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Abstract— This article introduces a fault-tolerant control 

scheme for a two-wheeled mobile robot. The focus of this model is 

to address the impact of faults within the actuators, a critical 

aspect that significantly impacts the robot's performance and 

operational efficiency. An observer is designed to monitor the 

dynamic state of the robot's system, allowing it to promptly 

identify and assess the actuator’s faults that may arise during its 

operation. Based on this data, the extent of the fault's influence on 

the overall system is estimated, providing essential information for 

subsequent control decisions. Analyzing and synthesizing control 

laws are built on mathematics and Lyapunov stability theory. The 

simulation is done by MATLAB-Simulink to validate the 

efficiency of the proposed control law, contributing valuable 

insights to the domain of robotics and control engineering. 

Keywords: WMR, Faults observer, Lyapunov stabilizer, mobile 

robot, PID. 

I. INTRODUCTION  

Ensuring the reliability and stability of a controlled system 
has become increasingly crucial due to the potential negative 
impacts of faults occurring on sensors, actuators, and other 
components. Such faults would lead to undesirable performance 
and even instability in the system. Fault-tolerant control (FTC) 
enables robots to maintain reliable operation across diverse 
working environments, effectively preventing work termination 
resulting from tolerable faults [1]. Fault-tolerant control 
strategies are approached for linear systems in [2,3,4]. However, 
dealing with various strong nonlinear properties of actual 
systems in practice, the study of fault-tolerant control for 
nonlinear systems is of practical significance. 

According to [5], wheeled mobile robots exhibit a 
nonlinearity multivariable nature and are characterized by strong 
interactions and time-varying parameters. Within the mobile 
robot system, the actuator stands as a component that is 
relatively susceptible to failure. Actuator faults can be classified 
into some types: failure actuator [7], stuck fault, partial loss of 
control effectiveness fault [8], and bias-actuator faults [9]. 

In addressing the issues of system performance degradation 
and instability resulting from the mentioned faults, several 
noteworthy fault-tolerant control methods targeting actuator 
faults have been introduced in works [10,11]. Among these 
methods, Adaptive Fault-Tolerant Control (AFTC) has been 

well-established as a practical approach to handling actuator 
faults and system uncertainties [12,13].  

Numerous researchers have integrated intelligent methods 
such as neural networks and fuzzy logic into FTC schemes for 
nonlinear systems [14, 15], as these approaches can identify 
unknown nonlinear characteristics [16]. The adaptive technique 
is a viable method for designing controllers to compensate for 
actuator faults [17], as it enables the estimation of unknown 
parameters at each instant and facilitates rapid adjustments of 
control gains in response to parameter changes [18]. 

Utilizing an estimator to acquire system state/fault 
information is a highly effective approach to ensure the control 
performance of a system in the presence of faults. In this article, 
the heart of our FTC system lies in the design faults observer 
and implementation of the controller. From the Lyapunov 
stability theory and the fault observer's inputs, we have proposed 
a control law to ensure that the robot can effectively react against 
the adverse effects of actuator faults. 

This research is expected to contribute valuable insights and 
solutions to specifically fault-tolerant and wheeled robot 
control. 

II. PROBLEM FORMULATION 

A. WMR Model 

The design of a nonholonomic mobile robot with two driven 
wheels could be described as the structure in Figure 1.

  

In Figure 1, C is the center of mass of the platform, 2R is the 
distance between two active wheels, and r is the radius of the 

 
Figure 1. Differential-drive mobile robot 



active wheel.  Two coordinate systems are used for mobile robot 
modeling and control: Inertial Frame{ }OXY , and Robot Frame 

{ }R R RO X Y . The θ is the orientation angle of the robot in the 

inertial reference system, the robot position in the inertial and 

robot frame are [ ]Tq x y θ= and [ ]TR r r rq x y θ= . 

A transformation matrix ( )Rot θ was used to convert 
between fixed and robot coordinate systems [19]: 

1( )   ( )
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and ,R Lφ φ& &  are the rotational velocities of the right and left 
wheels, respectively. The translational and angular speeds of the 
robot in robot frame obtained as: 
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Combining (1) and (2) results in the velocity relationship 
between two coordinates which is presented as follows: 
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The forward kinematic model of the robot can be described 
as follows: 
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According to [20] and [21], the dynamical form of the 
nonholonomic mobile robot with two driven wheels, represented 
by a nonlinear dynamic model, can be expressed using the Euler-
Lagrange formula as follows:  

( ) ( , ) ( ) ( ) ( )T
dM q q C q q q G q B q J qτ τ λ+ + + = +&& & &

 (5) 

With the implication that the WMR satisfies the conditions of 
non-slipping and pure rolling. The nonholonomic constraint is: 

( ) 0J q q =&  (6) 

Where q  is an n-dimensional vector, τ  is the r-

dimensional input vector, dτ  is the vector of impact noise and 

model bias noise, bounded: [   ]Td x yd d dθτ = , λ  is Lagrange 

constraint force product., ( )M q  is a positively definite 

symmetric matrix of size n x n;, ( ),C q q& is the centripetal and 

Coriolis matrix, ( )G q  is the gravitation vector, ( )B q  is input 

transformation matrix size n x r (r<n), ( )J q  is the matrix 

associated with nonholonomic constraints. 

In robot’s structure here, "C" coincides with the midpoint on 
the axis between the wheels, the gravitational force is neglected, 
wheel frictions are given to the system with the fault defined in 
the kinematic model, the disturbance value is added to the 
control signal of the actuator, m is the mass and I represent the 
moment inertia of the robot, we have:  
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The dynamic equation of the robot can be shown as: 

( ) ( ) ( )TM q q B q J qτ λ= +&&    (8) 

The Lagrange multipliers λ are not known, so we can be 

eliminated ( )TJ q λ via the ( )S q  matrix. 

Differential formula (4), we have : 

( ) ( ) ( ) ( )q S q V t S q V t= +& &&&    (9) 

 With (8), we can be rewrite (7) as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TM q S q V t M q S q V t B q J qτ λ+ = +&& (10) 

 Multiplying of both sides of Equation (10) with the 

transformation matrix ( )TS q , we have: 
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Herein  ( ) ( ) 0T TS q J q =    (12) 

So, (11) becomes: 
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Set: 1 1 2 2 1 2,  .u uτ τ τ τ= + = −  

The dynamics equation of the robot can be represented as 
follows: 

 
1 1

2 2

1 1 1
0

0

uv rm rm rm

uR R R

rI rI rI

τ

τω

   
       

= =       
−        

      

&

&
 (15) 

B. Faults model in Orbital tracking control 

With [ ]Tq x y θ= and [ ]TR r r rq x y θ=  are position 

in the inertial and robot frame, the robots satisfy the 
corresponding non-holonomic constraints. We define the 
tracking error model of the system as: 
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Differential formula (16): 

cos

sin
e e r e

q e e r e

re

x y v v

e y x v

ω θ

ω θ

ω ωθ

  − + 
   = = − +   
   −  

&

& &

&

  (17) 

The current velocities control input used for robot tracking 
is given as: 
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1 2 3, ,k k k  are positive gain values. 

In the scope of this article, we consider the actuator fault of 
the robot. In fact, the actuator's output can be expressed with 
the unknown constant actuator effectiveness factors.  
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Where: 1 2,    (0 1)i i iv vµ ω µ ω µ µ µ∆ = ∆ = < < < <  
 In this case, (17) will be changed. The current velocities 

control input in (18) will no longer be relevant. 
The error model of the system, when considering the faults, 

is presented as: 
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C. Fault Observer 

 Consider a nonlinear system of the form 
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ax t f x t g x t u g x t f t

y t h x t
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
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Where nx R∈ (state vector), mu R∈  (input), p
af R∈  

(faults).  

In [22], an observer was introduced to estimate the 
disturbance in equation (21) under the assumption that the 

system state x and input u are known, and 0af =& . With ( ( ))p x t  

and ( ( ))L x t  are the observer gains to be chosen, satisfying: 
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 The observer equations can be represented as follows: 
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Where pz R∈  is the observer state, ˆ ( )af t  is the estimation 

of the faults ( )af t .  

Rewrite (20) to form (21) by setting the control variable and 
defining corresponding state variables, we have: 
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Here: 
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According to [22], with system state ( )eq t , input ( )u t are 

known, and 0af =& . By choosing ( ( ))ep q t  and ( ( ))eL q t  
satisfying (22). An observer model (23) can be applying for (24). 

III. THE PROPOSED FAULT-TOLERANT CONTROLLER 

Based on the estimated value of errors affecting the actuator 
from the observer (23), the FTC is proposed to minimize the 
impact of faults on robot performance and ensure that the 
trajectory tracking problem is correct. There are two control 
loops in the controller: kinematic and dynamic control. The 
schematic structure of the controller is proposed, shown in 
Figure 2. 

 

A. Kinematic controller 

To track the desired trajectory for WMR under the impact of 
faults to the actuator, (20) will be considered. 

 
Figure 2. Structure of FTC 



The Lyapunov equation is selected as follows: 
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Derivation of (25) and from (20), we obtained: 
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 According to the Lyapunov stability theorem [23], for the 

system to be stable, 0V <& , it happens if and only if the 
condition (27) is met: 
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By the observer model (23), ˆ ˆˆ( ) [ ]Taf t v ω= ∆ ∆  is the 
estimation of actuator faults. So, the kinematic controller is 
selected by (28): 
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  (28) 

B. Dynamic controller 

The controller aims to design 1( )u t and 2 ( )u t , which create 

the forward speed v  and angular speeds ω  to asymptotically 
follow reference trajectories cv and cω  in (27). An SMC 

controller with PI-type sliding surface (SMC-PI) is proposed for 
the inner control loop.  

1) PID controller: 
The PID controller is a feedback control mechanism 

extensively applied across diverse engineering domains to 
regulate and stabilize systems effectively. Combining three 
constituents, the PID controller aims to provide a well-balanced 
response that achieves fast error correction and stable control. It 
helps dampen oscillations and overshooting by adjusting the 
control output based on the error change rate [24-26]. 

The PID controller is used: 
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2)  SMC-PI 
According to [27], PI-type of sliding surface is proposed for 

SMC, which describe follow as: 
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Derivation of (30): 
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From (15) we have: 
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 Combine (32) with (33), the equivalent control law can be 
obtained: 
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The switching control law is formulated as follows: 
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In this case, to mitigate chattering, the conventional sign 
function has been substituted with the continuous tanh function, 
which approximates the sign function, and the ability to 
approximate the sign function dependent on the steepness of the 
tanh function [28]. The switching control law can be edited: 
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From (34), (36), the SMC control law with PI type sliding 
surface is showed as: 
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C. Stability analysis 

Based on (37), the positive Lyapunov equation is selected as: 
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Combine (33) (31) (37), we have: 
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With control law was proposed in (39), (42) become: 
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System (15) with SMC (35) to be stable according to the 
Lyapunov stability theorem [23]. 

IV. NUMERICAL SIMULATION 

The wheel mobile robot with the structure in Figure 1 
controlled by the control algorithms proposed in section III has 
been tested in MATLAB-Simulink. The parameters used in the 
simulation showed in Table 1, Table 2. 

TABLE I.  WMR PARAMETERS  

Parameters Notation Values Unit 

The mass of robot m 15 kg 

Moment of inertia I 2.5 kgm2 

Radius of active wheel. r 0.1 m 

½ distance between two 
active wheels R 0.5 m 

TABLE II.  THE GAINS OF CONTROLLER 

Notation xk  yk  kθ  vk  kω  kσ  

Values 50 2 5 100 100 10 

Notation Pvk  Ivk  Dvk  Pk ω  Ik ω  Dk ω  

Values Used PID tuner application in the MATLAB/Simulink 

The reference trajectory was given as: 
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And initial state:  0 0 00,  0,  0x y θ= = = . 

The faults imposed on the actuator of the mobile robot is set 
at t>10s as: 0.45 ; 0.35v v ω ω∆ = ∆ = . 

 

 

 

 

 
 

Figure 3.  Faults and Estimate. 

 
Figure 4. Error tracking of controllers. 

 
Figure 5. Linear and Angular velocitys. 

 
Figure 6. Controller’s signal. 

 
Figure 7. Tracking follows the set trajectory  
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Figure 3 depicts the effectiveness of the fault observer's 
observation capabilities. In the event of a fault in the robot's 
actuator, the fault observer detects the fault and applies 
corrective measures within the controller. 

The system is subjected to faults when t>10s, as shown in 
Fig.7. The robot can flawlessly track the desired trajectory under 
the effect of actuator fault, and the tracking error quickly 
converges to zero (shown in Fig 4). Moreover, Figure 4 shows 
the performance and robustness of the SMC-PI-based fault-
tolerant controller, which is superior to others. 

Fig 5 also shows that the SMC-PI-based FTC is superior. 
The linear and angular velocities accelerate rapidly and stabilize 
when the robot moves to the reference trajectory. 

V. CONCLUSION 

The article focuses on constructing and validating a 
proposed the SMC-PI-based FTC for a two-wheel differential 
robot with considerations of the issues of faulty actuators. In 
order to minimize the impacts causes by the consequent errors 
of the system, a fault observer is designed to estimate and 
compensate for the errors in the controllers. The authors propose 
a fault-tolerant control law based on the flexible application of 
PID control with slip control and PI slip surface. Lyapunov 
stability theory and mathematical approach have been applied to 
prove the convergence and stability of the proposed control law. 
The simulation is done by MATLAB-Simulink to demonstrate 
the appropriateness of the proposed method and its effectiveness 
in tracking the trajectory of the proposed control law. 
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