic steps of the lane detection algorithm using OpenCV
are shown in Fig. 5.

(a)

(b)

(c)

(d)

(e)

Fig. 5. The basic steps of the lane detection algorithm using OpenCV: (a)
Gaussian filter; (b) threshold filtering; (c) erode operator; (d) dilate operator;
(e) find the contours of the road markings.

VI. LANE DETECTION WITH CNN

Recent studies have demonstrated significant
advancements in applying CNNs for autonomous vehicles.
Numerous CNN models have been developed successfully for
lane detection in mobile robots. However, the majority of
results have been obtained through simulation. Although some
experimental results have been achieved using robots
equipped with Raspberry Pi microcontrollers, these
experiments have been limited to steering angle prediction
without incorporating motor speed control. Additionally, the
structural details of the proposed CNN models are often
inadequately reported [1-7]. One study [20] proposes a CNN
architecture based on Nvidia's model, consisting of nine
layers: five convolutional layers, three densely connected
layers, and one output layer. This model employs the
Exponential Linear Unit (ELU) activation function and the
Adam optimizer. When tested on a robot using a Raspberry Pi
3 Model B+, the model demonstrated acceptable performance
in steering angle prediction. Another study [21] introduces an
architecture based on the LeNet CNN, comprising one input
layer, six interleaved layers (including Convolutional,
Subsampling, and Fully Connected layers), and one output
layer, utilizing the Sigmoid activation function. This
architecture is intended for implementation on a robot using a
Raspberry Pi 3B+ microcontroller and a PID controller.
However, experimental results have not yet been reported. A
further study [22] presents a CNN architecture with eighteen
layers, including one input layer, six convolutional layers, four
fully connected layers, several auxiliary layers, and one output
layer, employing the Rectified Linear Unit (ReLU) activation

883

function. This model is also proposed for use on a robot with
a Raspberry Pi 3B+ microcontroller and a PID controller,
though experimental validation is still pending.

A. Design a CNN Model

The proposed CNN architecture comprises one input
layer, five convolutional layers, one flatten layer, three fully
connected layers, and one output layer. The model begins with
a series of convolutional layers, specifically a Conv2D layer
with 24 filters, a kernel size of 5 x 5, a stride of 2 x 2, and an
Exponential Linear Unit (ELU) activation function applied to
the input shape of 66 x 200 x 3; a Conv2D layer with 36 filters,
a kernel size of 5 x 5, a stride of 2 x 2, and an ELU activation
function; a Conv2D layer with 48 filters, a kernel size of 5 x
5, a stride of 2 x 2, and an ELU activation function; two
successive Conv2D layers, each with 64 filters, a kernel size
of 3x3, and an ELU activation function. Following the
convolutional layers, the network includes a flatten layer to
convert the 2D matrix data to a 1D vector. This is followed by
three densely connected (fully connected) layers with 100, 50,
and 15 units, each utilizing the ELU activation function. The
final layer is dense with a single unit and designed for
regression output. The model is compiled using the Adam
optimizer with a learning rate of 0.0001 and employs the Mean
Squared Error (MSE) loss function. This architecture aims to
provide robust feature extraction and regression capabilities
suitable for autonomous vehicles' steering angle and speed
prediction tasks. The architecture will be implemented on an
Intel Core i5-1135G7 processor, running two parallel models
to predict the steering angle and the robot's speed. The
architecture of the proposed CNN model is shown in Table I.

TABLE I. THE ARCHITECTURE OF THE PROPOSED CNN MODEL

Layer (Type) Output Shape Parameters

Input (66, 200, 3) 0

Conv1 (f=5,s=2) (31, 98, 24) 1,824

Conv2 (f=5,s=2) (14, 47, 36) 21,636

Conv3 (f=5,s=2) (5, 22, 48) 43,248

Conv4 (f=3,s=1) (3, 20, 64) 27,712

Conv5 (f=3,s=1) (1, 18, 64) 36,928

Flatten 1152 0

Fully connected 100 115,300

Fully connected 50 5,050

Fully connected 15 765

Output 1 0

Total 252,463

B. Data Collection and Preparation

For road data collection, a gamepad is utilized to maneuver
the robot within the right lane while concurrently capturing
corresponding images, speed, and steering angle data using
the Hikvision DS-U02 camera. The dataset comprises 20,000
distinct images, each with dimensions of 1280 x 720 pixels. In
conjunction with applying deep learning models, data
augmentation techniques enhance the training dataset by
randomly transforming existing samples. This augmentation
strategy serves to expand the training set size and mitigate
overfitting. Common transformations include zoom,
horizontal flip, brightness adjustment, random shadow

addition, and height and width shifts. Additionally, Pixel-wise
Affine Normalization (PAN), a preprocessing technique, is
implemented to uniformly rebalance pixel values across the
entire image, mitigating unwanted variations and enhancing
the model's generalization capabilities. To facilitate the
application of the proposed CNN model, additional
preprocessing steps, such as resizing each image to 66 x 200
pixels, are performed (Fig. 6). All these techniques are
executed using the OpenCV library and other Python libraries.

Fig. 6. Data collection.

C. Model Training

Fig. 7. The training error rate of the steering angle prediction.

Fig. 8. The training error rate of the speed prediction.

The proposed CNN model requires training with the
collected data. The input data, which consists of the collected
and preprocessed images, is partitioned into an 80:20 ratio,
with 80% allocated for model training and the remaining 20%
for validation purposes. The CNN model is trained for two

884

tasks: steering angle prediction and speed prediction. This
dual-task approach enhances the robot's flexibility and
performance during experiments. For the steering angle
prediction model, training requires approximately 15 minutes
for ten iterations. In contrast, training the speed prediction
model takes approximately 45 minutes for 30 iterations. The
steering angle values range from -1 to 1, with the loss function
converging to a minimum value of around 0.1 (Fig. 7).
Additionally, at a straight-line speed of 60 rpm and 30 rpm on
curves, the loss function achieves its minimum value of
approximately 10 (Fig. 8).

VII. EXPERIMENTAL RESULTS

Experiments were conducted on the proposed robot along
a designated experimental route. The OpenCV library was
used to control the robot for lane-following, while the CNN
model was employed to predict steering angles and speed.
These computations were performed using an Intel Core i5-
1135G7 processor. A PID controller for robot speed control
was also implemented on the Arduino UNO microcontroller.

A. In Daylight Conditions

One limitation of OpenCV is that the robot could only
move at a preset speed. This limitation precluded the robot
from decelerating at road corners, deviating from its lane. The
experimental process demonstrated that the robot could only
move stably at a maximum speed of 30 rpm under daytime
conditions. In contrast, employing a CNN model enabled the
robot to automatically adjust its speed on different road
segments, increasing speed on straight roads and decreasing
speed on corners. Fig. 9 illustrates the change in the steering
angle and speed of the robot when utilizing the CNN model.
It can be observed that the minimum speed of the robot was
approximately 30 rpm, while the maximum speed was around
60 rpm. This adaptive adjustment allowed the robot to
maneuver more flexibly and accurately than when using
OpenCV.

Fig. 9. Predicted steering angle and predicted speed by CNN.

Under well-lit conditions, experimental findings
demonstrate that utilizing the CNN results in more stable
movement of the robot within the correct lane than when
employing OpenCV. Moreover, pedestrian crossings,
obscured road markings, and uneven road surfaces may cause
the robot to deviate from the lane when using OpenCV. Fig.
10 compares the robot's steering angle between OpenCV and
the CNN model, indicating superior stability achieved when
utilizing the CNN model. Furthermore, the robot tends to drift
towards the right side of the lane using the CNN model,
whereas it maintains movement around the lane center with
OpenCV. Fig. 11 illustrates a case where a robot utilizing
OpenCV experienced difficulty recognizing the lane when
passing through an area with pedestrian crossings. It can be

observed that, at the eighty-fifth second, the robot failed to
detect the lane correctly and deviated from it. In contrast,
when employing CNN, the robot accurately predicted the lane
in the area with pedestrian crossings and continued to move
within the correct lane.

Fig. 10. Comparison of steering angle when using CNN model and OpenCV
in daylight conditions.

Fig. 11. Comparison of deviation in pixels when using CNN model and
OpenCV in daylight conditions.

B. In Nightlight Conditions

The robot was tested under night conditions, illuminated
by 100W street lights. When employing OpenCV, adjusting
the filtering threshold from * = 200 to * = 100 became
necessary. In general, both the CNN model and OpenCV
encountered difficulties under these environmental
conditions. In most cases, neither the CNN model nor
OpenCV could control the robot to move within the correct
lane throughout one lap of the 110m test track. The robot lost
control in the dimly lit area of the road (the area marked with
number 1 in Figure 4c). However, the CNN model still
demonstrated an advantage over OpenCV.

Fig. 12. Comparison of eccentricity in pixels when using CNN model and
OpenCV in nightlight conditions.

Fig. 12 presents the deviation observed when using the CNN
model and OpenCV. The robot utilizing CNN could move
within the correct lane for a considerable distance, only losing
control at the one hundred and tenth second when the robot

885

entered the minor illuminated area of the road. Meanwhile, the
robot employing OpenCV would move into the wrong lane at
the seventy-fifth second.

VIII. CONCLUSIONS

We fabricated a wheeled mobile robot with a differential
drive system and a PID control scheme optimized through a
trial-and-error approach. We have synthesized and proposed
control methodologies utilizing OpenCV and the proposed
CNN model to enable lane-tracking capabilities. Experiments
were conducted on a pre-designed experimental track under
varied outdoor lighting conditions. The results confirm
previous studies that The CNN model excels in lane
recognition for autonomous robots, particularly in challenging
conditions involving lighting interference or image noise due
to pedestrian or unclear road markings.

It needs to be further discussed that although the CNN
model shows superiority, using OpenCV still has significant
advantages. CNN models are beneficial in complex conditions
such as lighting noise, shadows, and curves. The CNN model
can also generalize and recognize better in various situations
after training on a large and diverse dataset. However, the
CNN model has notable disadvantages, including the
requirement for powerful hardware and substantial
computational resources for training and deployment.
Building a high-quality and extensive dataset is also expensive
and time-consuming. Compared to the CNN model, OpenCV
results in lower accuracy, especially under complex noise
conditions. OpenCV detects features manually, limiting its
generalization ability and linking it to specific environmental
conditions. Nevertheless, OpenCV has significant advantages,
such as not requiring powerful hardware or large computing
capacity, making it more suitable for real-time applications.
Furthermore, OpenCV does not require training data,
simplifying deployment. These advantages make OpenCV
ideal for certain types of mobile robots, such as Automatic
Guided Vehicles (AGVs) operating in fixed environments or
robots used for educational purposes.

REFERENCES

[1] Gupta, S., Upadhyay, D., Dubey, A.K. (2019). Self-Driving Car Using
Artificial Intelligence. In: Kumar, M., Pandey, R., Kumar, V. (eds)
Advances in Interdisciplinary Engineering. Lecture Notes in
Mechanical Engineering. Springer, Singapore.
https://doi.org/10.1007/978-981-13-6577-5_49.

[2] J. Kim, G. Lim, Y. Kim, B. Kim and C. Bae, "Deep Learning Algorithm
using Virtual Environment Data for Self-driving Car," 2019
International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), Okinawa, Japan, 2019, pp. 444-448, doi:
10.1109/ICAIIC.2019.8669037.

[3] Del Egio, J., Bergasa, L.M., Romera, E., Gómez Huélamo, C., Araluce,
J., Barea, R. (2019). Self-driving a Car in Simulation Through a CNN.
In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M.,
Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical
Agents. WAF 2018. Advances in Intelligent Systems and Computing,
vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-
5_3.

[4] I. Ahmad and K. Pothuganti, "Design & implementation of the real-
time autonomous car by using image processing & IoT," 2020 Third
International Conference on Smart Systems and Inventive Technology
(ICSSIT), Tirunelveli, India, 2020, pp. 107-113, doi:
10.1109/ICSSIT48917.2020.9214125.

[5] P. G. Chaitra, V. Deepthi, S. Gautami, H. M. Suraj and N. Kumar,
"Convolutional Neural Network based Working Model of Self Driving
Car - a Study," 2020 International Conference on Electronics and
Sustainable Communication Systems (ICESC), Coimbatore, India,
2020, pp. 645-650, doi: 10.1109/ICESC48915.2020.9155826.

[6] W. Dangskul, K. Phattaravatin, K. Rattanapom, Y. Kidjaidure, “Real-
time control using Convolution Neural Network for self-driving cars,”
2021 7th International Conference on Engineering, Applied Sciences
and Technology (ICEAST), 2021, pp. 125–128, doi:
10.1109/ICEAST52143.2021.9426255.

[7] R. Farkh, S. Alhuwaimel, S. Alzahrani, K. Al Jaloud and M. Tabrez
Quasim, "Deep learning control for autonomous robot," Computers,
Materials & Continua, vol. 72, no.2, pp. 2811–2824, 2022.

[8] J. B., S. V., V. Purohit, D. Oswald Tauro and V. J., "Design and
Development of Automated Intelligent Robot Using OpenCV," 2018
International Conference on Design Innovations for 3Cs Compute
Communicate Control (ICDI3C), Bangalore, India, 2018, pp. 92-96,
doi: 10.1109/ICDI3C.2018.00028.

[9] R. Murad, A. Jones and J. Straub, "Use of Computer Vision for White
Line Detection for Robotic Applications," 2019 IEEE International
Conference on Electro Information Technology (EIT), Brookings, SD,
USA, 2019, pp. 509-514, doi: 10.1109/EIT.2019.8834015.

[10] A. Ma’arif, A. A. Nuryono and Iswanto, "Vision-Based Line Following
Robot in Webots," 2020 FORTEI-International Conference on
Electrical Engineering (FORTEI-ICEE), Bandung, Indonesia, 2020,
pp. 24-28, doi: 10.1109/FORTEI-ICEE50915.2020.9249943.

[11] Wael Farag, “Real-Time Detection of Road Lane-Lines for
Autonomous Driving”, Recent Patents on Computer Science, 2019,
Vol. 12, No. 1, pp. 1–10. DOI:
10.2174/2213275912666190126095547.

[12] Karkera, T., Singh, C. Autonomous Bot Using Machine Learning and
Computer Vision. SN COMPUT. SCI. 2, 251 (2021).
https://doi.org/10.1007/s42979-021-00640-6.

[13] Sang-Hyun Lee, “A study on road damage detection for safe driving of
autonomous vehicles based on OpenCV and CNN”, international
Journal of Internet, Broadcasting and Communication Vol.14, No.2,
(2022), pp. 47–54. http://dx.doi.org/10.7236/IJIBC.2022.14.2.47.

[14] A. Ma’arif, Iswanto, N. M. Raharja, P. Aditya Rosyady, A. R. Cahya
Baswara and A. Anggari Nuryono, "Control of DC Motor Using
Proportional Integral Derivative (PID): Arduino Hardware
Implementation," 2020 2nd International Conference on Industrial
Electrical and Electronics (ICIEE), Lombok, Indonesia, 2020, pp. 74-
78, doi: 10.1109/ICIEE49813.2020.9277258.

[15] Borase, R.P., Maghade, D.K., Sondkar, S.Y. et al. A review of PID
control, tuning methods and applications. Int. J. Dynam. Control 9,
818–827 (2021). https://doi.org/10.1007/s40435-020-00665-4.

[16] P. Shah and R. Sekhar, "Closed Loop System Identification of a DC
Motor using Fractional Order Model," 2019 International Conference
on Mechatronics, Robotics and Systems Engineering (MoRSE), Bali,
Indonesia, 2019, pp. 69-74, doi:
10.1109/MoRSE48060.2019.8998744.

[17] Y. Naung, A. Schagin, H. L. Oo, K. Z. Ye and Z. M. Khaing,
"Implementation of data driven control system of DC motor by using
system identification process," 2018 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering
(EIConRus), Moscow and St. Petersburg, Russia, 2018, pp. 1801-1804,
doi: 10.1109/EIConRus.2018.8317455.

[18] N. Donjaroennon, S. Nuchkum and U. Leeton, "Mathematical model
construction of DC Motor by closed-loop system Identification
technique Using Matlab/Simulink," 2021 9th International Electrical
Engineering Congress (iEECON), Pattaya, Thailand, 2021, pp. 289-
292, doi: 10.1109/iEECON51072.2021.9440305.

[19] K. Sekarsari, T. Tata, Performance analysis of PID control in DC
Brushless motor using trial and error method, 2021 IOP Conf. Ser.:
Mater. Sci. Eng., 2021, DOI 10.1088/1757-899X/1098/4/042027.

[20] Chy MKA, Masum AKM, Sayeed KAM, Uddin MZ. Delicar: A Smart
Deep Learning Based Self Driving Product Delivery Car in Perspective
of Bangladesh. Sensors. 2022; 22(1):126.
https://doi.org/10.3390/s22010126.

[21] Farkh, R., Quasim, M.T., jaloud, K.A., Alhuwaimel, S., Siddiqui, S.T.
(2021). Computer vision-control-based CNN-PID for mobile robot.
Computers, Materials & Continua, 68(1), 1065-1079.
https://doi.org/10.32604/cmc.2021.016600.

[22] Farkh, R., Alhuwaimel, S., Alzahrani, S., Jaloud, K.A., Quasim, M.T.
(2022). Deep learning control for autonomous robot. Computers,
Materials & Continua, 72(2), 2811-2824.
https://doi.org/10.32604/cmc.2022.020259.

886

