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Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood
events. In this study, we proposed and validated three ensemble models based on the Best First Decision Tree
(BFT) and theBagging (Bagging-BFT), Decorate (Bagging-BFT), andRandomSubspace (RSS-BFT) ensemble learn-
ing techniques for an improved prediction of flood susceptibility in a spatially-explicitmanner. A total number of
126 historical flood events from the Nghe An Province (Vietnam)were connected to a set of 10 flood influencing
factors (slope, elevation, aspect, curvature, river density, distance from rivers, flow direction, geology, soil, and
land use) for generating the training and validation datasets. Themodels were validated via several performance
metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of
flood occurrences within the research area and predicting the probability of future flood events. Based on the
Area Under the receiver operating characteristic Curve (AUC), the ensemble Decorate-BFT model that achieved
an AUC value of 0.989 was identified as the superior model over the RSS-BFT (AUC = 0.982) and Bagging-BFT
(AUC = 0.967) models. A comparison between the performance of the models and the models previously re-
ported in the literature confirmed that our ensemblemodels provided a reliable estimate of flood susceptibilities
and their resulting susceptibilitymaps are trustful forflood earlywarning systems aswell as development ofmit-
igation plans.
© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

As one of the most perilous natural hazards, floods bring serious
damages to human property and life throughout the world. Floods ac-
count for tens of thousands of deaths and billions of dollars of economic
losses annually (Aerts et al., 2018; Ahmadalipour and Moradkhani,
2019). With respect to the location, source and driving factors, floods
are typically categorized into five different types, namely urban drain-
age, riverine flooding, ground failures, fluctuating lake levels, and
coastal flooding and erosion (Wright, 2008). As a usual types of riverine
flooding, flash floods appear once a considerable amount of water is
discharged in amatter of a severalminutes or hours (normally between
icle under the CC BY-NC-ND license
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two and five hours) of heavy rainfall. Flash floods also occur due to the
sudden collapse of glaciers or a dam failure (Wang et al., 2019a). Flash
floods are often characterized by a very high velocity that cause heavy
damages to human lives and properties (Ahmadalipour and
Moradkhani, 2019). The destructive impacts of flash floods are further
exacerbated by climate change (Bubeck and Thieken, 2018), highlight-
ing the importance of flood hazard and risk assessment and also identi-
fying the most susceptible areas (Tehrany et al., 2013). However, the
accurate prediction of future floods and identification of prone areas
are challenging tasks that require accurate spatial and temporal data
(Ouma and Tateishi, 2014) as well as robust predictive models (Bui
et al., 2019; Rahmati et al., 2019).

In general, current modeling approaches to develop flood predictive
models are categorized into three main categories, namely traditional
statistical analysis, rainfall-runoff models, and pattern recognition
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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approaches. Utilizing data pertaining to long-term recorded time-series
at gauged stations, statistical analysis is performed to develop the re-
gression models that enable spatial discharge predictions over time
(McCuen, 2016). Rainfall-runoff techniques which are typically classi-
fied into non-physically and physically-based models (Lee et al., 2019)
have to do with runoff estimation from rainfall. Both statistical analysis
and rainfall-runoff approaches need long-term data that often restrict
their application in practice (Zhou et al., 2019). Within the concept of
pattern recognition, machine learning methods have recently received
attention because of their ability to handle complicated relationships
between input variables and improve the quality of results (Bishop,
2006). Machine learning methods have been typically used under two
general modeling types, namely simple single modeling and hybrid en-
semble modeling (Choubin et al., 2019). The single applications of ma-
chine learning methods have recently upgraded to the hybrid
ensemble modeling that has proven to provide more robust predictive
models and more accurate estimations of future events (Jaafari et al.,
2019; Pham et al., 2019a; Zidane et al., 2019; Nhu et al., 2020a). In the
domain of flood modeling, the hybrid ensemble models include various
models, such as weights-of-evidence and support vector machine
(SVM) (Tehrany et al., 2014), frequency ratio and logistic regression
(Tehrany et al., 2013), extreme learning machine and a particle swarm
optimization (Bui et al., 2019), artificial neural network (ANN) and fire-
fly algorithm (Ngo et al., 2018). Other models include different combi-
nations of neuro-fuzzy with metaheuristic algorithms (Bui et al.,
2018), weights-of-evidence and decision trees classifier (Costache,
2019), and ensemble learning techniques and different base methods
(Costache and Tien Bui, 2019). Within these previous studies, the re-
searchers have acknowledged the efficiency of the hybrid ensemble
models to cope with the deficiencies of single models toward more re-
liable flood prediction. Therefore, we havemotivated to develop ensem-
ble flood predictive models that integrate Best First Decision Tree (BFT)
classifier with Bagging, Decorate, and Random Subspace ensemble
learning techniques for obtaining more accurate estimates of flash
flood susceptibilities than a single model.

To the best of our knowledge, this is the first application of such en-
semble models for flash flood modeling that seeks to (i) explore the ca-
pability of the ensemblemodeling approach to elucidate the underlying
patterns of flash floods, (ii) compare the utility of three ensemble
Fig. 1. Geographic locations of the resea
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learning techniques to improve the BFT classifier, and (iii) make a
more accurate prediction offlood susceptibilities compared to the single
BFT classifier. The development of these ensemble models is illustrated
by actual data from a flood-prone area in the Nghe An Province,
Vietnam. The performances of themodels are presented and compared.
Spatially explicit distribution maps of flash flood susceptibility are pro-
duced according to the results of each model and evaluated by several
performance metrics.

2. Research area and data used

2.1. Research area

Our research area encompasses an approximately 2827 km2 part of
the Nghe An Province, located in north-central Vietnam (Fig. 1). The al-
titude of this area varies from 77 to 1551 m and about 72% of the re-
search area has slopes varying from 10° to 30°. The characteristic of
the climate is subtropical monsoonal enjoying two unique seasons:
The wet season begins slowly in May, however, the accumulation of
rain does not exceed 150 mm/month before August. The middle of the
wet season is in September–October (> 400 mm/month), representing
60% to 70% of the annual precipitation. The dry season in January–April
records accumulations of rain of about 30–40mm/month. The research
area is known as a storm center in north-central of Vietnam, where re-
ceives heavy and extreme rainfalls during the year. Historical records in-
dicate that many regions of the Nghe An Province have experienced
severe flash floods during the years 2007, 2010, 2011, 2017, and 2018
that caused significant loss of human life and property. Therefore,
flash flood susceptibility mapping is important in this area for riskman-
agement and mitigating the consequences of floods.

2.2. Geospatial data

2.2.1. Historical floods
Knowledge of historical floods is essential to predict future floods

(Bui et al., 2019; Choubin et al., 2019; Darabi et al., 2019 ). In this
study, the spatial locations of 126 flash floods that have occurred in
the research area were obtained from the historical archives of the De-
partment of Natural Resources and Environment of the Nghe An
rch area and historical flash floods.



Fig. 2. Influencing factors used forflash flood susceptibilitymapping: (a) slope, (b) elevation, (c) curvature, (d) aspect, (e) river density, (f) distance from rivers, (g) flowdirection, (h) soil,
(i) land use and (j) geology.
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Province, and field investigations to generate an inventory map of his-
torical floods. These flood locations were allocated to two different
sets. One set includes 70% of data (88 floods), whichwas used to gener-
ate the training dataset, and the second set that consists of 30% remain-
ing data (38 floods) and was used to generate the validation dataset.
Along with the flood locations, 126 unflooded locations were sampled
from the research area's unflooded portions and used for generating
thefinal datasets. This led to the training and validation datasets that in-
clude 176 and 76 samples, respectively.
2.2.2. Influencing factors
Following a thorough review of the related literature (Marco and

Cayuela, 1994; Ouma and Tateishi, 2014; Destro et al., 2018; Costache
and Tien Bui, 2019; Darabi et al., 2019; Wang et al., 2019a, 2019b), in-
vestigating the characteristics of the floods that have occurred in the re-
search area, and conducting several field surveys, we identified slope,
elevation, aspect, curvature, river density, distance from rivers, flow di-
rection, geology, soil, and land use as the flood influencing factors
(Fig. 2). The topographic factors (i.e., elevation, curvature, slope, and as-
pect) were derived from a 10 m resolution digital elevation model
(DEM) that was obtained from the Ministry of Natural Resources and
Environment of Vietnam. The effect of topography factors on flood oc-
currences has been widely acknowledged in the literature. Since floods
are more probable to occur in low-elevated, flat, and convergence areas
(Sadler et al., 2018; Bui et al., 2019), we included the slope, elevation,
and curvature into the modeling process to analyze the effects of
these factors on future flood probability. We elected to use the aspect
factor for flood modeling because this factor is associated with the con-
vergence and directions ofwaterflowing (Bui et al., 2019). River density
that indicates the extent to which a watershed is drained by stream
channels is another factor of the probability of flooding (Chapi et al.,
2017). The landscapes with greater river density are more susceptible
tofloodoccurrence. Due to thedependency offlood events to the terres-
trial water storages, proximity to rivers affects flooding likelihood and
magnitude considerably. Flow direction indicates how the overland
flow is distributed over a watershed (Zhou et al., 2011) and is a key pa-
rameter when performing hydrological modeling for such flood predic-
tion. Soil and land-use types were also selected as influencing factors
because of their influence on the infiltration and runoff speed. The
Fig. 3. AUC values in (a) training and (b) validation phases. AUC: area under curve. The diagon
curve comes to the diagonal line, the worse the model performance.
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maps of soil (1:100,000 scale) and land-use (1:100,000 scale) types
were provided by the Department of Natural Resources and Environ-
ment of the Nghe An Province. The last factor used in this study was ge-
ology, which represents underlying rock types and affects the
infiltration and runoff in a watershed. The lithologymap of the research
area was obtained from the national geological and mineral resources
maps (1,100,000 scale).

3. Modeling methodology

3.1. Methods used

3.1.1. Frequency ratio
To explore the spatial relationship between the historical record of

flood events and each of the 10 influencing factors, we employed the
frequency ratio (FR) method. FR is a straightforward and widely used
statistical method for investigating the spatial relationships between a
phenomenon and its influencing factors. The higher the FR value, the
stronger the relationship between a phenomenon and a specific factor.
Mathematically, the FR method is expressed as (Jaafari et al., 2019):

FR ¼ Nij
Aij
=Nr
Ar

ð1Þ

where Nij represents the flood pixels number in the class i of the
influencing factor j, Aij represents the pixels number in the class i of
the influencing factor j. Nrand Ar are total pixels of floods and the total
pixels of the research area.

3.1.2. Bagging
Bootstrap aggregating, also termed Bagging, is one of the

first-introduced techniques for generating multiple sub-datasets and
combining different base classifiers (Breiman, 1996). Bagging has the
capability to decrease the classification variance toward improving the
performance of the ensemble model (Breiman, 1996). Using an initial
training dataset, Bagging generates n bootstrap subsets of which sizes
equal to the original training dataset. These bootstrap subsets, also
known as bootstrapped sub-datasets, are used to train a base classifier.
The outputs are then combined using the majority voting procedure
that can be expressed by:
al line represents points where sensitivity = 1-specificity (i.e., AUC = 0.5). The closer the



Fig. 4. Flash flood susceptibility maps.
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β xð Þ ¼ argmax
y∈ −1;1f g

X

b

δ sgn Cb xð Þð Þ;y ð2Þ

where δi, j is the Kronecker symbol, Cb(x) donates the constructed clas-
sifier, and y ∈ {−1,1} is the class labels (i.e., flood and unflood).
5

3.1.3. Decorate
Decorate is an ensemble learner developed originally by Melville and

Mooney (2005). As its name (Diverse Ensemble Creation byOppositional
Relabeling of Artificial Training Examples) suggests, this method pro-
duces various classifiers utilizing artificial training examples. The main



Fig. 5. Quantitative analysis of the flood susceptibility maps.
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idea about Decorate is the expansion of the initial training set through
usage of artificial training samples, which significantly differs from Bag-
ging that just utilize a given training set to produce several classifiers.
Using expanded training sets to train the base classifiers, Decorate offers
an innovative approach for developing effective ensemble models with
broad applications in the literature (Sun et al., 2015).

3.1.4. Random subspace (RSS)
RSS is an ensemble learning technique that uses a training process

based on random sampling from a set of factors to reduce their correla-
tions in an ensemble model (Barandiaran, 1998). Assuming each
6

training sample Mi (i = 1, …, n) in a flood training set M = (M1, M2,
…,Mn), a p-dimensional vectorKi= (Ki1,Ki2,…,Kin) of p influencing fac-
tors, a random selection r < p factors from the p-dimensional datasetM
results in an r-dimensional random subspace of the initial p-
dimensional feature space (Skurichina and Duin, 2002). Then, the base
classifiers are created according to the r-dimensional random subspace
and combined in a decision regulation based on a simple majority vote
(Eq. (2)). Similar to Bagging, RSS uses bootstrapping and aggregation
procedure. However, RSS bootstraps the feature space that differs
from Bagging bootstrapping the training samples in the Bagging tech-
nique (Tao et al., 2006).



Table 1
Spatial relationship between influencing factors and historical floods measured using the
FR method.

Factor Class No. of
class
pixels

No. of
flood
pixels

Class
pixels
(%)

Flood
pixels
(%)

FR

Soil type Rock mountain 134,378 0 2.86 0.00 0.00
Fine loamy to Coarse
loamy

559,852 48 11.91 40.00 3.36

Coarse loamy 168,722 3 3.59 2.50 0.70
Gravelly loamy 3,811,898 59 81.11 49.17 0.61
River 24,734 10 0.53 8.33 15.83

Land use Natural forest land 2,683,277 33 57.10 27.50 0.48
Planted forest land 590,296 19 12.56 15.83 1.26
Forest restoration land 244,230 1 5.20 0.83 0.16
Agriculture land 412,420 24 8.78 20.00 2.28
Settlement land 762,109 43 16.22 35.83 2.21

Slope
(degree)

0–10.1 997,434 73 21.22 60.83 2.87
10.1–18.3 1,294,705 32 27.55 26.67 0.97
18.3–25.0 1,278,205 10 27.20 8.33 0.31
25.9–34.7 849,799 5 18.08 4.17 0.23
34.7–80.47 281,829 0 6.00 0.00 0.00

Curvature Concave (< −0.05) 1,867,273 51 39.73 42.50 1.07
Flat (−0.05 to 0.05) 988,654 26 21.04 21.67 1.03
Convex (<0.05) 1,846,045 43 39.28 35.83 0.91

Elevation
(m)

77–279.3 1,152,317 83 24.52 69.17 2.82
279.3–487.4 1,141,579 34 24.29 28.33 1.17
487.4–695.5 1,288,408 3 27.42 2.50 0.09
695.5–961.4 742,113 0 15.79 0.00 0.00
961.4–1551 375,586 0 7.99 0.00 0.00

River
density
(km/km2)

0–0.155 2,018,386 0 42.95 0.00 0.00
0.155–0.441 595,327 1 12.67 0.83 0.07
0.441–0.671 1,038,188 28 22.09 23.33 1.06
0.671–0.963 745,565 84 15.86 70.00 4.41
0.963–1.585 302,118 7 6.43 5.83 0.91

Dis. from
rivers
(m)

0–100 181,317 52 3.86 43.33 11.23
100–200 178,135 29 3.79 24.17 6.38
200–300 177,309 25 3.77 20.83 5.52
300–400 175,688 7 3.74 5.83 1.56
400–500 172,177 1 3.66 0.83 0.23
>500 3,814,958 6 81.18 5.00 0.06

Aspect Flat 81,687 6 1.74 5.00 2.88
North 545,109 14 11.60 11.67 1.01
Northeast 636,404 14 13.54 11.67 0.86
East 633,862 10 13.49 8.33 0.62
Southeast 639,522 16 13.61 13.33 0.98
South 579,459 16 12.33 13.33 1.08
Southwest 606,583 26 12.91 21.67 1.68
West 492,965 10 10.49 8.33 0.79
Northwest 486,381 8 10.35 6.67 0.64

Flow
direction

1 837,549 32 17.82 26.67 1.50
2 497,948 11 10.60 9.17 0.87
4 750,544 33 15.97 27.50 1.72
8 447,207 6 9.52 5.00 0.53
16 591,869 17 12.59 14.17 1.12
32 380,841 5 8.10 4.17 0.51
64 654,173 11 13.92 9.17 0.66
128 543,810 5 11.57 4.17 0.36

Geological Eruption rock of Song
Ma complex

2,393,888 52 50.94 43.33 0.85

Limestone rock of La
Khe formation

55,584 2 1.18 1.67 1.41

Eruption rock of Huoi
Nhi complex

42 0 0.00 0.00 0.00

Limestone rock of
Muong Long formation

405,545 3 8.63 2.50 0.29

Metamorphic and
sedimentary rock of Bu
Khang formation

454,893 46 9.68 38.33 3.96

Eruption rock of
Muong Hinh complex

160,972 0 3.43 0.00 0.00

Granite rock of Dai Loc
complex

714,840 8 15.21 6.67 0.44

Sedimentary and
metamorphic of Song
Ca formation

450,233 9 9.58 7.50 0.78

Quaternary formation 65,975 0 1.40 0.00 0.00
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3.1.5. Best first decision tree (BFT)
BFT, developed by Shi (2007), is a supervised learning classifier for

the classification problems. In contrast to the standard decision tree
classifiers that expand nodes in a fixed depth-first order, in the BFT clas-
sifier, the best node is extended first. The best node refers to the node
whose split greatly decreases impurity between the nodes existing for
splitting (Shi, 2007). This advantage allows for exploring new pruning
methods that utilize cross-validation to select the number of expan-
sions. In general, BFT works in three main steps: (1) selecting an attri-
bute to put at the root node and create a few branches for this
attribute primarily based upon a number of parameters, (2) splitting
training samples into several subsets, one for every branch extending
from the root node, and (3) repeating this process and selecting the
best subset from all available subsets for expansions till all nodes are
pure or a predefined number of expansions is met.

3.1.6. Development of the ensemble models
To develop the ensemble flash-flood predictivemodels, we used the

BFT classifier as the base method and used each one of the ensemble
learning techniques to generate different training datasets for training
the base BFT classifier. We then evaluated the results using the perfor-
mance metrics. Each ensemble learning technique has a number of pa-
rameters, including the iteration number, percent of bag size, and
threshold of weights, which ought to be properly adjusted for the best
possible performance. In the present study, we manually adjusted the
parameters until the most robust and accurate predictive models were
obtained (Pham et al., 2019a, 2019b, 2020; Nguyen et al., 2020a,
2020b; Nhu et al., 2020b; Tran et al., 2020).

3.1.7. Performance metrics
In current study, we validated the performance of the developed

flood models using the positive predictive value, negative predictive
value, sensitivity, specificity, area under the receiver operating charac-
teristic curve (AUC), accuracy, root-mean-square error (RMSE), and
Kappa metrics. Further descriptions can be found in the literature
(Jaafari, 2018; Hong et al., 2019; Tran et al., 2020).

4. Results

4.1. Spatial relationship

The results of the FR method that measured and quantified the spa-
tial relationship between influencing factors and historical floods indi-
cated that the most flood-prone parts of our research area fall on river
soil type (FR = 15.83), distance from rivers of 0–300 m (FR = 11.23,
6.38, and 5.52), river density of 0.671–0.963 km/km2 (FR = 4.41), and
geology formation of metamorphic and sedimentary rock (FR = 3.96).
Conversely, the factor classes with FR = 0 were identified as the
flood-proof portions of the research area (Table 1).

4.2. Model performance

The BFT model and its derived ensemble models were developed
and validated using training and validation datasets. Based on the differ-
ent performance metrics, we found all models successful in identifying
the spatial pattern of flood susceptibilities (i.e., training performance)
within the research area. Chief among them was the Decorate-BFT
model that achieved the highest values of the PPV (97.73%), NPV
(100%), SST (100%), SPF (97.78%), ACC (98.86%), Kappa (0.977) metrics
and the lowestmagnitude of error (RMSE=0.174) (Table 2). According
to these results, the DBFT model correctly classified ~98% of all pixels in
flooded class, classified 100% of all pixels in unflooded class, classified
100% of the flooded pixels into the flooded class, classified ~98% of
unflooded pixels into the unflooded class, classified ~99% of all training
dataset pixels, which has an excellent agreement between the predicted
and detected floods (Kappa = 0.977).
7



Table 2
Training performance of the models.

Metric BBFT DBFT RSSBFT BFT

PPV (%) 95.45 97.73 93.18 95.45
NPV (%) 95.45 100.00 98.86 100.00
SST (%) 95.45 100.00 98.80 100.00
SPF (%) 95.45 97.78 93.55 95.65
ACC (%) 95.45 98.86 96.02 97.73
Kappa 0.909 0.977 0.921 0.954
RMSE 0.195 0.174 0.213 0.137
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In the case of predicting future floods (i.e., validation performance),
however, the BBFT and RSSBFT models had the highest performance
(Table 3). With the exception of RMSE (BBFT = 0.187; RSSBFT =
0.236), the othermetricswere identical for these twomodels. The single
BFT model with the highest magnitude of RMSE (0.259) and lowest
values of PPV (92.11%), NPV (94.74%), SST (94.59%), SPF (92.31%), ACC
(93.42%), and Kappa (0.868) was identified as the least effective
model to predict the future floods.

The overall model performance measured through the AUC metric
(Fig. 3) demonstrated that the DBFT model (AUCtraining = 0.996;
AUCvalidation = 0.989) was dominant over the other models. The
second-best model was RSSBFT that achieved AUC values of 0.996 and
0.982 in the training and validation phases, respectively.

4.3. Susceptibility maps

When the BFTmodel and its ensembles were approved with respect
to the training performance and their capability to predict future floods,
they were employed for estimating the flood susceptibility values for
the entire research area. After successful estimating the susceptibility
values, the values were categorized into five susceptibility categories,
i.e., very low, low, moderate, high, and very high, using the geometrical
intervals classification scheme (Fig. 4). Among thesemaps, the BFTmap
represents the greatest portion (78%) of the landscape as very low sus-
ceptibility to flooding (Fig. 5a). While a majority portion (~58%) of our
research area falls into very low susceptibility to flooding, regions of
high and very high susceptibility to flooding covered 6%–10.4% of the re-
search area. Despite the different performance of themodels in classify-
ing the research area to various levels of flood susceptibility, all four
models agreed that the low-lying regions alongside the rivers are the
most flood-prone portions of our research area.

Among the susceptibility classes the percentage of flood pixels var-
ied and ranged from 0% for the very low susceptibility classes of the
DBFT and RSSBFT models to 88.33% for the very high susceptibility
class of the BBFT model (Fig. 5b). Further, in each susceptibility map,
the very high susceptibility class has the greatest number of FR of the
flood pixels (Fig. 5c), followed by the high susceptibility, moderate sus-
ceptibility, low susceptibility, and very low susceptibility classes, re-
spectively, demonstrating the capability of the models to adequately
demarcating different levels of flood susceptibilities within our
research area.
Table 3
Validation performance of the models.

Metric BBFT DBFT RSSBFT BFT

PPV (%) 97.37 92.11 97.37 92.11
NPV (%) 97.37 97.37 97.37 94.74
SST (%) 97.37 97.22 97.37 94.59
SPF (%) 97.37 92.50 97.37 92.31
ACC (%) 97.37 94.74 97.37 93.42
Kappa 0.947 0.895 0.947 0.868
RMSE 0.187 0.236 0.230 0.259
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5. Discussion

Despite variousmodels that have been developed for differentflood-
prone areas around the world, accurate prediction of floods remains
challenging that calls for investigating new methods and approaches.
Here, we addressed this issue and evaluated the BFT classifier and its en-
semble models that were derived from combining this classifier with
three ensemble learning techniques. Our results showed that the Bag-
ging, Decorate, and RSS ensemble techniques effectively improved the
performance of the base BFT classifier and provided amore accurate es-
timate of the future floods compared to the single BFT classifier. Our
finding is in line with the previous works reported in the literature
that demonstrated the capability of the ensemble modeling approach
for handlingmanifold information inherited in earth science. For exam-
ple, Pham et al. (2017b) reported an improved landslide prediction
using ANN integrated with theMultiBoost, AdaBoost, Dagging, Bagging,
RSS, Rotation Forest ensemble techniques. In another study, Pham et al.
(2019a) enhanced the performance of the decision stump classifier
using the Rotation Forest, MultiBoost, and Bagging techniques for zon-
ing groundwater potential. In the context of flood prediction modeling,
Chapi et al. (2017) and Chen et al. (2019) illustrated that the Bagging
and RSS techniques in combination of decision tree classifiers can pro-
duce effective ensemble models for flood prediction. In a recent study,
Tran et al. (2020) proved that Hyperpipes algorithm coupled with the
different ensemble techniques achieved the highest performance for
landslide susceptibility mapping.

In our study, the Decorate ensemble leaning method performed
better than the other ensemble techniques in improving the base
BFT classifier for the prediction of flash floods. Compared to the
Multi-Boost, AdaBoost, Bagging, Dagging, Rotation Forest, and RSS
techniques that have been extensively used in the literature. Decorate
is an ensemble learning technique with limited application. However,
it seems that the application of this ensemble technique can result in
developing effective predictive models with high-quality results. In a
comparative study, Sun et al. (2015) reported that Decorate produce
very good performance ensemble models that can provide improve-
ments over the Bagging and AdaBoost techniques for both small and
large datasets. In contrast to the Bagging and AdaBoost techniques
that manipulate the original training sets to boost the quality of the
base classifier performance (Pham et al., 2019b), Decorate utilizes ar-
tificial training examples to expand the training set that often results
in more accurate and robust ensemble models than those obtained
from using the Bagging and AdaBoost techniques (Sun et al., 2015).
We showed that the RSS technique represented an ensemble model
(RSSBFT) that was ranked as the second-best model. Shirzadi et al.
(2017) and Pham et al. (2017a, 2019b) also reported on the improved
accuracy of landslide prediction using the ensemble models derived
by the RSS technique.

Overall, despite small differences between the models proposed
in the current study, we found all three Bagging, Decorate, and RSS
ensemble learners effective for boosting the performance of the
base BFT classifier. From these results we can conclude that an en-
semble modeling approach can efficiently decrease, noise, variance,
and over-fitting problems of input data to achieve an improved and
reliable modeling outcome. Some would argue that hybrid models
may take extra time in generating final outputs compared to the sim-
ple single models. However, the accuracy of natural hazard predic-
tion should not be compromised with the cost reduction strategies
that end up causing cost increments in the long run. Instead, mod-
elers should aim to innovate with the purpose of finding ways to im-
prove prediction accuracy while costs are reduced. One way to do
this is to utilize cloud computing services (e.g., Amazon WEB Ser-
vices, Microsoft Azure, and Google Cloud) to increase the efficiency
and effectiveness of the modeling process for obtaining reliable esti-
mation on reasonable computation time.
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5.1. Management plans to control floods

Risk management and preventive actions are the main concepts of
flood susceptibilitymapping. Today, evidence suggests that unregulated
land-use planning and policy implementation along with and climate
change have extremely intensified flood occurrences at an alarming
rate worldwide. Risk management and preventive measures no longer
concentrate on preventing flood but focus on the responsibilities of
local authorities to reduce flood impacts. For instance, residents of
flood-prone regions should be informed of probabilities and risks
(Aakre et al., 2010; Hegger et al., 2017; Mafi-Gholami et al., 2020).
Land-use planners and local authorities are expected to inform the
local residents of the latest assessments of flood susceptibilities
(e.g., the results presented here) and the regulations that prohibit new
developments in the area with high susceptibility to flooding occur-
rences (Dai et al., 2002).

The susceptibility maps are highly valuable tools for reducing
the residual losses by evacuating areas that are expected to have recur-
ring and devastating floods (i.e., high and very high susceptible zones
delineated by the flood susceptibility maps). The financial sectors also
can use the susceptibility maps for the enforcement of land use regula-
tions and the appropriate compensation for flood damages.

6. Concluding remarks

We proposed three ensemble models, which simultaneously took
advantage of both decision tree classifiers and ensemble learning tech-
niques, for flash flood prediction. The ensemble BBFT, DBFT, and RSSBFT
models provided better predictions than the single BFT model in terms
of the future flood probability. The efficacy of the ensemble modeling
approach was demonstrated when the high-level training performance
of the single BFT model decreased considerably in the validation phase
to level much lower than those of the three ensemblemodels. Although
the popularity of Decorate is not as much as Bagging and RSS, we illus-
trated the utility of this ensemble learning technique for the prediction
of flash flood susceptibility.

The ensemble Decorate-BFT model delimited approximately 33% of
the study area into thehigh and very high susceptibilities to flood occur-
rences. These results suggest that design, implementation, and verifica-
tion of flood early warning systems should be directed to these portion
of the Nghe An Province.

Highly accurate flood prediction models such as the Decorate-BFT
model that was proposed in this study are useful tools for obtaining
more informed and improved estimates of flash floods. Future studies
may extend this modeling approach by exploring the use of the DBFT
model for other regions with different geo-environmental setting,
other types of floods (such as urban, river, and coastal floods), other
types of natural hazards (such as landslides, land subsidence, and wild-
fires), and comparing the performance of other types of the base classi-
fier (such as ANN, and SVM).
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