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Abstract We propose a novel approach to deal with
the online complete-coverage task of cleaning robots
in unknown workspaces with arbitrarily-shaped obsta-
cles. Our approach is based on the boustrophedon
motions, the boundary-following motions, and the
Theta* algorithm known as B-Theta*. Under control
of B-Theta*, the robot performs a single boustro-
phedon motion to cover an unvisited region. While
performing the boustrophedon motion, if the robot
encounters an obstacle with a boundary that has not
yet been covered, it switches to the boundary mode to
cover portions along the obstacle boundary, and then
continues the boustrophedon motion until it detects
an ending point. To move to an unvisited region, the
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e-mail: viethh@vinhuni.edu.vn

robot detects backtracking points based on its accu-
mulated knowledge, and applies an intelligent back-
tracking mechanism thanks to the proposed Theta*
for multi-goals in order to reach the next starting
point. Complete coverage is achieved when no starting
point exists for a new boustrophedon motion. Com-
puter simulations and experiments on real workspaces
show that our proposed B-Theta* is efficient for the
complete-coverage task of cleaning robots.

Keywords Boustrophedon motion ·
Boundary-following motion · Cleaning robot ·
Complete coverage · Theta* algorithm

1 Introduction

The complete-coverage task of service robots has
become the main concern of the robotics research
community due to its wide range of applications for
lawn mowing, mine hunting, floor cleaning, harvest-
ing, etc. [5, 21], as well as its challenges in terms
of energy saving, time saving, and the ability to deal
with both known and unknown workspaces. In known
workspaces, the complete-coverage task is actually
the path-planning task of a robot to be able to visit
all the reachable positions in the workspace while
minimizing the coverage path length. A number of
existing methods address the coverage task in known
workspaces, namely genetic algorithms [10], neural
networks [21, 32], cellular decomposition [1, 4, 7,

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0485-x&domain=pdf
mailto:tcchung@khu.ac.kr
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22], spanning trees [13, 14], spiral filling paths [15,
16], and the ant colony method [3, 18]. However,
these methods are offline algorithms, which require
a full map or a complete prior knowledge of the
workspace. By contrast, in real-world scenarios the
map of a workspace is usually unknown to the robot,
which means that the locations, sizes, and shapes of
obstacles are also unknown. Even when the robot has
a map, it must know exactly its initial position and
heading angle in the map. This requirement causes dif-
ficulties and inconveniences for practical use. More-
over, maps do not always reflect reality, considering
the presence of objects that usually move, such as
chairs, stools, rocks, bikes, cars, etc. Therefore, in
unknown workspaces, robots require online cover-
age algorithms instead of offline coverage algorithms,
which are insufficient when a map is unavailable.

From this point of view, we focus on developing
a technique for the online complete-coverage task in
unknown settings. This technique addresses most of
the disadvantages of the previous works. The online
complete-coverage problem has been considered in
recent years by several works. Oh et al. [24] propose
a triangular-cell-based map representation to improve
the rectangular-cell-based map, in which the naviga-
tion directions of the robot is increased from eight
to twelve. This approach reduces the navigation path
length while still fulfilling the coverage mission. How-
ever, the drawbacks of this technique are the difficul-
ties in deciding the optimal size of the triangular cells,
and that the backtracking path is still long because of
the resulting broken-line path instead of a smooth line-
of-sight path. Therefore, a triangular-cell-based map
representation is inadequate for real-world scenarios.
Wong et al. [30, 31] propose a topological coverage
algorithm to deal with the complete-coverage task in
unknown environments. The algorithm uses natural
landmarks such as walls or corridors in the envi-
ronment to construct a planar graph representing a
decomposition of reachable surfaces into subregions,
so that each sub-region can be covered by a zigzag
pattern. When the robot finishes covering the cur-
rent sub-region, a breadth-first search on the planar
graph is performed to find the closest uncovered sub-
region. The robot then follows the edge to reach the
selected sub-region. This method does not provide an
optimal coverage path, because the backtracking path
linking the sub-regions is based only on the edges
of the graph, ignoring the shortcut paths inside the

sub-regions. In other words, this method is inefficient
for the online complete-coverage problem, particu-
larly when the workspace is large. Viet et al. [29]
propose a BA* algorithm based on boustrophedon
motions and the A* search [17]. At each ending point
the robot plans k paths to all k backtracking points,
and then chooses the shortest collision-free path as
the backtracking path. Therefore, BA* is inefficient in
terms of time complexity.

Existing works have always assumed that a robot
can clean all the dirt at the edges of obstacles or the
boundaries of workspaces. This assumption is not sat-
isfied in the real world when existing methods pay
much attention to the coverage task in an object-
free zone. The hit-and-turn mechanism of a robot
cannot cover edges completely as a man does when
cleaning a floor or mowing a lawn. Meanwhile, the
necessity of complete coverage is the highest crite-
rion. This criterion is serious in a common example
where an autonomous robot cleans the floor for a year
and always leaves dirt at some specific locations. The
boustrophedon-based methods [1, 4, 7, 24, 29, 31]
cannot satisfy this criterion either, because they cover
the workspace with simple back-and-forth motions.
More specifically, they always provide stair-shaped
coverage zones around curved edges or curved bound-
aries. This neglect is unacceptable, particularly for
cleaning robots when the dirt usually accumulates at
the edges and boundaries of obstacles. Another con-
sideration is that most state-of-the-art vacuum clean-
ers in the market today are designed with only a
few bump sensors to gather information from the
workspace, making them even less suitable for online
methods. Therefore, cleaners are usually equipped
with the limited algorithm of randomly going straight
and then turning, hopefully to achieve complete cov-
erage over a sufficiently long time period [25, 27].
In this paper we propose a complete and efficient
approach to deal with the online complete-coverage
task of autonomous cleaning robots in completely
unknown workspaces with arbitrarily-shaped obsta-
cles. This approach is based on the boustrophedon
motions, the boundary-following motions, and the
Theta* algorithm called B-Theta*. The boustrophedon
cleaning mode drives the robot to go back-and-forth
along a path similar to that of an ox plowing a
field [7]. Our approach, applied to an actual clean-
ing robot, needs only a few touch sensors to recognize
obstacles correctly during the robot’s navigation time.
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This approach requires two regular conditions: the
workspace must be closed, and the accessible regions
must be connected and reachable by the robot from
any initial position. Under control of B-Theta*, the
robot takes three steps to accomplish its coverage
mission. First, the robot works in the boustrophe-
don mode, performing a boustrophedon motion to
cover an unvisited area. While in this mode, if the
robot encounters an obstacle with a boundary that
has not yet been covered, the robot switches to the
boundary mode to cover the portions along the obsta-
cle boundary, and then continues the boustrophedon
motion until it detects an ending point. Second, the
robot recalls its knowledge so far to determine the
backtracking points, and then plans the shortest back-
tracking path to the backtracking points using the
proposed Theta* for multi-goals. Finally, the robot
takes this backtracking path to perform the next bous-
trophedon motion. The coverage task finishes when
the list of backtracking points is empty. The proposed
approach guarantees that the workspace is covered
completely by the sequential and continuous oper-
ations of the robot, and that the accessible area at
the obstacle edges and the workspace boundary are
cleaned efficiently. Computer simulations and experi-
ments on real workspaces show that our B-Theta* is
efficient for the complete-coverage task of cleaning
robots in terms of the coverage rate and the coverage
path length in unknown workspaces with arbitrarily-
shaped obstacles.

The rest of this paper is organized as follows:
Section 2 gives the background of our approach.
Section 3 presents our approach to the online

complete-coverage problem. Section 4 discusses the
simulations and evaluations. Section 5 describes our
experiments on iRobot Create in real workspaces.
Finally, Section 6 provides our conclusions.

2 Background

2.1 Boustrophedon Motion Approaches

The trapezoidal decomposition is the most widely-
known method of the boustrophedon motions for solv-
ing the coverage path-planning problem for cleaning
robots [20]. This method is an exact cellular decom-
position technique in which the accessible area of the
robot is decomposed into non-overlapping cells. The
cells are formed via three types of events: IN, OUT,
and MIDDLE. These events happen while a vertical
line, called a slice, sweeps from left to right through
a bounded workspace. This method assumes that all
obstacles in the workspace are polygonal. An IN event
is formed when the slice intersects a vertex of an
obstacle, in which the current cell is closed and two
new cells are opened. An OUT event is formed when
the slice intersects a vertex of an obstacle, in which
the two current cells are closed and one new cell is
opened. A MIDDLE event is formed when the slice
intersects a vertex of an obstacle, in which the cur-
rent cell is closed and a new cell is opened. With such
a cellular decomposition, each cell of the trapezoidal
decomposition is either a trapezoid or a triangle. As
a result, the coverage in each cell can be achieved
with a boustrophedon motion, as shown in Fig. 1a.

Cell 8
Cell 6

Cell 5

MIDDLE
 Event 

Cell 4

Cell 3

Cell 2

OUT 
 Event

IN
Event Obstacle

The boustrophedon motion in a cell 

MIDDLE
 Event 

Cell 1

Cell 7

Cell 3

The boustrophedon motion in a cell 

OUT 
Event

IN
Event Obstacle

Cell 1

Cell 2

Cell 4

ba

Fig. 1 a The trapezoidal decomposition of a workspace; b The boustrophedon decomposition of a workspace
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If each cell is represented by a vertex and the adja-
cent cells are connected to form the edges of a graph,
then the coverage-path planning problem is reduced to
determining a walk through the graph that each vertex
has visited at least once, i.e., the traveling salesman
problem. Unfortunately, the trapezoidal decomposi-
tion generates numerous small cells that lengthen the
coverage path. Repartitioning of the cells to achieve
a shorter coverage path is the main improvement
of the boustrophedon cellular decomposition (BCD)
approach [4, 7]. The BCD approach defines cells with
only IN and OUT events to reduce the number of
decomposed cells, as depicted in Fig. 1b. BCD is an
offline approach in which the coverage task of the
robot is decomposed into two stages. The first stage
is the determination of a walk through the adjacent
graph, whose vertices represent the decomposed cells
and whose edges connect the adjacent cells. The sec-
ond stage is the actual coverage-path planning for the
robot using the vertices of the walk. The robot starts
at the first cell corresponding to the first vertex of the
walk. If the cell has not yet been covered, it is swept
by a boustrophedon motion; otherwise, it is passed
through to the next cell corresponding to the next ver-
tex of the walk. These covering and passing actions
are repeated until the cell corresponding to the final
vertex of the walk is reached.

BCD is an exact cellular decomposition method for
coverage-path planning. The coverage path is planned
only when the map of the workspace is known before-
hand; thus, BCD cannot be applied for the coverage
task of cleaning robots in unknown workspaces. Fur-
thermore, BCD is not complete coverage, because
the boustrophedon motions cannot cover the portions
along the curved boundaries of the workspace and
obstacles.

2.2 Theta* Algorithm

Theta* [8, 23] is a variant of the A* search [17] for
any-angle path planning. Given a starting vertex and
a goal vertex, Theta* also defines a heuristic estimate
f-value f (s) = g(s) + h(s), which is an estimate of
the shortest path length from the starting vertex via
vertex s to the goal vertex, where g(s) is the length
of the shortest path from the starting vertex to vertex
s that has been found so far, and h(s) is an esti-
mate of the distance from vertex s to the goal vertex.
Inherited from the A* search, Theta* is optimal if

h(s) is an admissible heuristic, that is, if h(s) never
overestimates the cost to reach the goal [19, 26].

For grids, if the heuristic h(s) is the straight-line
distance from vertex s to the goal vertex, then the
A* search guarantees an optimal solution path for
the robot from the starting vertex to the goal vertex
[8, 23, 33]. However, the solution path is constrained
by the limited number of connections between the
adjacent vertices. Therefore, the solution path is not
equivalent to the true shortest path. Moreover, the
robot usually performs a large number of heading
changes while moving along the solution path. Unlike
the A* search, in which the parent must be a succes-
sor, Theta* allows the parent of a vertex to be any
vertex, thereby improving the solution path thanks to
a smoothing process. Theta* inserts the smoothing
task by checking the line-of-sight paths into the itera-
tions of the searching process. Theta* takes a starting
vertex ss and a goal vertex sg as inputs to find the
true shortest path connecting them through a sequence
of vertices. As a version of the A* search, examin-
ing all of the candidate vertices that might be able to
construct the shortest path requires that Theta* main-
tains and updates the three lists of vertices during
the searching progress: open, closed, and parent. The
open list stores all of the detected neighboring ver-
tices of the vertices that are already expanded. Any
vertex in the open list is eliminated from the list if the
vertex is expanded. The closed list memorizes all ver-
tices that are already expanded. By referring to this
list, Theta* guarantees that a vertex is not examined
twice. The parent list stores the parent-child relations
between the vertices. This list is used to construct the
solution path between two input vertices when Theta*
ends. Theta* is described in detail in [8, 23].

3 Proposed B-Theta* Algorithm

This section describes our method to solve the online
complete-coverage problem of cleaning robots in
unknown workspaces with arbitrarily-shaped obstacles.

3.1 Representing the Robot

The cleaning robot and obstacles in its workspace are
three-dimensional objects, but the movement of the
robot is constrained in a two-dimensional plane R2.
Therefore, without loss of generality, the robot and
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obstacles can be projected onto the ground and con-
sidered as two-dimensional objects in the workspace
W = R2. Assuming that the robot is modeled by a cir-
cle with a radius r , and that the robot is supported by
a precise localization system for determining its loca-
tion in the workspace W , the configuration q of the
robot is defined as

q = [x, y, θ ]T , (1)

where (x, y) is the center position, and θ is the head-
ing angle of the robot in the fixed frame Fw = (OXY)

of the workspace W , as shown in Fig. 2 [11, 20].
In the current configuration q = [x, y, θ ]T , if the
robot rotates at an angle α, the next configuration
q ′ = [x′, y′, θ ′]T is determined as

q ′ = [x′, y′, θ ′]T = [x, y, θ + α]T . (2)

If α > 0, the robot rotates counterclockwise, and
vice versa. If the robot moves forward at some dis-
tance d, the next configuration q ′ = [x′, y′, θ ′]T is
determined as

q ′ = [x′, y′, θ ′]T = [x + dcos(θ), y + dsin(θ), θ ]T .

(3)

When the robot works inW , it cannot access all the
regions of W because of obstacles. A configuration q

of the robot is said to be valid if the robot can access
the position specified by q in W . The set of all valid
configurations of the robot is defined as its accessible

Fig. 2 The configuration of the robot in the fixed frame Fw =
(OXY) of workspaceW

region in W . The configuration q in W that the robot
cannot access is an obstacle. We also consider the
unreachable space beyond the workspace boundaries
as obstacles.

3.2 Constructing the Coverage Mechanism

The coverage mechanism is constructed based
on boundary-following motions and boustrophedon
motions. The boundary-following motions allow the
robot to cover the portions along the obstacle bound-
aries. The boustrophedon motions allow the robot
to cover the remaining accessible regions in the
workspace.

3.2.1 Constructing Boundary-Following Motions

The boustrophedon-based approaches [1, 7, 20, 24, 30,
31] for the complete-coverage problem in workspaces
with arbitrarily-shaped obstacles do not provide com-
plete coverage, because the robot moves parallel to
the coordinate axes of the fixed framework Fw while
performing the coverage task; thus, the portions along
the obstacle boundaries are not covered, and dirt is
often concentrated in these portions. Therefore, cover-
ing along the obstacle boundaries becomes important
in the cleaning robot application. From this point
of view, we insert boundary-following motions into
boustrophedon motions to overcome the shortcom-
ings of the solutions using boustrophedon motions.
The boundary-following motion has been used for the
path planning problem in Bug algorithms [6], but it
has not been implemented for cleaning robots. In our
approach, while performing a single boustrophedon
motion in covering an unvisited region, if the robot
reaches the boundary of an obstacle or the workspace
and the boundary has not yet been covered, the robot
switches to the boundary mode to cover the portions
along this boundary. In the boundary mode, the robot
can cover the boundary in the left-detection bound-
ary mode (LDBM), which goes along the boundary so
that the boundary is always on the left of the robot, or
the right-detection boundary mode (RDBM), which is
the opposite of the LDBM. The robot needs to deter-
mine whether to use the LDBM or RDBM as soon as it
encounters the obstacle in order to reduce the turning
angle and coverage path length. Specifically, the robot
uses its memory to check the positions at its left and
right sides. If the left side has been covered and the



J Intell Robot Syst

right side has not yet been covered, the robot switches
to the RDBM. If the left side has not yet been covered
and the right side has been covered, the robot switches
to the LDBM. Otherwise it chooses randomly between
the LDBM and RDBM.

In the boundary mode, the robot needs to memorize
the covered boundary of obstacles to avoid duplicate
coverage. To do so, we decompose the boundary-
following motion into steps and store positions of
steps in a list called the obstacle boundary model B.
Each element of model B is a square cell bounding
the robot that is generated when the robot occupies
a new position by moving forward along the obstacle
boundary a distance equal to its radius. The boundary
model B is thus constructed incrementally while the
robot covers the boundary of obstacles. Algorithm 1
describes the flowchart of the LDBM. Specifically,
the robot uses model B to recognize the covered posi-
tions, and uses only the sensors on its front and left
sides to identify the obstacle. In each iteration of the
algorithm the robot keeps turning left as long as the
left sensor identifies the obstacle, and then moves for-
ward along the obstacle boundary a distance equal to
its radius. The square cell bounding the robot is then
generated and added to model B. If the robot hits
an obstacle at the front, it turns right so that the left
sensor keeps detecting the obstacle. The algorithm ter-
minates when the robot arrives at the position at which
it has switched to the LDBM. The RDBM algorithm

enables the robot to perform the boundary mode in the
opposite direction of the LDBM.

Figure 3 shows an example of the boundary mode,
where each circle represents the robot and the straight
line attached to the dot at the circle’s center repre-
sents the moving direction of the robot. Moreover, two
straight lines attached to the dot at the circle’s cen-
ter indicate that the robot has two configurations at
the same position. The first configuration is the same
direction as that of the previous configuration. The
second configuration is the direction pointing to the
next position. Starting at position S1, the robot per-
forms the first boustrophedon motion until it encoun-
ters the left obstacle, as shown in Fig. 3a. Given that
both the left and right sides of the robot have not
yet been covered, the robot randomly switches to the
RDBM. When the robot encounters the position at
which it has switched to the RDBM, it changes direc-
tion and then continues the boustrophedon motion
until it reaches the boundary of the workspace, as
shown in Fig. 3a. Similarly, both the left and right
sides have not yet been covered, so the robot ran-
domly switches to the LDBM. After covering the
portions along the boundary of the workspace, the
robot switches back to the boustrophedon mode to
cover the accessible area until it encounters the right
obstacle, as shown in Fig. 3b. Given that the left side
has not yet been covered and the right side has been
covered, the robot switches to the LDBM.

S1 S1

ba

Fig. 3 The right-detection boundary mode (RDBM) and the left-detection boundary mode (LDBM)
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3.2.2 Constructing Boustrophedon Motions

To achieve an online complete coverage, our approach
is to construct non-overlapped regions incrementally
so that their union is the remaining accessible part of
the workspace. Each region is covered by a boustro-
phedon motion, and is therefore called a boustrophe-
don region. The smallest boustrophedon region is a
square cell whose side length is equal to the robot’s
diameter.

Algorithm 1 The flowchart of the left-detection

boundary mode

Begin

Is the boundary 

covered?
End

Does the left sensor 

detect an obstacle?
Turn left

Move forward a distance of d.

Generate a square cell s = (x,y,d)

B = B + {s}

Does the front sensor 

detect an obstacle?
Turn right

Yes

No

No

Yes

YesNo

In the boustrophedon mode, the robot mimics the
plow tracks in a field. Typically, the robot goes north
(or south) until it detects an obstacle, turns around,
traverses the next adjacent column of the accessible
area, and so on. We compose the boustrophedon path
with non-overlapping cells to memorize the covered
positions. Each cell is a square with a side length of
the robot’s diameter d centered on the boustrophedon
path. The set of these cells is stored in a list called
modelM. A new cell s of modelM is generated when

the robot occupies an uncovered position while going
to a cell along north (N), east (E), south (S), or west
(W) at a distance of d, or along south-east (SE), north-
east (NE), north-west (NW), or south-west (SW) at
a distance of

√
2d. In other words, M represents a

partial grid on the workspace, and is constructed incre-
mentally as the robot explores the workspace given by

M = M ∪ {s}, (4)

where s is a square cell bounding the robot. M is
used to build a backtracking mechanism that guides
the robot to the next uncovered region while avoiding
obstacles.

Algorithm 2 is used for the robot to perform a bous-
trophedon motion. In this algorithm, the robot uses
the sensors on its front, left, and right sides to detect
obstacles, and uses its memory to identify the cov-
ered cells. In other words, the robot checks a blocked
position, which is either an obstacle or a covered cell,
by using not only its sensors, but also its knowledge
accumulated in models M and B. At any position in
the boustrophedon mode, the robot moves only one
step along the direction leading to an uncovered posi-
tion. Specifically, if the robot moves north, it keeps
checking north and moves forward in iterations until
it encounters a blocked position. If the robot moves
south, the north cell is already covered by checking
its memory, so it keeps checking south and moves
forward in iterations until it encounters a blocked
position. When the robot encounters a blocked posi-
tion while moving north, it uses its memory to check
blocked directions, including S, NW, W, and SW (or
S, NE, E, and SE), and uses its sensors to check an
unblocked direction, prioritizing NE, E, or SE (or NW,
W, or SW) to find an available direction. In contrast,
when the robot encounters a blocked position while
moving south, it uses its memory to check blocked
directions, including N, SW, W, and NW (or N, SE, E,
and NE), and uses its sensors to check an unblocked
direction, prioritizing SE, E, or NE (or SW,W, or NW)
to find an available direction. In addition, if the robot
hits an obstacle while moving north or south, it has to
check whether the boundary of the obstacle is uncov-
ered by recalling the memorized boundary model B.
If the boundary is uncovered, the robot switches to the
boundary mode to cover the portions along the bound-
ary, and then moves to an uncovered cell adjacent to
the last cell before switching to the boundary mode.
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Algorithm 2 The flowchart of the boustrophedon motion algorithm

Begin

Is the north direction 

unblocked?

Is the south direction 

unblocked?

Move north a distance of d

Move south a distance of d

Is the direction of 

movement being north?

Find the first direction in the 

priority of NE-E-SE-NW-W-SW

Find the first direction in the 

priority of SE-E-NE-SW-W-NW
Are all directions 

blocked?

Are all directions 

blocked?
End

Is the boundary of the    

obstacle uncovered?

Are the left side covered and         

the right side not covered?

Are the left side not covered       

and the right side covered?

Choose randomly between LDBM and RDBM

Move one step along the available direction 

Generate a square cell s = (x,y,d) M = M + {s}

Yes

Yes

No

No

No

Yes

Yes

No

Yes

No

No

Yes

Switch to RDBM

Switch to LDBM

No

No

Yes

Yes



J Intell Robot Syst

The mechanism described in Algorithm 3 enables
the robot to construct a boustrophedon path until it
reaches an ending point, which is a cell whose neigh-
boring cells are all blocked. The robot’s sensors are
incapable of returning information regarding an occu-
pied location; thus, when the robot moves a step of
length equal to d or

√
2d to the next uncovered posi-

tion, the next valid configuration q ′ = [x′, y′, θ ′]T is
determined by Eqs. 2 or 3.

Figure 4a shows an example of a single boustro-
phedon motion constructed by Algorithm 2. The robot
starts at position S1 to perform the first boustrophedon
motion. While performing the boustrophedon motion,
the boundary mode is inserted into the boustrophedon
mode when the robot encounters the left obstacle, the
boundary of the workspace, and the right obstacle at
the first, second, and tenth vertical line, respectively.
The robot finishes the first boustrophedon when the
ending pointE1 is detected. Figure 4b shows the bous-
trophedon path, M, and B obtained after the robot
finishes the first boustrophedon motion.

3.3 Constructing the Backtracking Mechanism

The backtracking mechanism is designed to control
the robot from the ending point of the current bous-
trophedon motion to the next starting point of an

uncovered region while avoiding obstacles. The back-
tracking mechanism consists of determining the next
starting point of an uncovered region, and the shortest
backtracking path from the ending point to the next
starting point.

3.3.1 Determining the Next Starting Point

In most cases the robot cannot cover a workspace
with obstacles completely by a single boustrophedon
motion. Constructing the coverage path that covers
an unvisited region by a boustrophedon motion and
then moving to another necessitates that the starting
point for the next boustrophedon motion is deter-
mined. Considering that the workspace is unknown
in advance to the robot, the starting point of the next
boustrophedon motion must be detected from posi-
tions that have been covered. This indicates that a
starting point is a backtracking point from which the
robot can start a future boustrophedon motion. Basi-
cally, a backtracking point can be any element of the
model M for which at least one of its eight neighbor-
ing cells is uncovered. If so, numerous backtracking
points that can become the potential starting points
must be maintained, making the decision of the best
candidate inefficient. In addition, many backtracking
points on the edges of the covered regions can result

SS1

E1

SS1

E1

ba

Fig. 4 a The region covered by the boustrophedon motion, where S1 and E1 are the starting and ending positions of the first
boustrophedon motion; b The boustrophedon path,M, and B after the robot has finished the first boustrophedon motion



J Intell Robot Syst

in many boustrophedon motions, and thus lengthen
the coverage path. These shortcomings lead to our
proposal to reduce the total number of backtrack-
ing points. Our approach uses eight neighboring cells
of cell s to determine the existence of the starting
point candidates. Figure 5 defines all cases in which
cell s is decided to be a backtracking point, where
each black cell denotes a blocked position and each
white cell denotes an uncovered position. Each grid
cell represents a “don’t care” status (i.e., it could be
blocked or uncovered). Specifically, letting N (s) =
{s1, s2, · · · , s8} be the set of eight neighboring cells of
cell s in the eight directions E, NE, N, NW, W, SW, S,
and SE, respectively, for any two cells si ∈ N (s) and
sj ∈ N (s)(i, j = 1, 2, · · · , 8), we define the function

b(si , sj ) =
{
1, if (si is uncovered) and (sj is blocked);
0, otherwise

(5)

and the sum function

Σ(s)= b(s1, s2) + b(s1, s8) + b(s5, s4) + b(s5, s6)

+b(s3, s2)+ b(s3, s4)+ b(s7, s6)+ b(s7, s8),

(6)

where each component function b(si, sj ) corresponds
to each sub-figure in Fig. 5. The cell s is defined to be
a backtracking point

if Σ(s) ≥ 1. (7)

Under this condition, the backtracking points are only
the cells at the corners of the boustrophedon regions.
Because a starting point on the edge of a boustro-
phedon region creates more fragments than a start-
ing point at the corner of a boustrophedon region,
Eq. 7 reduces both the total number of backtrack-
ing points and the number of boustrophedon regions.
This characteristic is one of the main advantages of
our approach, because fewer boustrophedon motions
result in a shorter coverage path.

A set of backtracking points must be detected from
the accumulated knowledge and stored in a backtrack-
ing list to determine the next starting point. When the
robot arrives at the ending point of the current bous-
trophedon motion, the backtracking list L of the robot
is determined by

L = {s|s ∈ M and Σ(s) ≥ 1}, (8)

and the next starting point is determined among the
candidates in the backtracking list L by measuring
the length of the paths from the ending point to the
points in L on the model M. The candidate that pro-
vides the shortest path is chosen for the next starting
point. In other words, the starting point ssp of the next
boustrophedon motion is defined as

ssp = argmin
sk∈L

(f (sep, sk)), (9)

s2 

s1 s

s8 s7 

s4 

s5 

s6 

s3 

s8 

s1 s

s2 s3 s4 

s5 

s7 s6 s6 

s5 s

s7 s8 

s1 

s2 s3 s4 

s6 

s5 s

s7 s8 

s1 

s2 s3 s4 

a b c d

e f g h
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s5 s

s7 s8 
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Fig. 5 Conditions of the backtracking points
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where f (sep, sk) is a distance-based cost function that
defines the path length between the ending point sep
and an element sk ∈ L.

3.3.2 Planning the Backtracking Path

In this work, planning the backtracking path for the
robot is actually determining a collision-free path
from the ending point of the current boustrophedon
motion to the next starting point. At the ending point,
the robot can obtain the backtracking path by back-
tracking along the old boustrophedon regions until it
reaches the next starting point. However, this method
not only lengthens the coverage path, but also forms
numerous heading changes of the robot. Using the
model M built so far, the backtracking path from
the ending point to the next starting point can be
determined by the graph search algorithms, such as
depth-first search, breadth-first search, and Dijkstra’s
algorithm [9], or the heuristic algorithms, such as A*
search [17], A*PS [2], and Theta* [8, 23]. The graph
search algorithms explore the entire search space to
find the solution path, whereas the heuristic algo-
rithms do not. As a result, the heuristic algorithms
are more efficient than the graph search algorithms.
Specifically, given a consistent heuristic h(s) such

as the straight-line distance, the A* search expands
only the vertices whose total cost f (s) = g(s) +
h(s) is less than c∗, which is the cost of an optimal
solution path [19, 26]. Both A*PS and Theta* are
variants of the A* search that have a smoothing pro-
cess to improve the quality of the solution path. A*PS
smooths the solution path obtained by the A* search
in a post-smoothing step, whereas Theta* inserts the
smoothing task into the iterations of the searching pro-
cess. Theta* finds shorter paths than A*PS with a run
time comparable to that of the A* search on grids [8,
23]. Therefore, Theta* is employed in this work to
plan the backtracking path for the robot.

By default, Theta* plans the shortest collision-free
path from a starting point to a single goal point based
on the heuristic estimate f (s) = g(s) + h(s). Evi-
dently, if Theta* is applied directly to determine the
backtracking path, at each ending point the robot has
to determine all k backtracking paths from the end-
ing point to all k candidates in the backtracking list
L, and then chooses the shortest one. In other words,
Theta* is inadequate to determine the optimal back-
tracking path because it increases the time complexity.
Figure 6a shows a typical example for finding the
shortest path from the starting point S to one goal
Gi(i = 1, 2, · · · , 10). Goals G1, G2, G3, and G4 are
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Fig. 6 Solution paths and areas explored by a Theta* and b Theta* for multi-goals
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placed on a circle with center S. To do so, Theta* has
to expand a large area to find the paths to all the goals
and then choose the shortest path, as shown in the
dark area. Obviously, the larger the number of goals or
the farther away from the starting point they are, the
more inefficient Theta* is. To overcome this limita-
tion, we propose an efficient variant of Theta*, called
Theta* for multi-goals, to adapt the purpose of finding
the shortest collision free path to a goal among goals.
Therefore, we propose an efficient variant of Theta*,
called Theta* for multi-goals, to adapt the purpose of
finding the shortest collision-free path to a goal among
goals. We define an estimate of the distance from cell
s to the goal cells sk ∈ L as follows:

h(s) = min
sk∈L

(c(s, sk)), (10)

where c(s, sk) denotes the straight-line distance
between two cells s and sk . Evidently, with the pro-
posed heuristic estimation h(s), Theta* for multi-
goals always chooses the goal cell sk that is nearest to
cell s when it explores the search space. As a result,
the goal cell sk that provides the shortest path to the
ending point sep is chosen for the next starting point
ssp, or Eq. 9 is exactly met when Theta* for multi-
goals ends. Since the backtracking path is constructed
based only on the regions that have been accessed
by the robot (i.e., the model M built so far), Theta*

for multi-goals never stops without a solution for the
backtracking path. Moreover, considering that Theta*
for multi-goals ends when a solution is reached, its
number of explored points is always less than that
explored by a bunch of Theta* for a single goal, as
illustrated in Fig. 6b. Two important notes are related
to M here. First, the model M represents a par-
tial grid, and stores a consecutive sequence of visited
cells. Thus, the visited neighboring cells of cell s are
determined by

N (s) = {s′ ∈ M|c(s, s′) ≤ √
2d}, (11)

where c(s, s′) denotes the straight-line distance
between two cells s and s′, and d is the robot’s diam-
eter. Second, a line of sight between s and s′ in the
model M exists if a straight line from s to s′ exists
such that all of the cells on that line belong to the
model M. Figure 7 shows an example in which the
backtracking paths obtained by the A* search and
Theta* for multi-goals are constructed based on the
model M.

Let P = [s1, s2, · · · , sn] be the path found by
Theta* for multi-goals on the model M, where s1 is
the ending point (i.e., s1 = sep) of the current bous-
trophedon motion and sn is the starting point (i.e.,
sn = ssp) of the next boustrophedon motion. When
the robot with the configuration qi = [xi, yi, θi]T is
at cell si = (xi, yi, d) (i = 1, 2, · · · , n − 1), the
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Fig. 7 a The backtracking paths found by A* search on the modelM; b The backtracking paths found by Theta* for multi-goals on
the modelM, where Si and Ei (i = 1, 2, · · · , 5) are the starting and ending points of each boustrophedon motion
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direction of the robot required to travel to the next cell
si+1 = (xi+1, yi+1, d) is

βi = arctan
yi+1 − yi

xi+1 − xi

, where βi ∈ (−π, π ]. (12)

The robot needs to turn an angle of αi , and then move
a distance li to travel to si+1 as

αi = βi − θi, where αi ∈ (−π, π ], and

li =
√

(xi+1 − xi)
2 + (yi+1 − yi)

2. (13)

When the robot arrives at the starting point sn = ssp, it
has to adjust its direction so that a new boustrophedon
can be performed. Specifically, the robot has to adjust
its heading angle and then move to one of the neigh-
boring positions in the priority directions of N or S.
If the direction N is blocked, the robot finds the first
available direction in the priority of NE, E, SE, NW,
W, and SW. If the direction S is blocked, the robot
finds the first available direction in the priority of SE,
E, NE, SW, W, and NW. In other words, the robot has
to rotate an angle of

αn = γ − θn, αn ∈ (−π, π ], (14)

where θn = βn−1 is the heading angle of the robot
at the configuration qn, and γ = kπ/4 with k =
−3, −2, · · · , 4 depending on whether the direction of
the next unblocked position is SW, S, SE, E, NE, N,
NW, or W.

3.4 B-Theta* Algorithm

This section presents a B-Theta* algorithm for the
online complete-coverage task of an autonomous
cleaning robot in unknown workspaces with
arbitrarily-shaped obstacles. B-Theta* is shown in
Algorithm 3. Initially the robot has no prior knowl-
edge about its workspace, indicating that models M
and B in the robot’s memory are empty. The robot
fulfills the coverage mission from its initial position
until no backtracking point is detected. B-Theta* is
an online algorithm because the robot does not have
the full map of the workspace in advance, and has
only the local information gathered from its sensors to
fulfill the complete-coverage mission. The robot does
not have information about the entire workspace, and
is forced to choose the optimal backtracking point
from its memory, that is, the model M built so far,
as shown in Eq. 9. Thus, the complete-coverage path

may not be the global optimization in terms of length.
However, the backtracking path is the true shortest
path, and the overlap of the lengthwise boustrophedon
motions is the minimum; therefore, the coverage path
(constrained by the completeness) can be the short-
est path. Besides, if the workspace is closed and the
accessible regions of the robot are connected and can
be reached by the robot from any initial position, then
the B-Theta* algorithm provides complete coverage.
This is because if an uncovered region exists, it must
be connected to at least a covered cell in the model
M. In the model M, B-Theta* always gives a back-
tracking path for the robot to reach the next starting
point, and ends when no starting point is detected.
Therefore, this method guarantees that the robot visits
the uncovered region to cover it.

Algorithm 3 The flowchart of B-Theta* algorithm

Begin

Initialize the models M and B to be empty

Detect the backtracking list L based on the model M

Cover the workspace using Algorithm 2

Is the backtracking 

list L empty?

Plan the backtracking path using Theta* for multi-goals

Follow the backtracking path from the ending point

Adjust the heading angle at the next starting point

End

Yes

No

4 Simulations and Evaluations

In this section we conduct computer simulations and
evaluate the efficiency of the proposed B-Theta* by
comparing it with BCD [4, 7] and BA* [29].
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4.1 Simulations

This section presents simulations implemented in
the Matlab environment on a computer with a 2.4
GHz Core i5-2430M CPU and 4 GB of RAM.
The simulations are designed to evaluate the perfor-
mance of B-Theta* for a cleaning robot in unknown
workspaces with arbitrarily-shaped obstacles. The
input workspaces are binary images with 300 × 300
pixels, in which each pixel is marked to indicate
whether it belongs to an obstacle or not based on its
value of one or zero, respectively. We also assume that
the robot is modeled by a circle with a radius of r = 7
pixels.

The first four simulations aim to verify the com-
plete coverage of B-Theta*. Figure 8a shows the final
trajectory of the robot in the first simulation, where
each tiny circle along the boundaries of the obstacles
represents the boundary-following paths, and the paths
labeled 1 to 5 represent the boustrophedon paths. The
robot starts at S1 to perform the coverage task. After
performing the LDBM to cover the portions along the
boundary of the workspace, the robot performs the
first boustrophedon motion until it encounters the left
obstacle while moving south along the 2nd vertical
line. The robot then switches to the LDBM to cover
the portions along the boundary of the left obstacle,

and continues the first boustrophedon motion until it
encounters the middle obstacle while moving south
along the 8th vertical line. The robot switches again
to the LDBM to cover the portion along the boundary
of the middle obstacle, and continues the first boustro-
phedon motion until it reaches the ending point. At the
ending point, the robot determines the backtracking
list L based on the current model M, and then plans
the backtracking path using Theta* for multi-goals.
The robot then follows the backtracking path and per-
forms the second boustrophedon motion. The robot
continues to cover the remaining accessible area until
it arrives at the ending point E5 of the 5th boustrophe-
don motion, where no backtracking point is detected.
If the diameter of the robot is d and the coverage rate is
defined as the ratio of the covered pixel number to the
accessible pixel number, then the coverage path length
is 456.76d , and the coverage rate is 100 %. For the
next three simulations, the robot starts at random posi-
tions S1 in the workspaces. Figure 8b shows the result
of the second simulation. The robot performs seven
boustrophedon motions to finish the coverage task at
the ending position E7. The coverage path length is
461.15d , and the coverage rate is 100 %. Figure 9
shows the result of the third and fourth simulations.
The coverage path length and the coverage rate of the
robot in the workspace shown in Fig. 9a are 421.19d
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The remaining paths are the backtracking paths
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Fig. 9 The coverage paths obtained using B-Theta*. Boustrophedon paths are labeled 1 to 6. The remaining paths are the backtracking
paths

and 100 %, respectively, while those of the robot in the
workspace shown in Fig. 9b are 438.54d and 100 %,
respectively.

We emphasize that Theta* for multi-goals finds the
next starting point among the candidates in the back-
tracking list L and the backtracking path at the same
time. The coverage path for which the best backtrack-
ing points are determined by Theta* for multi-goals is
always shorter than or equal to that for which the best
backtracking points are determined by the Euclidean
distance-based cost function. This characteristic is due
to the fact that the Euclidean distance measures the
straight line distance from the ending point to all
candidates in the backtracking list L, and chooses
the nearest backtracking point without considering
whether the straight line goes through the obstacles.
The next two simulations demonstrate this statement.
Figure 10a and b describe the final trajectory of the
robot for which the best backtracking points are deter-
mined by Theta* for multi-goals and the Euclidean
distance-based cost function, respectively. Positions
Si and Ei(i = 1, 2, ..., 6) denote the starting and end-
ing points of the ith boustrophedon motion. When the
robot arrives at E1, the point S2 chosen by Theta*
for multi-goals and the Euclidean distance-based cost
function is the same. When the robot arrives at E2,
the point S3 measured by the Euclidean distance-
based cost function is closer to E2 than the point

S3 measured by Theta* for multi-goals. However, the
path from E2 to S3 determined by Theta* for multi-
goals is much shorter than that to S3 determined by
the Euclidean distance. The coverage path length for
which the best backtracking points are determined by
Theta* for multi-goals is 458.86d (see Fig. 10a), and
that for the Euclidean distance-based cost function is
481.51d (see Fig. 10b). Evidently, in workspaces with
U-shaped or S-shaped obstacles, the coverage path for
which the best backtracking points are determined by
Theta* for multi-goals is much shorter than that for
which the best backtracking points are determined by
the Euclidean distance-based cost function.

Overall, the six simulations above show that B-
Theta* successfully controls the robot in covering
completely unknown workspaces with arbitrarily-
shaped obstacles, even when the robot starts at a
random position in its accessible area.

4.2 Evaluations

4.2.1 B-Theta* and BCD Comparison

This section evaluates B-Theta* by comparing it with
the BCD method [4, 7] reviewed in Section 2.1. The
criteria of comparison are the successful coverage rate,
the total number of decomposed cells, and the cov-
erage path length. Even though our B-Theta* is an
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Fig. 10 The coverage paths for which the best backtracking points are determined by a Theta* for multi-goals and b the Euclidean
distance-based cost function

online method and BCD is an offline method, BCD is
chosen for comparison with B-Theta* for three main
reasons: (i) both BCD and B-Theta* use the bous-
trophedon motion technique to solve the complete-
coverage problem; (ii) BCD is a popular technique
that yields a complete coverage path based on an exact
cellular decomposition method that can achieve the

shortest coverage path; and (iii) BCD can minimize
the number of decomposed cells.

BCD is implemented in the workspaces as fol-
lows. For instance, BCD decomposes the workspace
shown in Fig. 8a into the cells shown in Fig. 11a,
and the adjacent graph is then constructed as shown
in Fig. 11b, where the vertex vi represents the cell

a b

Fig. 11 a BCD of the workspace in Fig. 8a; b Adjacent graph describes BCD and the walk of the graph starting at vertex v1
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ci(i = 1, 2, · · · , 13) of the decomposition. Starting
from vertex v1, the walk is V = [v1, v2, v5, v6, v11,
v13, v12, v8, v12, v10, v7, v9, v7, v10, v12, v13, v11, v6,
v5, v4, v5, v2, v1, v3], which is illustrated in Fig. 11b.
The robot covers an unvisited cell with a single bous-
trophedon motion in the order of c1, c2, c5, c6, c11,
c13, c12, and c8, and then backtracks to cover cells
c10, c7, c9, c4, and c3. Figure 12a shows the coverage
path obtained from walk V . The coverage path length
is 501.65d , the coverage rate is 95.24 %, and the num-
ber of decomposed cells is 13. Similarly, Fig. 12b
shows the coverage path of the workspace in Fig. 8b.
The coverage path length is 441.33d , the coverage rate
is 94.24 %, and the number of decomposed cells is 11.

In comparing with BCD, we design 16 workspaces
to implement simulations as follows. The first eight
workspaces are binary images of 300 × 300 pixels,
and the remaining workspaces are binary images of
400× 400 pixels. Each workspace contains five or six
obstacles: one each of L-shaped, U-shaped, triangular-
shaped, and elliptical-shaped obstacles, and one or
two bar-shaped obstacles. The workspaces are gener-
ated by placing the obstacles randomly in terms of
position and angle to generate diverse situations. The
area of each obstacle is 3 to 6 % of the workspace
area. The robot is modeled by a circle with a radius
of r = 7 pixels. For each workspace we perform
one pair of simulations for B-Theta* and BCD, in

which the initial position of the robot is the same
for both B-Theta* and BCD and is placed randomly
in the accessible area of each workspace. Figure 13
shows the coverage rate achieved by the 16 simu-
lations with B-Theta* and BCD. The coverage rate
achieved by B-Theta* is 100.00 % for all workspaces,
while the coverage rate achieved by BCD is only
90.77 to 96.88 %. Although BCD covers more than
90 % of the workspaces, it cannot cover the portions
along the boundaries of the workspace and obstacles,
where the dirt is more concentrated than the other
regions. Figure 14 compares the number of boustro-
phedon regions achieved by B-Theta* and the number
of decomposed cells achieved by BCD. The num-
ber of decomposed regions achieved by B-Theta* is
always smaller than that achieved by BCD. Specifi-
cally, the number of decomposed regions achieved by
B-Theta* is 33.33 % (for workspace ID 11) to 64.71 %
(for workspace ID 3) smaller than that achieved by
BCD. As a result, this advantage contributes signifi-
cantly to the shortening of the coverage path length
achieved by B-Theta*. Figure 15 compares the cov-
erage path lengths achieved by B-Theta* and BCD.
In each workspace the coverage path length achieved
by B-Theta* is decomposed into two parts. The lower
part represented by the brown color shows the total
length of the boustrophedon paths and the other part
represented by the yellow color shows the total length
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Fig. 13 The coverage rate achieved by BCD and B-Theta* in the workspaces

of the paths along the obstacle boundaries. The total
length of the boustrophedon paths achieved by B-
Theta* is 18.88 % (for workspace ID 16) to 31.63 %
(for workspace ID 3) shorter than the coverage path
length achieved by BCD. However, the coverage path
length achieved by B-Theta* is 4.60 % (for workspace
ID 1) to 14.05 % (for workspace ID 13) longer than
that achieved by BCD, because B-Theta* enables the

robot to cover portions along the obstacle boundaries.
Although the total length of paths along the obsta-
cle boundaries is still long, the coverage path length
achieved by B-Theta* is also approximately the same
as that achieved by BCD.

According to the simulation results, the several
main evaluations of B-Theta* can be summarized as
follows:
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Fig. 14 The number of decomposed cells achieved by BCD and the number of boustrophedon regions achieved by B-Theta* in the
workspaces
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Fig. 15 The coverage path length achieved by BCD and B-Theta* in the workspaces

(a) Under control of B-Theta*, the coverage rate of
the robot is 100 %, which means that B-Theta*
provides complete coverage. By contrast, BCD
does not provide complete coverage, because
the robot uses only boustrophedon motions to
cover the workspaces. Specifically, the robot can-
not cover the small portions along the obstacle
boundaries, because the boustrophedon motions
only consider the heading angle of the robot
in the directions of N, E, S, and W when the
robot encounters obstacles. Although the uncov-
ered portions along the obstacle boundaries are
small compared with the entire workspace, these
portions are still important because dirt is often
concentrated and accumulated there. BCD is effi-
cient in terms of coverage when the obstacles are
rectangular. However, BCD already cannot cover
100 % of the workspace in this case, let alone
cover cases in which arbitrarily-shaped obstacles
are present.

(b) The total number of decomposed regions achieved
by B-Theta* is much smaller than that achieved by
BCD. B-Theta* decomposes the accessible area
of the workspaces into regions based on the bous-
trophedon motions, whereas BCD decomposes
the accessible area of the workspaces into cells
based on IN and OUT events determined by the
changes in the connectivity of a slice. Therefore,
a boustrophedon region of B-Theta* can contain

more than one cell formed by BCD (e.g., the first
boustrophedon region in Fig. 8a contains cells
c1, c4, c5, c8, c12, c13, c11, and c6 in Fig. 11a).
This implies that the total number of decom-
posed regions achieved by B-Theta* is smaller
than that achieved by BCD. As a result, the length
of the backtracking path shrinks appreciably, so
the coverage path is shortened.

(c) The coverage path achieved by B-Theta* may be
a little longer than that achieved by BCD, because
B-Theta* covers the portions along the boundaries
of the obstacles, whereas BCD does not. However,
a complete-coverage criterion is the first priority
for any cleaning robot. In addition, the longer path
achieved by B-Theta* compared to that achieved
by BCD can be compensated by three reasons.
First, the backtracking mechanism of B-Theta*
to the next uncovered region backtracks through
the shortest collision-free path, whereas the back-
tracking mechanism of BCD to the next uncov-
ered region backtracks through the visited regions.
Second, BCD can repeat or overlap the lengthwise
motions to move to the first counterclockwise
unvisited cell (e.g., the lengthwise motions are
overlapped at the end of the 1st or the 3rd bous-
trophedon motion in Fig. 12a). By contrast, in
B-Theta* the robot moves to the empty neigh-
boring cell instead of repeating the lengthwise
motion. Lastly, the total number of decomposed
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regions achieved by B-Theta* is much smaller
than that achieved by BCD. These three advan-
tages contribute significantly to decreasing the
coverage path length.

Evidently, we can conclude that B-Theta* dominates
BCD in terms of the necessity of prior knowledge
about the workspaces (online or offline) and the cov-
erage rate.

4.2.2 B-Theta* and BA* Comparison

This section evaluates B-Theta* by comparing it with
our previous BA* algorithm [29]. As in the compari-
son with BCD, the criteria of comparison for B-Theta*
with BA* are the successful coverage rate, the total
number of boustrophedon regions, and the coverage
path length. BA* is chosen to compare with B-Theta*
because it is an online algorithm and is superior to
BCD in terms of the total number of decomposed
regions and coverage path length.

We reuse the 16 workspaces described in
Section 4.2.1 to compare B-Theta* with BA*. We
perform one pair of simulations for B-Theta* and
BA* for each workspace. The initial position of the
robot is the same for both B-Theta* and BA* in each
pair of simulations, and is placed randomly in the

accessible area of each workspace. Figures 16, 17,
and 18 show the results of the simulations. Figure 16
shows the coverage rate for each workspace. B-Theta*
achieves a coverage rate of 100 % for all simulation
workspaces. In contrast, BA* achieves a coverage
rate of only 90.55 % (for workspace ID 6) to 95.56 %
(for workspace ID 5). Like BCD, under control of
BA* the robot cannot cover the entire workspace,
because it uses only boustrophedon motions to cover
the workspaces. Figure 17 shows the total number
of boustrophedon regions achieved by B-Theta* and
BA* for each workspace. The total number of bous-
trophedon regions achieved by B-Theta* is smaller
than or equal to that achieved by BA*. Finally, Fig. 18
shows the coverage path length achieved by B-Theta*
and BA* for each workspace. The coverage path
length achieved by B-Theta* consists of two parts.
The first part is the total length of the boustrophedon
paths, and the second part is the total length of the
paths along the obstacle boundaries. The total length
of the boustrophedon paths achieved by B-Theta* is
always shorter than the coverage path length achieved
by BA*. However, the coverage path length achieved
by BA* is shorter than that achieved by B-Theta*,
because BA* does not enable the robot to cover por-
tions along the obstacle boundaries. Specifically, the
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Fig. 16 The coverage rate achieved by BA* and B-Theta* in the workspaces
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Fig. 17 The number of boustrophedon regions achieved by BA* and B-Theta* in the workspaces

coverage path length achieved by BA* is 6.58 % (for
workspace ID 4) to 14.75 % (for workspace ID 2)
shorter than that achieved by B-Theta*.

In summary, BA* dominates B-Theta* in terms
of the coverage path length, but B-Theta* dominates
BA* in terms of the coverage rate.

4.2.3 B-Theta*, BA* and BCD Execution Time
Comparison

Lastly, we compare the robot coverage execution time
of the algorithms B-Theta*, BA* and BCD. If the
velocity of the robot is the same in all simulations,
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Fig. 18 The coverage path length achieved by BA* and B-Theta* in the workspaces
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then the robot coverage execution time depends on
the execution time of the algorithms. Figure 19 shows
the execution time of B-Theta*, BA* and BCD algo-
rithms for 16 workspaces described in Section 4.2.1.
Although the coverage path length found by BA* is
shorter than that found by BCD [29] and that found
by B-Theta*, the execution time of BA* is longer than
that of BCD and that of B-Theta*. This is because
BA* has to find all collision-free paths to all back-
tracking points at each ending point of boustrophedon
motion, and then chooses the shortest path as the back-
tracking path. Meanwhile, B-Theta* finds the shortest
backtracking path to all backtracking points using the
proposed Theta* for multi-goals and BCD does not
use a backtracking mechanism. However, the execu-
tion time of B-Theta* is longer than that of BCD
because the coverage path found by B-Theta* is longer
than that found by BCD.

5 Experiments

This section presents two experiments in actual envi-
ronments to demonstrate the proposed B-Theta* for
autonomous cleaning robots. The experiments are
conducted by implementing B-Theta* on iRobot Cre-
ate �4400 [28], a programmable Roomba vacuum
cleaner designed for education and research. Most

Roomba versions do not have the ability to self-
execute and perform only via a software interface.
The software interface is used to manipulate iRobot
Create’s behavior and read its sensors through the
native low-level numerical commands sent to its serial
port using a personal computer (PC). In our experi-
ments the software interface is established wirelessly
via iRobot Create’s serial port using a Bluetooth con-
nection. A set of compatible Matlab functions in the
iRobot Create toolbox [12] are used to alter the native
low-level numerical commands. These functions per-
form three main tasks: (i) establishing a Bluetooth
connection between the PC and the robot; (ii) getting
the information from the robot’s sensors for touch/cliff
detection and moving status (i.e., the distance driven
and the angle turned); and (iii) providing the driving
commands to the robot.

B-Theta* is developed and implemented using
Matlab programs to control the robot. The programs
are coded, stored, and executed on a laptop to drive
the robot online during the experiment tests. The CPU
of the laptop acts as iRobot Create’s processing unit.
While moving, the robot can detect obstacles using
the three touch sensors on the front, left, and right
sides. Although the workspaces in these experiments
are not as complicated as those in the simulations,
they still feature the characteristics of B-Theta* to
avoid a long observation time. Specifically, the robot
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is driven to perform the backtracking paths and cover
the workspaces in the boustrophedon mode and the
boundary mode. The values of the basic parameters

in all of the experiments are as follows. The veloc-
ity of the robot is 0.15 m/s, and the distance of each
robot’s movement is 0.3m (i.e., equal to the diameter

a b

c d

Fig. 21 The trace of iRobot Create in the first experiment
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of iRobot Create). Figure 20a and b show the details of
the workspaces. The experiments are recorded using
a digital camera at 24 frames/second and then saved
to video files. The trace of iRobot Create in the
video files is extracted by an algorithm that subtracts
frames from the background frame to get the robot’s
positions.

Figure 21 shows the trace of iRobot Create in the
first experiment, where the dashed arrows describe
the boustrophedon motions and boundary-following
motions of iRobot Create, the solid arrows describe
the backtracking path of iRobot Create achieved by
Theta* for multi-goals, and the circle and the bold
solid arrow describe the current position and heading
direction of iRobot Create. Initially, iRobot Create is
placed beside the wall at the southwest corner of the
workspace. The robot then follows the wall to cover
the portions along the boundary of the workspace, as
shown in Fig. 21a, after which iRobot Create per-
forms the first boustrophedon motion to cover an
accessible region of the workspace until it reaches an
ending point. At the ending point it changes direction,

as shown in Fig. 21b, and then follows the back-
tracking path found by Theta* for multi-goals to the
best backtracking point, as shown in Fig. 21c. The
robot performs the next boustrophedon motion until it
encounters the obstacle. Finally, the robot covers the
obstacle boundary and the remaining region as illus-
trated in Fig. 21d. The experimental time to cover the
workspace is 4.56 min.

Figure 22 shows the trace of the robot in the second
experiment. After finishing the wall-following motion
of the workspace as in Fig. 22a, iRobot Create changes
direction and performs the first boustrophedon motion
until it encounters the obstacle at the middle of the
workspace. The robot then follows the obstacle bound-
ary, as shown in Fig. 22b, after which it continues the
first boustrophedon motion until an ending point is
detected. At the ending point it plans the backtracking
path using Theta* for multi-goals, and then follows
this path to the best backtracking point, as shown in
Fig. 22c. Finally, it covers the final accessible region,
as shown in Fig. 22d. The experimental time to cover
the workspace is 5.11 min.

a b

c d

Fig. 22 The trace of iRobot Create in the second experiment
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The experiments show that although iRobot Cre-
ate is equipped with only a few bump sensors on the
front, left, and right sides without any sensors to deter-
mine its location in the workspace, B-Theta* works
properly under experimental conditions and fulfills
the complete-coverage mission. Moreover, B-Theta*
is efficient for autonomous cleaning robots in terms of
the coverage path length and the coverage rate.

6 Conclusions

In this paper we present an online complete-coverage
algorithm for autonomous cleaning robots in com-
pletely unknown workspaces with arbitrarily-shaped
obstacles based on the boustrophedon motions, the
boundary-following motions, and the Theta* algo-
rithm known as B-Theta*. In our approach the robot
performs a single boustrophedon motion to cover an
unvisited region. While performing the boustrophe-
don motion, if the robot encounters an obstacle with a
boundary that has not yet been covered, it switches to
the boundary mode to cover portions along the obsta-
cle boundary, and then continues the boustrophedon
mode until an ending point is detected. At the end-
ing point the robot detects the backtracking points
based on its accumulated knowledge, plans the short-
est backtracking path to the backtracking points based
on the proposed Theta* for multi-goals, and then fol-
lows the backtracking path to cover the next unvisited
region. The coverage mission of the robot finishes
when no backtracking point is detected. The computer
simulations show that our B-Theta* provides complete
coverage in unknown workspaces with arbitrarily-
shaped obstacles. Moreover, B-Theta* dominates the
BCD approach [4, 7] in terms of the online working
manner and the coverage rate. B-Theta* dominates
the BA* approach [29] in terms of the coverage rate.
The experiments with iRobot Create in actual envi-
ronments show that even when equipped with only
a few touch sensors, iRobot Create maintains and
reaches the desired backtracking points correctly with
the exact navigation, and fulfills the online complete-
coverage mission. Since B-Theta* is an online algo-
rithm, the robot must construct the coverage path step
by step while executing the coverage algorithm. When
the robot reaches an ending point, it does not have
information about the entire workspace, and is there-
fore forced to choose the local optimal backtracking

point from its memory. As a result, the complete-
coverage path achieved by B-Theta* may not be the
global optimization in terms of length. Even so, both
computer simulations and practical experiments show
that our B-Theta* algorithm is an efficient approach to
deal with the complete-coverage problem of cleaning
robots in actual environments.
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