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Abstract—This paper presents a min-conflicts algorithm to find
a maximum weakly stable matching for the Hospitals/Residents
problem with Ties (MAX-HRT). We represent the problem in
terms of a constraint satisfaction problem and apply a local
search approach to solve the problem. Our key idea is to find a set
of undominated blocking pairs from residents’ point of view and
then remove the best one to not only reject all the blocking pairs
formed by the residents but also to reject as many as possible the
blocking pairs formed by hospitals from the hospitals’ point of
view. Experiments show that our algorithm is efficient for solving
MAX-HRT of large sizes.

Index Terms—Heuristics. Hospitals/Residents. Min-Conflicts.
Local Search. Undominated Blocking Pairs.

I. INTRODUCTION

The Hospitals/Residents problem (HR) was first introduced
by Gale and Shapley in 1962 under the name “College Admis-
sions Problem” [1]. Recently, HR has been attracting much
attention from the research community due to its important
role in a wide range of real-life applications such as the
National Resident Matching Program (NRMP) in the US [2],
the Scottish Pre-registration house officer Allocations (SPA)
matching scheme [3], or the Canadian Resident Matching
Service (CARMS) in Canada [4].

An instance I of HR [5], [6] consists of a set R =
{r1, r2, · · · , rn} of residents and a set H = {h1, h2, · · · , hm}
of hospitals in which each resident ri ∈ R ranks in strict order
a subset of H in its preference list, each hospital hj ∈ H
ranks in strict order applicants in its preference list, and each
hospital hj ∈ H has a capacity cj ∈ Z+ indicating the
maximum number of residents that can be assigned to it.
A pair (ri, hj) ∈ R × H is said to find acceptable each
other if hj appears in ri’s preference list, and vice versa. A
matching M is a set of pairs (ri, hj) ∈ R × H such that
(i) ri and hj find each other acceptable, (ii) ri is assigned

to at most one hospital in M , and (iii) hj is assigned to
at most cj residents in M . We denote (ri, hj) ∈ M as
M(ri) = hj and M(hj) as the set of residents assigned to
hj . A hospital hj ∈ H is under-subscribed, full, or over-
subscribed if |M(hj)| < cj , |M(hj)| = cj , or |M(hj)| > cj ,
respectively. A pair (ri, hj) ∈ R × H is a blocking pair for
M if (i) ri and hj find each other acceptable, (ii) ri either
is unassigned or prefers hj to M(ri), and (iii) hj either is
under-subscribed or prefers ri to the worst resident in M(hj).
A matching M is said to be stable if it has no blocking pairs.
Given an instance I of HR, the problem is to find a stable
matching in I .

From the aspect of practical applications, HR is unrealistic
because both hospitals and residents are required to rank
applicants in strict order of preference. Therefore, several
extensions of HR have been proposed [6], [7], [8]. The most
popular extension of HR is the Hospitals/Residents problem
with Ties (HRT) [5], [6], in which the preference lists of both
residents and hospitals are allowed to contain ties. Accord-
ingly, three definitions of matching are given, consisting of
weak stability, strong stability, and super-stability. Given an
instance I of HRT, it is known that weakly stable matchings
may have different sizes and therefore, in order to every
resident can be assigned to a hospital, it is natural to find
a matching which is not only stable but also with maximum
size, i.e. the problem of finding a weakly stable matching with
maximum size. This problem is known as MAX-HRT and
shown to be NP-hard, even if each hj ∈ H has cj = 1 [9],
[10]. Manlove et al. [11] proved that the size of the largest
stable matching is at most twice the size of the smallest for
any HRT instance. Kwanashie et al. [12] proposed an integer
programming approach to solve HRT. Munera et al. [13]
converted HRT to the stable matching with ties and incomplete
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lists problem (SMTI) and applied the adaptive search [14] to
solve MAX-HRT.

In this paper, we present a min-conflicts algorithm, called
MCA, to solve MAX-HRT. Given an instance I of HRT,
MCA starts to search a solution of I from a random matching.
At each iteration, MCA finds a set of undominated blocking
pairs (UBP(s)) for the matching from the residents’ point of
view, selects a resident who is most preferred by hospitals in
UBPs. However, to avoid getting stuck in a local minimum,
MCA chooses a random resident in UBPs in a small probabil-
ity. Then, it removes the pair of (resident, hospital) and repeats
for the matching. The experiments show that our algorithm is
efficient in terms of execution time and solution quality for
HRT of large sizes.

The rest of this paper is organized as follows. Section 2
presents definitions, Section 3 presents our MCA algorithm,
Section 4 discusses the experimental results, and Section 5
concludes our work.

II. DEFINITIONS

Given an instance I and a matching M of HRT, the main
definitions for HRT is as follows [5], [6], [15].

Definition 1 (blocking pair): A pair (ri, hj) ∈ R ×H is a
blocking pair for M if (i) ri and hj find each other acceptable,
(ii) ri either is unassigned or strictly prefers hj to M(ri), and
(iii) hj either is under-subscribed or strictly prefers ri to the
worst resident in M(hj).

It should be noted that the definition of blocking pair in
HRT is different from that in HR at the property ”strictly
prefer” of ri and hj instead of ”prefer”.

Definition 2 (weakly stable matching): A matching M is
weakly stable if it has no blocking pairs, otherwise, it is said
to be unstable.

Definition 3 (matching size): The size of a weakly stable
matching M is the number of residents assigned to hospitals in
M . If the size of M is n, then M is called a perfect matching.

For a simple implementation of our algorithm, we assume
that a matching M can include residents ri ∈ R such that ri
is unsigned to hospitals or M(ri) = ∅.

Definition 4 (dominated blocking pair): A blocking pair
(ri, hj) dominates a blocking pair (ri, hk) from the residents’
point of view if ri prefers hj to hk.

Definition 5 (undominated blocking pair): A blocking pair
(ri, hj) is called an undominated blocking pair if there exists
no other blocking pair that dominates it from the residents’
point of view.

The concept of the undominated blocking pair was given
in [15] and then it was applied to solve efficiently SMTI [15],
[16]. This is because removing an undominated blocking pair
results in removing all blocking pairs that are dominated by
the undominated blocking pair.

Table I shows an instance of HRT of 8 residents and
5 hospitals. In residents’ preference lists, for example, the
notation r2: h1 (h4 h5) h3 means r2 strictly prefers h1 to
h4 and h5, which are equally preferred. In the hospitals’
preference lists, for example, h2: (3) means c2 = 3. The

TABLE I
PREFERENCE LISTS OF EIGHT RESIDENTS AND FIVE HOSPITALS

Resident’s preference list Hospital’s preference list

r1: h1 h3 h2 h1: (2): r3 (r7 r5 r2) r4 r6 r1
r2: h1 (h5 h4) h3 h2: (3): r5 r6 (r3 r4) r1
r3: h1 h5 h2 h3: (1): (r5 r2) r6 r1 r7
r4: h1 (h2 h4) h4: (1): r8 r2 r4 r7
r5: h3 h1 h2 h5: (1): r3 (r7 r6 r8) h2

r6: (h3 h2) h1 h5

r7: h3 h4 h5 h1

r8: h5 h4

matching M = {(1,0), (2,5), (3,1), (4,4), (5,0), (6,1), (7,3),
(8,0)} is unstable matching because it contains 10 blocking
pairs {(1,2), (2,1), (4,1), (5,1), (5,2), (5,3), (6,2), (6,3), (8,4),
(8,5)}. The matching M = {(1,0), (2,1), (3,1), (4,2), (5,3),
(6,2), (7,5), (8,4)} is weakly stable because it has no any
blocking pairs, where resident r1 is unassigned and hospital
h2 is under-subscribed. However, the matching M = {(1,2),
(2,1), (3,1), (4,2), (5,3), (6,2), (7,5), (8,4)} is perfect since
its size is 8. The blocking pair (5, 3) dominates the blocking
pair (5, 1) from the residents’ point of view and the blocking
pair (5, 1) is undominated since there exists no blocking pairs
dominating it from the residents’ point of view.

III. ALGORITHM

In this section, we propose a min-conflicts algorithm, called
MCA, to find a maximum weakly stable matching for HRT.
We represent HRT as a constraint satisfaction problem (CSP),
in which residents are variables, hospitals ranked in each
resident’s preference list form the domain of each variable
and constraints are conditions of the blocking pair definition.
Accordingly, a stable matching is an assignment of hospitals to
residents such that it does not violate constraints. Our key idea
is that we apply a local search algorithm for the CSP [17], in
which at each search step we select a hospital to assign for a
resident that results in the minimum number of blocking pairs.

MCA is shown in Algorithm 1. Initially, the algorithm
generates a random matching M and assigns the best matching
Mbest to M . At each iteration, the algorithm calls the function
depicted in Algorithm 2 to find the cost, f(M), of M and the
set of UBPs, X = {(ri, hj) ∈ R×H}, for M . If X is empty,
i.e. M is stable, the algorithm checks if f(Mbest) is larger
than f(M), then it assigns Mbest to M . If M is not perfect,
i.e. f(M) > 0, the algorithm restarts a new matching M and
continues the next iteration. Then, the algorithm checks if a
small probability of p is accepted, it chooses a random resident
rj ∈ X . Otherwise, it chooses the resident, rj ∈ X , such that
it is most preferred by hospitals hk ∈ X , i.e. the rank of
rj in hk’s rank list, denoted by r(hk, rj), is smallest. After
taking a resident, rj , the algorithm removes the blocking pair
(rj , X(rj)) to obtain a new matching, where X(rj) is the
hospital making an UBP with rj . The algorithm repeats until
either Mbest is a perfect matching or a maximum number of
iterations is reached. In the latter case, the algorithm returns
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Algorithm 1: Min-Conflicts Algorithm
Input: - An HRT instance I of size n×m.

- A small probability p.
- The maximum iterations max iters.

Output: A matching M .
1. function Main(I)
2. M := a randomly generated matching;
3. Mbest := M ;
4. fbest := n;
5. iter := 0;
6. while (iter ≤ max iters) do
7. iter := iter + 1;
8. [f,X] := Find_Cost_And_UBPs(M);
9. if (X = ∅) then

10. if (fbest > f) then
11. Mbest := M ;
12. fbest := f ;
13. end
14. if (f > 0) then
15. M := a randomly generated matching;
16. continue;
17. else
18. break;
19. end
20. end
21. if (a small probability of p) then
22. rj := a random resident ri ∈ X;
23. else
24. rj := argmin(r(hk, ri)),∀(ri, hk) ∈ X;
25. end
26. M := removing bloking pair (rj , X(rj));
27. end
28. return Mbest;
29. end function

either a maximum stable matching or an unstable matching. It
should be noted that removing a blocking pair (ri, hj) for M
results in a matching M ′ in which hj is assigned to ri and
if |M(hj)| = cj then the worst resident in M(hj) becomes
unassigned, and the other pairs in M are unchanged.

The function to find both the cost f(M) and a set of UBPs
for M is shown in Algorithm 2. We define the cost f(M) =
#nbp(M) + #nur(M), where #nbp(M) is the number of
UBPs for M and #nur(M) is the number of unassigned
residents in M which is not in any UBPs. The function runs
as follows. For each ri ∈ R, the function sorts the ri’s rank list
in ascending order. Then, it considers each hospital hj in ri’s
rank list, denoted by r(ri, hj), such that ri strictly prefers hj

to M(ri) i.e. r(ri, hj) < r(r,M(ri)). If (ri, hj) is a blocking
pair, then (ri, hj) is an UBP and the function increases #nbp
and adds the pair (ri, hj) to a set of UBPs, X . Otherwise,
if every hj does not form a blocking pair with ri and ri is
unassigned to any hospitals, the function increases #nur and
performs iteratively for the next resident.

Algorithm 2: Find the cost and UBPs of a matching
Input: A matching M .
Output: The cost, f(M), and the set of UBPs, X .

1. function Find_Cost_And_UBPs(M)
2. X := ∅;
3. #nur := 0;
4. #nbp := 0;
5. for (each ri ∈ R) do
6. ubp := false;
7. sort ri’s rank list in ascending order;
8. for (each hj that r(ri, hj) < r(ri,M(ri))) do
9. if ((ri, hj) is a blocking pair) then

10. X := X ∪ (ri, hj);
11. #nbp := #nbp+ 1;
12. ubp := true;
13. break;
14. end
15. end
16. if ((ubp = false) and (ri is unassigned)) then
17. #nur := #nur + 1;
18. end
19. end
20. f := #nbp+#nur;
21. return (f,X);
22. end function

IV. EXPERIMENTS

In this section, we present the experiments to evaluate the
efficiency of our MCA. To do so, we adapted the SMTI
generator given by Gent et al. [18] to generate HRT instances
with four parameters (n,m, p1, p2), where n is the number of
residents, m is the number of hospitals, p1 is the probability of
incompleteness and p2 is the probability of ties. The capacity
of each hospital is generated randomly such that it is smaller
than or equal to the number of residents in its preference lists.
It should be noted that, without loss of generality, our HRT
generator created preference lists such that if a hospital does
not appear in a resident’s preference list, then the resident does
not appear in the hospital’s preference list. All the experiments
were implemented by Matlab software on a personal computer
with a Core i7-8550U CPU 1.8GHz and 16 GB memory.

A. Comparison with LTIU

This section presents experimental results to compare the
execution time and solution quality of MCA with those of
LTIU [15]. To run experiments, we randomly generated HRT
instances of parameters (n,m, p1, p2) by letting n = 50,
m = 10, p1 vary in [0.1, 0.8] with step 0.1 and p2 vary in
[0.0, 1.0] with step 0.1. For each (n,m, p1, p2), we ran 50
HRT instances and averaged the results. The probability and
the maximum number of iterations in both MCA and LTIU
were 0.03 and 2000, respectively.

Figure 1 shows the average execution time of MCA and
LTIU for finding maximum stable matchings of the instances.
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Fig. 1. MCA vs. LTIU - execution time

The average execution time of MCA is much smaller than
that of LTIU (thus, we use a log10 scale on Y -axis). When
p1 varies from 0.1 to 0.8, the execution time of both MCA and
LTIU increases significantly for any value of p2. On average,
the execution time of MCA increases from about 0.007(s)
to 0.37(s), while that of LTIU increases from about 2.55(s)
to 65.80(s) for any value of p2. In contrast, when p2 varies
from 0.0 to 1.0, the execution time of both MCA and LTIU
decreases slightly for any value of p1. The experimental results
also show that MCA runs about 190 times faster than LTIU
for any p1 and p2. This can be explained as follows. LTIU
is a local search algorithm and therefore, at each iteration
it has to find a set of neighbor matchings of the current
matching, compute the cost of all the neighbors and move
the current matching to the best one in the set of neighbors.
Although LTIU considers only UBPs, the number of such
UBPs is very large, i.e. the number of neighbors is very large
because a neighbor is generated by removing a blocking pair
in the set of UBPs. This increases significantly the execution
time of LTIU. However, MCA finds the set of UBPs and
removes only one in the set of UBPs based on the min-
conflicts heuristic to generate a new matching for the next
iteration and therefore, MCA runs much faster than LTIU.

Figure 2 shows the percentage of perfect matchings found
by MCA and LTIU algorithms (when p1 varies from 0.1
to 0.5, both MCA and LTIU always find 100% of perfect
matchings). When p1 varies from 0.6 to 0.8, the percentage
of perfect matchings found by LTIU is slightly higher than
that found by MCA. This is because at each iteration, LTIU
moves the current matching to the best one in terms of the
cost function in the set of neighbors, while MCA does not do
so such that it decreases its execution time. The experimental
results also show that when p1 is large (i.e. p1 = 0.7 and
p1 = 0.8), both MCA and LTIU find only a small percentage
of perfect matchings since the preference lists of residents and
hospitals are sparse.

B. Experiments for HRT of large sizes

This section presents experimental results for instances of
HRT of large sizes to consider the behavior of MCA. To
perform experiments, we randomly generated HRT instances
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of parameters (n,m, p1, p2), by letting n vary from 100
to 700 with step 100, m vary from 10 to 50 with step
10, p1 = 0.5, p2 = 0.5 and the capacity of hospitals be
generated randomly. For each (n,m, p1, p2), we ran 50 HRT
instances and averaged the results. The probability and the
maximum number of iterations in MCA were 0.03 and 2000,
respectively.

Figure 3 shows the average execution time found by MCA.
When m = 10 the execution time of MCA increases from
about 0.15(s) to 5.25(s) for n varying from 100 to 700, respec-
tively. For the other values of m, the execution time increases
from about 0.03(s) to 2.25(s). Fig. 4 shows the percentage of
perfect matchings. MCA finds 100% of stable matchings, and
furthermore, it finds 100% of perfect matchings for every n
and m 6= 10. However, when m = 10 MCA finds only 86%,
74%, 64%, 66%, 58%, 62% and 44% of perfect matchings for
n = 100, 200, 300, 400, 500, 600 and 700, respectively. This
means that the percentage of perfect matchings decreases when
m = 10 but n increases. When MCA cannot finds 100% of
perfect matchings, meaning that there exist some matchings
which are stable but not perfect and therefore, it has to reach
the maximum number of iterations. This leads to that MCA
increases the execution time when m = 10, however, even so,
the experimental results show that MCA is efficient for HRT
instances of large sizes.

Figure 5 shows the average number of iterations found by
MCA. As we mentioned above, when m = 10, MCA has
to reach the maximum number of iterations to find perfect
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matchings and therefore, the average number of iterations is
bigger than that compared to the other values of m. However,
even if n = 700, the maximum number of iterations cannot
exceed 1500. This means that MCA is efficient in terms of
execution time.

Next, we consider the capacity of hospitals randomly gen-
erated in the instances. Fig. 6 shows the average capacity
of hospitals. It can be seen that the average capacity of
hospitals for any value of n is about n/4, i.e. 25, 50, 75,
100, 125, 150, 175 for n = 100, 200, 300, 400, 500, 600, 700,
respectively. This can be explained as follows. In the method
to generate HRT instances [18], the number of hospitals in the
residents’ preference lists as well as the number of residents
in the hospitals’ preference lists depends on the probability
of incompleteness p1. In our experiments, we let p1 = 0.5,
meaning that there exist 50% (i.e. n/2) of residents appearing
in each hospital’s preference list. Moreover, the capacity
of hospitals is generated random uniform of n/2 residents
appearing in each hospital’s preference list. Therefore, when
many HRT instances generated for experiments, the average
capacity of hospitals converges to n/4 and therefore, the total
capacity of all hospitals is about m× n/4.

Finally, we consider a popular case, where the capacity of hj

is the average of n/m, i.e. cj = n/m. We generated 50 HRT
instances for each (n,m, p1, p2) as the above experiment and
averaged the results. Fig. 7 shows the capacity of hospitals. It
can be seen that the capacity of each hospital is smaller 2.5
times than the average capacities generated randomly shown
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in Fig. 6. Fig. 8 shows the percentage of perfect matchings
found by this experiment. MCA cannot find 100% of perfect
matchings for m = 10 or m = 20. Again, this experiment
shows that MCA is difficult to find 100% of perfect matchings
when m is small but n is large.

V. CONCLUSIONS

In this paper, we proposed a min-conflicts algorithm, named
MCA, based on a local search approach to solve MAX-HRT.
Starting from a randomly generated matching, MCA finds
a resident in the set of undominated blocking pairs for the
matching such that he is most preferred by hospitals. Then,
it removes the pair formed by the resident and the hospital
and repeats for the matching until it is stable. Experiments
showed that MCA is efficient in terms of execution time
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and solution quality for HRT of large sizes. In the future,
we plan to extend this approach to variants of HR such as
the Hospitals/Residents problem with Couples or the Hospi-
tals/Residents problem with Free Pairs.
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