
A Heuristic Repair Algorithm
for the Hospitals/Residents Problem

with Ties

Son Thanh Cao, Le Quoc Anh, and Hoang Huu Viet(B)

School of Engineering and Technology, Vinh University, Vinh City, Vietnam
{sonct,anhlq,viethh}@vinhuni.edu.vn

Abstract. The Hospitals/Residents problem with Ties is a many-to-
one stable matching problem and it has several practical applications.
In this paper, we present a heuristic repair algorithm to find a stable
matching with maximal size for this problem. Our approach is to apply
a random-restart algorithm used commonly to deal with constraint sat-
isfaction problems. At each iteration, our algorithm finds and removes
the conflicted pairs in terms of preference ranks between hospitals and
residents to improve rapidly the stability of the matching. Experimental
results show that our approach is efficient in terms of execution time and
solution quality for the problem of large sizes.

Keywords: Hospitals/residents with ties · Heuristic repair ·
Undominated blocking pair · Weakly stable matching

1 Introduction

In 1962, Gale and Shapley introduced the Hospitals/Residents problem (HR)
under the name “College Admissions Problem” [3]. An instance of the HR
involves a set of residents and a set of hospitals, in which each of them ranks
a subset of the other set in a strict order of preference and each hospital has a
capacity to indicate the maximum number of residents that can be assigned to
it. Solving such a problem is to find a matching of residents and hospitals, in
which each resident is assigned to at most one hospital and each hospital does
not exceed its capacity. Moreover, the matching must be stable or it admits no
blocking pair, where a blocking pair (r, h) for the matching is a resident r and a
hospital h such that (i) r and h rank each other; (ii) r either is unassigned or
prefers h to the hospital assigned to it; and (iii) h either is under-subscribed or
prefers r to the worst resident assigned to it. HR can be found in applications
such as the National Resident Matching Program (NRMP) in the US [18], the
Scottish Pre-registration house officer Allocations (SPA) matching scheme [7],
or the Canadian Resident Matching Service (CaRMS) in Canada [1].

Recently, there are several variations of HR have been proposed by
researchers [2,8,13,15]. The most popular one is a natural generalization of HR

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Rutkowski et al. (Eds.): ICAISC 2022, LNAI 13588, pp. 340–352, 2023.
https://doi.org/10.1007/978-3-031-23492-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23492-7_29&domain=pdf
https://doi.org/10.1007/978-3-031-23492-7_29

A Heuristic Repair Algorithm for the HRT 341

known as the Hospitals/Residents problem with Ties (HRT) [8,13], where both
residents and hospitals can rank a subset of the other set with ties. Accordingly,
there are three criteria of stable matchings consisting of weak stability, strong
stability, and super-stability [8]. Among these criteria, the problem of finding
weakly stable matchings has been an active field of researchers for several years
since its practical applications. Irving et al. [8] showed that an instance of HR
may have more than one stable matching and every stable matching is the same
size, while an instance of HRT may have more than one weakly stable matching
with different sizes. The problem of finding a weakly stable matching with the
maximum number of residents assigned to hospitals is known as MAX-HRT
and shown to be NP-hard [8].

In the last few years, several algorithms to solve MAX-HRT were introduced
in the literature. Manlove et al. [14] proved that the size of the largest stable
matching was at most twice the size of the smallest one for any HRT instance.
Kwanashie et al. [12] presented an integer programming approach to find a stable
matching. Munera et al. [16] proposed an adaptive search algorithm for the stable
matching with ties and incomplete lists (SMTI) [10,14] and its extension to deal
with MAX-HRT. Kir’aly [11] described ingenious approximation algorithms for
MAX-HRT. However, all the algorithms mentioned above are inefficient to solve
MAX-HRT of large sizes.

In this paper, we propose a heuristic repair algorithm to solve MAX-HRT.
For brevity, hereinafter, we refer to a weakly stable matching as a stable matching
and MAX-HRT as HRT. Our idea is to improve the stability of a randomly
generated matching. At each iteration, our algorithm finds a set of undominated
blocking pairs of a matching from the residents’ point of view, then it removes
the best blocking pair for each hospital such that it does not only remove as many
blocking pairs from the residents’ point of view as possible but also removes as
many blocking pairs as possible from the hospitals’ point of view. Experimental
results show that our algorithm is efficient in solving HRT of large sizes.

The remainder of this paper is structured as follows. Section 2 reminds the
main definitions for HRT, Sect. 3 presents our proposed algorithm, Sect. 4 dis-
cusses our experimental results, and Sect. 5 concludes our work.

2 Background

In this section, we remind the background for HRT [4,8]. An instance I of HRT
involves a set of residents, denoted by R = {r1, r2, · · · , rn}, and a set of hospitals,
denoted by H = {h1, h2, · · · , hm}, in which each ri ∈ R ranks a subset of H
in its preference list and each hj ∈ H ranks a subset of R in its preference list.
Moreover, each hj has a capacity cj ∈ Z

+ to indicate the maximum number
of residents that can be assigned to it. We denote a set of acceptable pairs by
A = {(ri, hj) ∈ R × H}, where ri and hj must rank each other.

An assignment M is a subset of A. If (ri, hj) ∈ M , we say that ri is assigned
to hj and hj is assigned ri, and we denote M(hj) by the set of residents assigned
to hj and M(ri) = hj , respectively. If ri is unassigned in M , then we denote by

342 S. T. Cao et al.

M(ri) = ∅. A hospital hj ∈ H is called under-subscribed, full, or over-subscribed
if |M(hj)| < cj , |M(hj)| = cj , or |M(hj)| > cj , respectively.

Definition 1 (matching). A matching is an assignment M such that
|M(ri)| ≤ 1 for each ri ∈ R, and |M(hj)| ≤ cj for each hj ∈ H, meaning
that each resident is assigned to at most one hospital, and no hospital is over-
subscribed.

Given a matching M and a pair (ri, hj) ∈ A, if ri strictly prefers hj to M(ri),
then we denote by hj ≺ri M(ri); if hj strictly prefers ri to the worst resident in
M(hj), then we denote by ri ≺hj

M(hj).

Definition 2 (blocking pair). A pair (ri, hj) ∈ R × H is a blocking pair for
a matching M if (i) (ri, hj) ∈ A; (ii) M(ri) = ∅ or hj ≺ri M(ri); and (iii)
|M(hj)| < cj or ri ≺hj

M(hj).

Definition 3 (stable matching). A matching M is called stable if it admits
no blocking pairs, otherwise, it is called unstable.

Definition 4 (matching size). The size of a stable matching M , denoted by
|M |, is the number of residents assigned to hospitals in M . If |M | = n, then M
is called perfect. Otherwise, M is called non-perfect.

Definition 5 (dominated blocking pair). A blocking pair (ri, hj) ∈ R × H
dominates a blocking pair (ri, hk) ∈ R × H from the residents’ point of view if
ri prefers hj to hk.

Definition 6 (undominated blocking pair). A blocking pair (ri, hj) ∈ R×H
is called an undominated blocking pair (UBP) if there exists no other blocking
pair that dominates it from the residents’ point of view.

The concepts of the dominated and undominated blocking pairs were given
in [4] and then they were applied to solve efficiently the SMTI problem [5,17].
In this paper, we apply these concepts to solve HRT. Given a matching M and
a blocking pair (ri, hj) ∈ R×H for M , we call an operation of removing (ri, hj)
for M means that ri is assigned to hj , or M(ri) = hj . We assume that there
exist two blocking pairs, denoted by (ri, hj) ∈ R × H and (ri, hk) ∈ R × H,
for M , where (ri, hj) dominates (ri, hk) from the residents’ point of view. If we
remove (ri, hj) for M to obtain a matching M ′ from M , i.e. M ′(ri) = hj , and
the other pairs of M ′ are the same as those of M , except if M ′(hj) > cj , then
the worst resident in M ′(hj) becomes unassigned. As a result, the blocking pair
(ri, hk) is removed for M ′. Otherwise, if we remove (ri, hk) for M to obtain a
matching M ′ from M , then the blocking pair (ri, hj) still remains for M ′. This
follows that if we remove an UBP (ri, hj) for a matching M , then all the blocking
pairs formed by ri from the residents’ point of view will be removed for M . We
have equivalent concepts of the dominated and undominated blocking pairs from
the hospitals’ point of view. Accordingly, if we remove an UBP (ri, hj) from the
hospitals’ point of view, then all the blocking pairs formed by hj will be removed
for M .

A Heuristic Repair Algorithm for the HRT 343

Table 1. An instance of HRT of eight residents and four hospitals

Residents Preference lists Hospitals Preference lists Capacities

r1 h1 (h2 h3) h4 h1 r8 r2 r7 r1 r6 r5 r3 r4 c1 = 3

r2 h4 h1 h2 h3 h2 r6 r2 r1 r4 r3 r7 c2 = 6

r3 h1 h3 h4 h2 h3 r6 r2 r1 r4 r5 r8 r7 r3 c3 = 3

r4 (h1 h4) h2 h3 h4 r2 r5 r4 (r7 r8) r1 r3 c4 = 4

r5 h3 h1 h4

r6 h2 h1 h3

r7 h2 h4 h1 h3

r8 h1 h3 h4

We consider an HRT instance consisting of 8 residents and 4 hospitals shown
in Table 1. In residents’ preference lists, for example, the notation r1: h1 (h2 h3)
h4 means r1 strictly prefers h1 to h2 and h3, which are equally preferred. We have
similar notations in the hospitals’ preference lists. The matching M = {(r1,∅),
(r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1), (r7, h3), (r8,∅)} is unstable because
there exist blocking pairs such as (r1, h1), (r1, h2), (r1, h3), (r1, h4), (r2, h1) for
M . The blocking pair (r1, h1) dominates the blocking pair (r1, h4) from the
residents’ point of view and the blocking pair (r1, h1) is undominated since there
exists no blocking pairs dominating it from the residents’ point of view. If we
remove (r1, h1) for M to obtain a matching M ′, i.e. M ′ = {(r1, h1), (r2,∅),
(r3, h1), (r4,∅), (r5, h3), (r6, h1), (r7, h3), (r8,∅)}, then all the UBPs formed
by r1 from the residents’ point of view are removed for M ′. The matching M =
{(r1, h1), (r2, h4), (r3, h1), (r4, h4), (r5, h3), (r6, h2), (r7, h2), (r8, h1)} is perfect
since M is stable and |M | = 8.

3 Algorithm for HRT

In this section, we propose an algorithm of repairing undominated blocking
pairs, called heuristic repair algorithm, to solve MAX-HRT. Given an arbi-
trary matching M of an instance I of HRT, we assume that there exists a set
X = {(ri, hj)|(ri, hj) ∈ R × H} of UBPs from the residents’ point of view for
M . As we mentioned above, if we remove only an UBP (ri, hj) ∈ X for M (i.e.
M(ri) = hj), then all the blocking pairs formed by ri will be removed for M .
If so, we were wasted time in finding the remaining pairs in X. Obviously, we
cannot remove every pair (ri, hj) ∈ X, since if there exist two pairs (ri, hj) ∈ X
and (rk, hj) ∈ X, then we remove (ri, hj) or (rk, hj) for M (i.e. M(ri) = hj or
M(rk) = hj)? Our question is that which pairs (ri, hj) ∈ X should be removed in
M such that we can rapidly obtain the stability of M . To answer this question,
we first analyze the instance of HRT given in Table 1. We assume that given
an unstable matching M = {(r1,∅), (r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1),
(r7, h3), (r8,∅)}, then the set of UBPs from the residents’ point of view for M

344 S. T. Cao et al.

is X = {(r1, h1), (r2, h4), (r6, h2), (r7, h2), (r8, h1)}. Since X is a set of UBPs
from the residents’ point of view, each ri ∈ X belongs to only one element of X,
while each hj ∈ X is not so. This means that we can partition X = X1∪X2∪X3,
where X1 = {(r1, h1), (r8, h1)}, X2 = {(r2, h4)}, and X3 = {(r6, h2), (r7, h2)}. If
we remove a pair (ri, hj) ∈ Xt(t = 1, 2, 3) that (ri, hj) dominates all the other
(rk, hj) ∈ Xt from the hospitals’ point of view, then all (rk, hj) formed by hj

from the hospitals’ point of view are removed for M .
As with the analysis above, our idea to solve HRT is that at each iteration of

our algorithm, we do the following: (i) finding a set X of UBPs for an unstable
matching M from the residents’ point of view; (ii) partitioning X = X1 ∪ X2 ∪
· · · ∪ Xl such that each Xt(t = 1, 2, · · · , l) consists of blocking pairs (ri, hj) ∈
X formed by a unique hj ∈ X; and (iii) removing a pair (ri, hj) ∈ Xt(t =
1, 2, · · · , l) that (ri, hj) dominates all the other (rk, hj) ∈ Xt from the hospitals’
point of view. By doing so, our idea is not to remove all the blocking pairs formed
by ri from the residents’ point of view but also reject as many blocking pairs
formed by hj from the hospitals’ point of view as possible to obtain a stable
matching of an HRT instance as quickly as possible.

Our algorithm is shown in Algorithm 1. To avoid getting stuck in local max-
ima, we use the mechanism of the random-restart hill climbing algorithm [19].
Specifically, our algorithm finds a maximum stable matching, denoted by Mbest,
from a randomly generated matching M . At each iteration, our algorithm runs
as follows. First, the algorithm finds a set X of UBPs for M from the residents’
point of view (line 4). Second, the algorithm checks if X is empty, then if Mbest

is worse than M in terms of the matching size, M is assigned to Mbest (lines 6-8).
Next, the algorithm checks if Mbest is perfect, then it returns Mbest (lines 9-11),
otherwise, it restarts at a randomly generated matching M and continues the
next iteration (lines 12-13). Third, the algorithm checks if a small probability of
p is accepted, it chooses a random pair (ri, hj) ∈ X and removes it for M (lines
15-22). Otherwise, it iterates for each hj ∈ X to select a pair (ri, hj) ∈ X that
hj prefers ri to rk for all (rk, hj) ∈ X and removes (ri, hj) for M (lines 24-25).
When the algorithm removes a blocking pair (ri, hj) for M , i.e. M(ri) = hj , and
if hj is over-subscribed, then it removes the pair (rz, hj) ∈ M such that hj is
full, where rz is the worst resident assigned to hj in M (lines 26-29). Finally,
the algorithm repeats until either Mbest is a perfect matching or a maximum
number of iterations is reached. In the latter case, the algorithm returns either a
maximum stable matching found so far or an unstable matching. We note that
to find an UBP (ri, hj) ∈ X from the residents’ point of view for M , the algo-
rithm runs an iteration for each hospital hj in ascending order of ranks in ri’s
preference list and returns the first blocking pair encountered, then (ri, hj) is an
undominated blocking pair.

An execution of our algorithm for the HRT instance shown in Table 1 is
illustrated as in Table 2. We assume that the probability to choose a random pair
in X is p = 0 and the algorithm starts from a random matching M0 = {(r1,∅),
(r2,∅), (r3, h1), (r4, h1), (r5, h3), (r6, h1), (r7, h3), (r8,∅)}. At the first iteration,
the algorithm finds a set X0 = {(r1, h1), (r2, h4), (r6, h2), (r7, h2), (r8, h1)}

A Heuristic Repair Algorithm for the HRT 345

Algorithm 1: Heuristic Repair Algorithm
Input: - An HRT instance I of size n × m

- A small probability p.
- The maximum iterations max iters.

Output: A matching Mbest.
1. M := a randomly generated matching;
2. Mbest := M ;
3. for iter := 1 to max iters do
4. X := a set of undominated blocking pairs for M ;
5. if (X = ∅) then
6. if (|Mbest| < |M |) then
7. Mbest := M ;
8. end
9. if (|Mbest| = n) then

10. break;
11. end
12. M := a randomly generated matching;
13. continue;

14. end
15. if (a small probability of p) then
16. take a random pair (ri, hj) ∈ X;
17. M(ri) := hj ;
18. if (hj is over-subscribed) then
19. rz := worst resident in M(hj);
20. M(rz) := ∅;

21. end

22. else
23. for (each hj ∈ X) do
24. select (ri, hj) ∈ X such that hj prefers rj to rk, ∀(rk, hj) ∈ X;
25. M(ri) := hj ;
26. if (hj is over-subscribed) then
27. rz := worst resident in M(hj);
28. M(rz) := ∅;

29. end

30. end

31. end

32. end
33. return Mbest;

of UBPs from the residents’ point of view for M0. Since (r8, h1) dominates
(r1, h1) from the hospitals’ point of view (i.e. h1 prefers r8 to r1) and (r6, h2)
dominates (r7, h2) from the hospitals’ point of view (i.e. h2 prefers r6 to r7),
the algorithm removes (r2, h4), (r6, h2) and (r8, h1) to obtain a matching M1 =
{(r1,∅), (r2, h4), (r3, h1), (r4,∅), (r5, h3), (r6, h2), (r7, h3), (r8, h1)}. At the
second iteration, the algorithm finds a set X1 = {(r1, h1), (r4, h1), (r7, h2)} of
UBPs from the residents’ point of view for M1. It should be noted that at

346 S. T. Cao et al.

the first iteration, (r8, h1) dominated (r1, h1) and we removed (r8, h1) for M0,
but there exists (r1, h1) ∈ X1 for M1, since (r1, h1) ∈ X1 is an UBP found
from the residents’ point of view. It is explained similarly for (r7, h2) ∈ X1.
Since (r1, h1) dominates (r4, h1) from the hospitals’ point of view, the algorithm
removes (r1, h1) and (r7, h2) to obtain a matching M2. The algorithm repeats
until the fourth iteration, where X3 = {∅}, and it returns a perfect matching
M3.

Table 2. An execution of the algorithm for HRT in Table 1

Iter. Input UBPs Remove Output

1 M0 X0 = {(r1, h1),
(r2, h4), (r6, h2),
(r7, h2), (r8, h1)}

{(r2, h4),
(r6, h2),
(r8, h1)}

M1 = {(r1,∅), (r2, h4), (r3, h1),
(r4,∅), (r5, h3), (r6, h2), (r7, h3),
(r8, h1)}

2 M1 X1 = {(r1, h1),
(r4, h1), (r7, h2)}

{(r1, h1),
(r7, h2)}

M2 = {(r1, h1), (r2, h4), (r3, h1),
(r4,∅), (r5, h3), (r6, h2), (r7, h2),
(r8, h1)}

3 M2 X2 = {(r4, h4)} {(r4, h4)} M3 = {(r1, h1), (r2, h4), (r3, h1),
(r4, h4), (r5, h3), (r6, h2), (r7, h2),
(r8, h1)}

4 M3 X3 = {∅}

4 Experiments

In this section, we evaluate the performance of our heuristic repair algorithm,
namely HR, for HRT. To do this, we applied the SMTI generator [6] to generate
HRT instances with parameters (n,m, p1, p2), where n is the number of residents,
m is the number of hospitals, p1 is the probability of incompleteness, and p2 is the
probability of ties. Without loss of generality, we assume that in each generated
instance, the preference lists of residents and hospitals consist of acceptance
pairs. Otherwise, we run a preprocessing procedure to remove unacceptance
pairs in HRT instances. We implemented all experiments by Matlab 2019a on a
personal computer with a Core i7-8550U CPU 1.8GHz and 16 GB memory.

4.1 Comparison with Local Search

In this section, we present an experiment to compare the execution time and
solution quality found by HR with those found by Local Search (LS) [4]. We set
the probability p = 0.03 and the maximum number of iterations to 500 in both
HR and LS algorithms.

Experiment 1. We chose n = 100, m = 10, p1 ∈ [0.1, 0.8] with step 0.1, and
p2 ∈ [0.0, 1.0] with step 0.1. For each combination of parameters (n,m, p1, p2),

A Heuristic Repair Algorithm for the HRT 347

we randomly generated 100 HRT instances, in which the capacity cj of each
hospital hj ∈ H is generated randomly and cj ∈ [1, q], where q is the total
number of residents ranked by hospital hj ∈ H. Then, we ran HR, LS and
averaged results. Figure 1(a) shows the percentage of perfect matchings found
by HR and LS. When p1 varies from 0.1 to 0.4, both HR and LS always find
100% of perfect matchings (therefore, they are not depicted in Fig. 1(a)), while
p1 varies from 0.5 to 0.8, the percentage of perfect matchings found by HR is
slightly higher than that found by LS. Figure 1(b) shows the average execution
time of HR and LS. The experimental results show that HR runs about 100
times faster than LS for any p1 and p2. On average, the execution time of HR
increases from about 0.008(s) to 0.02(s), while that of LS increases from about
0.5(s) to 43.5(s) for any value of p2. In contrast, when p2 varies from 0.0 to 1.0,
the execution time of both HR and LS decreases slightly for any value of p1.
This can be explained as follows. Although LS considers only UBPs, the number
of such UBPs is very large, i.e. the number of neighbor matchings is very large
because a neighbor is generated by removing a blocking pair in the set of UBPs.
This increases significantly the execution time of LS. However, HR finds the set
of UBPs and removes many blocking pairs in the set of UBPs to generate a new
matching for the next iteration without evaluating the cost of matchings as in
LS and therefore, HR runs much faster than LS.

Fig. 1. Comparing solution quality and execution time of HR and LS algorithms

4.2 Experiments for HRT of Large Sizes

In this section, we present experimental results for HRT instances of large sizes
to consider the behavior of our algorithm. We set p = 0.03 and max iters = 1000
in HR.

Experiment 2. We chose n = 1000, m = 50, p1 ∈ [0.1, 0.8] with step 0.1, and
p2 ∈ [0.0, 1.0] with step 0.1. For each combination of parameters (n,m, p1, p2),
we randomly generated 100 HRT instances, in which cj of each hospital hj ∈ H
is generated randomly and cj ∈ [1, q], where q is the total number of residents

348 S. T. Cao et al.

ranked by hospital hj ∈ H. Our experimental results show that when p1 = 0.8,
HR finds 98% of perfect matchings for p2 ∈ {0.0, 0.2, 0.3} and 99% of perfect
matchings for p2 ∈ {0.4, 0.8}. For the remaining values of p1 and p2, HR finds
100% of perfect matchings. Figure 2(a) shows the average capacity in generated
instances. For each p1 ∈ [0.1, 0.8], the average capacity of hospitals is about
0.5n(1−p1) residents (i.e. from 450 residents to 100 residents). When p2 increases
from 0.0 to 1.0, the average capacity of hospitals remains unchanged. When
p1 = 0.8, meaning that hj has the smallest capacity cj , and therefore some
instances may have no perfect matchings and HR cannot find perfect matchings
for these instances. Figure 2(b) shows the average number of iterations used by
HR. When p1 increases from 0.1 to 0.8, the number of iterations used by HR
slightly decreases. When p2 increases from 0.0 to 0.9, the number of iterations
used by HR increases. However, when p2 = 1.0, the number of iterations used by
HR decreases rapidly because the probability of ties is 100%, meaning that the
ranks of hospitals in residents’ preference lists are the same. Therefore, HR only
considers the first accepted hospital instead of all hospitals in order to find an
UBP from the resident’s point of view. We can see that although the generated
instances have large sizes, HR used a small number of iterations, about 40 to
100, to find perfect matchings.

(a) Average capacity (b) Average number of iterations

Fig. 2. Average capacity of instances and average number of iterations used by HR for
n = 1000 and m = 50

Experiment 3. In this experiment, we chose n ∈ [100, 1000] with step 100,
m ∈ [10, 50] with step 5, p1 = 0.5, and p2 = 0.5. For each combination of
parameters (n,m, p1, p2), we randomly generated 100 HRT instances, in which
the capacity of each hospital is chosen as in Experiment 2. Figure 3(a) shows the
percentage of perfect matchings found by HR. We see that when m ∈ [20, 50],
HR always finds 100% of perfect matchings. When m = 10 and n increases
from 100 to 1000, HR finds about from 85% down to 47% of perfect matchings,
respectively, and the number of unassigned residents in stable matchings is about
from 1 to 2 unassigned residents as shown in Fig. 3(b). When m = 15, HR finds
about 98% of perfect matchings for all values of n ∈ [100, 1000].

A Heuristic Repair Algorithm for the HRT 349

Fig. 3. Percentage of perfect matchings and average unassigned residents for n ∈
[100, 1000] and m ∈ [10, 50]

Experiment 4. In this last experiment, we evaluated the effect of capacities of
hospitals on perfect matchings found by HR. To do this, we chose the values of
n, m, p1 and p2 as in Experiment 3. We changed the capacity of each hospital
as follows.

First, we considered a popular case, where cj = n/m, meaning that the
total capacity of hospitals is equal to the number of residents. The experimental
results, depicted in Fig. 4(a), show that HR finds 90% of perfect matchings for
n ∈ [100, 1000] and m ∈ [20, 50]. When m = 10, HR finds about from 85% (at
n = 100) down to 1% (at n = 1000) of perfect matchings. Figure 4(b) shows
the average execution time found by HR. When m increases from 20 to 50 and
n increases from 100 to 1000, the execution time found by HR increases about
from 0.01(s) to 1.5(s). However, when m = 10 and n increases from 100 to 1000,
the execution time found by HR increases about from 0.02(s) to 4.5(s), since the
percentage of perfect matchings found by HR decreases, meaning that HR used
many iterations to find perfect matchings for generated instances.

Fig. 4. Percentage of perfect matchings and average execution time found by HR,
where cj = n/m

350 S. T. Cao et al.

Fig. 5. Percentage of perfect matchings and average execution time found by HR,
where cj = [0.2q, 0.6q]

Second, we randomly generated cj ∈ [0.2q, 0.6q], where q is the total number
of residents ranked by hospital hj ∈ H. This means that each hospital ranks
about 50% of residents (since p1 = 0.5), but selects only about from 10% to 30%
of the total of ranked residents. Figure 5(a) shows that when (n,m) = (700, 10),
HR finds 99% of perfect matchings, and when (n,m) = (900, 10), HR finds 97%
of perfect matchings. For the remaining values of n and m, HR finds 100% of
perfect matchings. In this case, the percentage of perfect matchings found by
HR is higher than that when cj = n/m, meaning that the capacity for each
hospital strongly affects the solution quality of HRT. Figure 5(b) shows the
average execution time found by HR. When n increases from 100 to 1000, the
average execution time of HR increases only about from 0.01(s) to 0.4(s). We see
that when n = 1000 and m ∈ [10, 50], the execution time of HR is very small,
about 0.4(s), meaning that HR is efficient for solving HRT instances of large
sizes.

5 Conclusions

In this paper, we proposed a heuristic repair algorithm to solve HRT. The algo-
rithm starts to search a solution of the problem from a random matching. At
each iteration, the algorithm finds a set of undominated blocking pairs from the
residents’ point of view for the matching. Then, the algorithm removes the best
undominated blocking pair for each hospital such that it does not only remove
many blocking pairs from the residents’ of view as possible but also removes
as many blocking pairs as possible from the hospitals’ point of view. The algo-
rithm repeats until it finds a perfect matching or reaches a maximum number of
iterations. Experiments showed that our algorithm is efficient in terms of execu-
tion time and solution quality for HRT of large sizes. In the future, we plan to
extend this approach to find strongly stable matchings or super-stable matchings
for HRT [8,9].

A Heuristic Repair Algorithm for the HRT 351

References

1. Canadian resident matching service (CaRMS). http://www.carms.ca/
2. Biró, P., Manlove, D.F., McBride, I.: The hospitals/residents problem with couples:

Complexity and integer programming models. In: Proceeding of SEA 2014: 13th
International Symposium on Experimental Algorithms, Copenhagen, Denmark,
pp. 10–21 (June 2014)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 9(1), 9–15 (1962)

4. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search for stable
marriage problems with ties and incomplete lists. In: Proceedings of 11th Pacific
Rim International Conference on Artificial Intelligence, Daegu, Korea, pp. 64–75
(August 2010)

5. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches
in stable matching problems. Algorithms 6(4), 591–617 (2013)

6. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties
and incomplete lists. In: Proceedings of the 15th European Conference on Artificial
Intelligence, Lyon, France, pp. 141–145 (July 2002)

7. Irving, R.W.: Matching medical students to pairs of hospitals: A new variation
on a well-known theme. In: Proceedings of ESA 1998: the 6th Annual European
Symposium, Venice, Italy, pp. 381–392 (August 1998)

8. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties.
In: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, Bergen,
Norway, pp. 259–271 (July 2000)

9. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the hospitals/residents
problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 39

10. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incom-
plete lists and ties. In: Proceedings of International Colloquium on Automata,
Languages, and Programming, Prague, Czech Republic, pp. 443–452 (July 1999)

11. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(1), 471–484 (2013)

12. Kwanashie, A., Manlove, D.F.: An integer programming approach to the hospi-
tals/residents problem with ties. In: Proceedings of the International Conference
on Operations Research, pp. 263–269. Erasmus University Rotterdam (September
2013)

13. Manlove, D.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific
(2013)

14. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

15. Manlove, D.F., McBride, I., Trimble, J.: “Almost-stable” matchings in the hospitals
/ residents problem with couples. Constraints 22(1), 50–72 (2017)

16. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: A local
search algorithm for SMTI and its extension to HRT problems. In: Proceedings
of the 3rd International Workshop on Matching Under Preferences, pp. 66–77.
University of Glasgow, UK (April 2015)

17. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, Texas, pp. 1212–1218 (January 2015)

http://www.carms.ca/
https://doi.org/10.1007/3-540-36494-3_39

352 S. T. Cao et al.

18. Roth, A.E.: The evolution of the labor market for medical interns and residents:
A case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

19. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice
Hall Press, Upper Saddle River (2009)

	A Heuristic Repair Algorithm for the Hospitals/Residents Problem with Ties
	1 Introduction
	2 Background
	3 Algorithm for HRT
	4 Experiments
	4.1 Comparison with Local Search
	4.2 Experiments for HRT of Large Sizes

	5 Conclusions
	References

