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ABSTRACT
This paper proposes a shortlist-based bidirectional local search algorithm to
find an approximate solution for either the egalitarian or the sex-equal
matching of the stable marriage problem. Our approach simultaneously
searches forward from the man-optimal matching and backwards from the
woman-optimalmatching until the search frontiers meet. By using a shortlist-
based breakmarriage strategy to rapidly generate all the stable neighbour
matchings of all k-best stable matchings, the forward local search finds the
solutions while moving towards the woman-optimalmatching and the back-
ward local search finds the solutions while moving towards theman-optimal
matching. The experiments demonstrate that our proposed algorithm is
efficient for finding an approximate solution to the egalitarian or sex-equal
matching of the stable marriage problem.
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Introduction

The stable marriage problem was first introduced by Gale and Shapley (Gale & Shapley, 1962), and
has recently received a great deal of attention from the research community due to its important
role in a wide range of applications such as the Evolution of the Labor Market for Medical Interns
and Residents (Roth, 1984), the Student-Project Allocation problem (Abraham, Irving, & Manlove,
2003), and the Stable Roommates problem (Fleiner, Irving, & Manlove, 2007; Irving, 1985).

A stable marriage (SM) problem of size n comprises a set of n men and a set of n women in which
each person ranks all members of the opposite sex in order of preference in their preference list. The
aim of the problem is to match men and women to satisfy a certain stability criterion. A matching,M, is
a set of n disjoint pairs ofmen andwomen. If a man,m, and a woman,w, are paired up inM, thenm and
w are said to be partners inM, denoted bym ¼ MðwÞ andw ¼ MðmÞ. A man,m, and a woman,w, form
a blocking pair in amatching,M, ifm prefersw toMðmÞ andw prefersm toMðwÞ. A matching,M, which
has no blocking pairs is said to be stable, otherwise it is said to be unstable. LetM denote a set of all
stablematchings, pmðwÞ denote the position of womanw in manm‘s preference list and pwðmÞ denote
the position of man m in woman w‘s preference list.

For a stable matching, M 2 M, the man cost, smðMÞ, and the woman cost, swðMÞ, are defined as
follows:

smðMÞ ¼
X

ðm;wÞ2M
pmðwÞ; (1)
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swðMÞ ¼
X

ðm;wÞ2M

pwðmÞ: (2)

Definition 1.1 (man-optimal and woman-optimal). A stable matching, M, is called man-optimal
(resp., woman-optimal) if it has the minimum value of smðMÞ (resp., swðMÞ) for all M 2 M.

Gale and Shapley proposed an algorithm known as the Gale-Shapley algorithm to find an optimal
solution of SM instances of size n in Oðn2Þ time (Gale & Shapley, 1962). The Gale-Shapley algorithm is
a sequence of proposals frommen to women to find the man-optimal matching. If the roles of men and
women are interchanged, the matching found by the algorithm is the woman-optimal matching. The
man-optimal (resp., woman-optimal) matching is the ‘selfish’ matching for men (resp., women), i.e., the
proposers always get their best partners but the responders get their worst partners. Therefore, it is
appropriate to seek other optimal stable matchings such as an egalitarian or sex-equalmatching to give
more balanced preferences for both men and women. For a stable matching, M 2 M, the egalitarian
cost, cðMÞ, and the sex-equality cost, dðMÞ, are defined as follows:

cðMÞ ¼ smðMÞ þ swðMÞ; (3)

dðMÞ ¼ jsmðMÞ � swðMÞj: (4)

Definition 1.2 (egalitarian and sex-equal). A stable matching, M, is called egalitarian (resp., sex-
equal) if it has the minimum value of cðMÞ (resp., dðMÞ) for all M 2 M.

In this paper, we propose a shortlist-based bidirectional local search algorithm, titled ShortL-BiLS, to
seek an approximate solution for either the egalitarian or the sex-equal matching of SM instances. Our
algorithm runs two simultaneous local searches: one forward from the man-optimal matching and the
other backward from the woman-optimalmatching. At each iteration, each search uses a shortlist-based
breakmarriage strategy to generate all the stable neighbour matchings of all k-best stable matchings,
selects thebest solution from the stable neighbourmatchings, keeps the k-best successors from the stable
neighbour matchings and repeats for the next iteration. The algorithm terminates when two search
frontiers meet each other and it gives the best solution found so far. The experimental results show that
our ShortL-BiLS is efficient in terms of execution time and solution quality for large SM problems.

The rest of this paper is organized as follows. Section 2 describes the related work, Section 3
provides the background, Sections 4 presents our ShortL-BiLS algorithm, Section 5 discusses the
experiments and evaluations, and Section 6 concludes our work.

Related work

The basic approach to find the egalitarian or sex-equal matching of SM instances is an exhaustive
search. For SM instances of size n, Gusfield (Gusfield, 1987) proposed an algorithm to enumerate all
stable matchings in Oðn2 þ njSjÞ time, where jSj is the number of stable matchings of SM instances.
Irving et al. (Irving, Leather, & Gusfield, 1987) exploited a lattice structure of a stable matching set and
used graph-theoretic methods to propose an Oðn4Þ algorithm to find the egalitarian of SM instances.

There are several heuristic approaches to find the egalitarian or sex-equal matching. Nakamura et al.
(Nakamura, Onaga, Kyan, & Silva, 1995) proposed a genetic algorithm (GA) for finding the sex-equal
matching of SM instances. In their approach, the problem is first transferred into a directed graph and the
GA is used to find the solution in the graph. Zavidovique et al. (Zavidovique, Suvonvorn, & Seetharaman,
2005) presented three zigzag algorithms, named ZZ, OZ and BZ, to findmatchings thatmeet three criteria
of stability, sex equality and egalitarian. InOðn2Þ time, the ZZ algorithm finds the egalitarian, while the OZ
algorithm finds both the egalitarian and sex equality, but they are not guaranteed that theywillfind stable
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matchings. InOðn3Þ time, the BZ algorithm is designed tomeet all three criteria rather than the egalitarian
or sex-equal matching. Vien et al. (Vien, Viet, Kim, Lee, & Chung, 2007) presented an ant colony system
(ACS) algorithm for finding the man-optimal, woman-optimal, egalitarian, or sex-equal matching.
Unfortunately, the ACS algorithm finds the optimal matching under a given criterion only for small SM
instances because it has to find n2 pairs (man, woman) to form a stable matching. Iwama et al. (Iwama,

Miyazaki, & Yanagisawa, 2010) proposed an algorithm in Oðn3þ1
�Þ time which achieves a stable matching,

M, such that jdðMÞj � �Δ, where � is a given constant, Δ ¼ minfdðM0Þ; dðMtÞg, andM0 andMt are man-
and woman-optimal matchings, respectively. In addition, they proposed a variant for finding a stable
matching, M, which minimizes cðMÞ under the condition that jdðMÞj � �Δ, which runs in time

Oðn3þ2 1þ�
δð ÞÞ for an arbitrary δ such that 0< δ< �. Everaere et al. (Everaere, Morge, & Picard, 2013)

proposed a Swing algorithm for finding the sex-equal matching of SM instances. At the odd iterations
of the algorithm, the men play the role of proposers and the women play the role of responders and the
roles are swapped at the even iterations. When the Swing stops, it takes Oðn3Þ time to obtain a stable
matching other than the sex-equal matching. Giannakopoulos et al. (Giannakopoulos, Karras, Tsoumakos,
Doka, & Koziris, 2015) provided an ESMA algorithm (Giannakopoulos et al., 2015) which the idea is similar
to that of Swing. However, in the ESMA the proposers are men when the sign of the function sinðk2Þ is
positive and women when the sign of the function is negative, where k is the iteration counter of the
algorithm. The ESMA terminates inOðn2Þ time and yields a stablematching, which has high cðMÞ and low
dðMÞ but neither the egalitarian nor sex-equal matchings.

Recently, Gelain et al. (Gelain, Pini, Rossi, Venable, & Walsh, 2013) proposed a local search algorithm,
called SML, for finding an arbitrary stable matching of SM instances. Starting at a randomly generated
matching, M, the SML produces a set of the neighbour matchings of M, where a neighbour is
determined by removing one of the blocking pairs in M, and moves M to the neighbour matching
which has the smallest number of blocking pairs. This process iteratively performs until the stability inM
is obtained. Viet et al. (Viet, Trang, Lee, & Chung, 2016b) developed an empirical algorithm, denoted by
SLS, for finding an approximation solution in terms of the egalitarian or sex-equal matching. The SLS is
a sequence of local searches, in which each search is a hill-climbing search (Russel & Norvig, 2010) which
uses the breakmarriage operation (McVitie & Wilson, 1971) to find all the stable neighbour matchings of
the current stable matching. The first hill-climbing algorithm starts from the man-optimal solution and
the next one starts from the solution of the previous one. The SLS stops when it reaches the woman-
optimal matching and the solution is the best one among the solutions of all the hill-climbing searches.
Because the SLS is a unidirectional search from the man- to the woman-optimal matching, it is inefficient
in terms of execution time for large SM problems. To improve this weakness, we proposed
a bidirectional local search (Viet, Trang, Lee, & Chung, 2016a), called BiLS, which runs two simultaneous
local searches: one forward from the man-optimal matching and the other backward from the woman-
optimal matching, and it terminates when they both stop and meet. However, when the breakmarriage
operation (McVitie & Wilson, 1971) is applied with the men’s and women’s full preference lists of the SM
problem, it has to check every pair of man and woman even if the man and woman form a blocking pair
in a matching. Therefore, the BiLS is inefficient for large SM problems.

Background

Finding all the stable matchings

McVitie and Wilson proposed a breakmarriage operation (McVitie & Wilson, 1971), denoted by
BREAKMARRIAGE(M;m), to find a new stable matching from a prior one, M, and a man, m. They
showed that every stable matching, Mi ði ¼ 1; 2; � � � ; tÞ, can be obtained by a series of break-
marriage operations starting from the man-optimal matching, M0, where Mt is the woman-optimal
matching. However, if the breakmarriage operation runs for each man, m, in the men set, it can
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produce some duplicate stable matchings. To enumerate all unique stable matchings, they applied
two rules on the breakmarriage operation as follows.

R1: If BREAKMARRIAGE(M;m) returns a stable matching, M0, then it is only run for M0 on men i � m.

R2: In BREAKMARRIAGE(M;m), only men m0 � m propose, i.e., if some man m0 is free and m0 <m
during the execution, then BREAKMARRIAGE(M;m) stops and returns no matching.

Let A and B denote the preference lists of men and women, respectively, of an SM instance of
size n. The algorithm to find all the stable solutions (McVitie & Wilson, 1971) can be represented by
a breadth first search (BFS) algorithm shown in Algorithm 1. Initially, the Gale-Shapley algorithm is
used to find the man-optimal matching, M0. Starting at M0 as a root node, the algorithm constructs
a tree of all stable matchings. For each node of a stable matching, M, a set of its children is
produced using BREAKMARRIAGE(M;m) for each man, m, from x½i� to n, where x½i� is a man which
BREAKMARRIAGE(M;m) breaks M and successfully returns a stable matching, M0. A leaf of the tree is
a stable matching which cannot be broken to another, i.e., the BREAKMARRIAGE(M;m) returns empty.
The algorithm ends when it reaches the woman-optimal matching, Mt , since BREAKMARRIAGE(Mt;m)
does not produce any stable matching. After the algorithm ends, it returns a stable matching set,
M, and an optimal stable matching, Mopt , with respect to the search criterion, defined by the cost
function fðMÞ, which is cðMÞ or dðMÞ with respect to finding the egalitarian or sex-equal matching.

Algorithm 1: BFS algorithm

Input: The men’s preference list, A, and the women’s preference list, B.
Output: The best matching, Mopt , and the stable matching set, M.

1. M0: = GALE-SHAPLEY(A; B);
2. Mopt :¼ M0; P :¼ fM0g; M :¼ fM0g;
3. x½1� :¼ 1; . used for the R1 rule;
4.while (true) do
5. C :¼ ;; k :¼ 1; y½k� :¼ 0;
6. for i :¼ 1 to cardðPÞ do
7. M :¼ PðiÞ;
8. for m :¼ x½i� to n do
9. M0 : = BREAKMARRIAGE(M;m);

10. if (M0�NULL) then
11. C :¼ C [ fM0g;
12. M :¼ M[ fM0g;
13. y½k� :¼ m;
14. k :¼ k þ 1;

15. if (C ¼ ;) then break;
16. Mbest :¼ argminðfðMÞÞ, where M 2 C;
17. if fðMoptÞ > fðMbestÞ then
18. Mopt :¼ Mbest ;
19. P :¼ C; x :¼ y;
20. return Mopt and M;

Consider an SM instance consists of eight men and eight women with the preference lists given
in Table 1. Figure 1 shows the tree of all stable matchings produced by the BFS algorithm. The
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man-optimal matching is the root of the tree and each node Miði ¼ 1; :::; 18Þ is obtained by the
breakmarriage operation on man m, where m is indicated on the branches of the tree.

Shortlists for the SM problem

In the Gale-Shapley algorithm, at each iteration, when a free man, m, proposes to the most preferred
woman, w, on his preference list to whom he has not proposed, meaning that (i) there exists no stable
matching inwhichm has a better partner thanw; and (ii) ifw accepts a proposal fromm, then there exists
no stable matching in which w has a worse partner than m (McVitie & Wilson, 1971). By exploiting the
properties (i) and (ii), we can obtain the men’s and women’s shortlists from the men’s and women’s
preference lists in the iterations of the Gale-Shapley algorithm. Specifically, in the case of the men as
proposers, if a woman, w, accepts a proposal from some free man,m0, that she prefersm0 to her current
partnerm, then all the men that w less prefers to m0 are removed from w‘s preference list and also w is
removed from the men’s preference lists. Then, the men’s and women’s preference lists after such
removals are called the man-oriented men’s and women’s shortlists, respectively. Otherwise, if the
roles of men andwomen are interchanged, we obtain thewoman-orientedmen’s andwomen’s shortlists
from the men’s and women’s preference lists, respectively. Obviously, (i) if w does not appear on m‘s
shortlist, thenm andw cannot be partners in any stablematching and (ii)w appears onm‘s shortlist if and
only ifm appears onw‘s shortlist. Table 2 shows themen-orientedmen’s andwomen’s shortlists obtained

Table 1. Preference lists of eight men and eight women.

Man Preference list Woman Preference list

m1 4 7 3 8 1 5 2 6 w1 1 3 5 4 2 6 8 7
m2 5 3 4 2 1 8 6 7 w2 8 2 4 5 3 7 1 6
m3 3 8 2 4 6 7 5 1 w3 5 8 1 4 2 3 6 7
m4 5 6 8 3 4 7 1 2 w4 2 4 3 6 5 8 1 7
m5 1 3 5 2 8 6 4 7 w5 6 5 4 8 1 7 2 3
m6 8 6 2 5 1 7 4 3 w6 7 4 2 5 6 8 1 3
m7 2 5 8 3 6 4 7 1 w7 3 8 6 5 7 2 1 4
m8 5 7 4 1 6 2 8 3 w8 4 7 1 3 5 8 2 6

Figure 1. The tree found by the BFS algorithm for Table 1. The number in position i ði ¼ 1; 2; :::; 8Þ of any matching indicates
the woman paired to man i in that matching.
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by the Gale-Shapley algorithm for the SM instance in Table 1 by removing unacceptablemen andwomen
from every woman’s and man’s preference lists in the iterations of the Gale-Shapley algorithm.

Proposed shortL-BiLS algorithm

Breakmarriage operation with shortlists

We recognized that if the breakmarriage operation (McVitie & Wilson, 1971) is used to construct
a stable matching, it has to check every pair (m;w) even if the pair (m;w) is a blocking pair. This is
avoided by using shortlists instead. In particular, if a woman, w, does not appear in the m‘s shortlist,
then checking (m;w) to be a blocking pair is ignored and therefore, the breakmarriage operation
results in a huge reduction of computational time for checking blocking pairs. Thus, we improve
the breakmarriage operation (McVitie & Wilson, 1971) such that it adapts to the shortlists.

Themen’s andwomen’s shortlists found by the Gale-Shapley algorithm areman-oriented shortlists, as
illustrated in Table 2. If the roles of men and women are interchanged, the men’s and women’s shortlists
found by the Gale-Shapley algorithm are woman-oriented shortlists, as illustrated in Table 3. Because of
the construction method of the shortlists in the Gale-Shapley algorithm, the man-oriented shortlists are
different from the woman-oriented shortlists. Therefore, we combine the man-oriented shortlists and
woman-oriented shortlists to reduce time for checking blocking pairs. Let XðmÞ and YðmÞ be the man-
oriented men’s and women’s shortlists, and XðwÞ and YðwÞ be the woman-oriented men’s and women’s
shortlists, respectively. Themen’s shortlists, X , andwomen’s shortlists, Y, are composed, respectively, from
XðmÞ and XðwÞ, and YðmÞ and YðwÞ, denoted by X ¼ XðmÞ ^ XðwÞ and Y ¼ YðmÞ ^ YðwÞ, as given by Equations
(5) and (6):

Xði; jÞ ¼ XðmÞði; jÞ if XðmÞði; jÞ ¼ XðwÞði; jÞ;
0; otherwise;

�
(5)

and

Yði; jÞ ¼ YðmÞði; jÞ if YðmÞði; jÞ ¼ YðwÞði; jÞ;
0; otherwise;

�
(6)

for i; j ¼ 1; 2; � � � ; n:

Table 2. The man-oriented men’s and women’s shortlists.

Man Shortlists Woman Shortlists

m1 4 0 3 8 1 0 0 0 w1 1 3 5 0 0 0 0 0
m2 0 3 4 2 0 0 6 0 w2 8 2 4 5 3 7 0 0
m3 0 8 2 4 0 7 0 1 w3 5 8 1 4 2 0 0 0
m4 5 6 8 3 4 0 0 2 w4 2 4 3 6 5 8 1 0
m5 1 3 5 2 0 6 4 0 w5 6 5 4 0 0 0 0 0
m6 0 6 0 5 0 0 4 0 w6 7 4 2 5 6 0 0 0
m7 2 0 8 0 6 0 0 0 w7 3 8 0 0 0 0 0 0
m8 0 7 4 0 0 2 0 3 w8 4 7 1 3 0 0 0 0

Table 3. The woman-oriented men’s and women’s shortlists.

Man Shortlists Woman Shortlists

m1 4 7 3 8 1 0 0 0 w1 1 0 5 0 0 0 8 0
m2 5 3 4 0 0 0 0 0 w2 8 0 0 0 3 7 0 6
m3 3 8 2 4 6 7 0 0 w3 5 0 1 0 2 3 0 7
m4 5 6 8 0 0 0 0 0 w4 2 0 3 0 0 8 1 0
m5 1 3 0 0 0 0 0 0 w5 6 0 4 8 0 7 2 0
m6 8 6 2 5 0 0 0 0 w6 7 4 0 0 6 8 0 3
m7 2 5 8 3 6 0 0 0 w7 3 8 0 0 0 0 1 0
m8 5 7 4 1 6 2 0 0 w8 4 7 1 3 0 0 0 6

6 H. H. VIET ET AL.



Theorem 4.1. Given a man, m, if a woman, w, does not appear on m‘s shortlist in X, then there is
no stable matching in which m and w are partners.

Proof. By hypothesis, w does not appear on m‘s shortlist in X , meaning that Xðm;wÞ ¼ 0. Therefore,
XðmÞðm;wÞ or XðwÞðm;wÞ is equal to 0. This means that w is absent from m‘s shortlist in XðmÞ or XðwÞ. It
follows from Property 1 in (Irving et al., 1987) thatm andw cannot be partners in any stable matching.⁏

We note that the property stated in Theorem 4.1 also holds if we alternatively consider Y given
by Equation (6).

Table 4 shows the men’s and women’s shortlists found in the man-oriented shortlists in Table 2
and woman-oriented shortlists in Table 3. Obviously, the men’s shortlists, X , and women’s shortlists,
Y, shown in Table 4 are sparse matrices, in which most of the elements of X and Y are zero.
Therefore, if we use X and Y as inputs of the breakmarriage operation (McVitie & Wilson, 1971), the
breakmarriage operation will result in a large reduction of the number of unnecessary iterations
compared to the preference lists for checking blocking pairs. Moreover, in the woman-optimal
matching, Mt , each man has the worst partner that he has in any stable matching and therefore, to
make the breakmarriage operation more efficient, each man, m, is restricted to search a woman, w,
whose position is less than that of the woman, MtðmÞ, in the woman-optimal matching.

The shortlist-based breakmarriage operation is given by the ShortL-BreakM function. At each iteration,
if there exists no free man, the function returns a stable matching,M0. Otherwise, if a free man,m0, meets
the R2 rule, i.e.m0 <m, then the function stops and returns nomatching. Otherwise, themanm0 proposes
themost preferred woman,w0, in his shortlist to whomhe has not proposed andw0‘s position is less than
that of the woman,Mtðm0Þ. Ifw0 prefersm0 to her current partner, thenw0 rejected her partner to engage
m0. If w0 is different from w (the initial partner of m), the rejected man becomes free.

Function ShortL-BreakM(X; Y;M;m;Mt)

Input : – The men’s shortlist, X , and the women’s shortlist, Y;
– A stable matching M, a man m, and the woman-optimal matching Mt .

Output: – A stable matching M0 or NULL.
1. w :¼ MðmÞ;
2. MðwÞ :¼ 0;
3.while (true) do
4. m0 :¼ findðMðwÞ ¼ 0Þ
5. if (m0 is not found) then
6. M0 :¼ M;
7. break;
8. if ðm0 <mÞ then
9. return NULL;

10. r :¼ next woman’s position on m0‘s list;
11. if ðXðm0; rÞ> 0Þ then
12. if ðr > pm0 ðMtðm0ÞÞÞ then
13. return NULL;
14. w0 :¼ Xðm0; rÞ;
15. Determine pw0 ðm0Þ and pw0 ðMðw0ÞÞ in Y;
16. if ðpw0 ðm0Þ< pw0 ðMðw0ÞÞÞ then
17. Mðm0Þ :¼ w0;
18. Mðw0Þ :¼ m0;
19. if ðw0�wÞ then
20. Mðw0Þ :¼ 0;

21. return M0;
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Lemma 4.2. If ShortL-BreakM (X; Y;M;m;Mt) returns a stable matching, M0, then smðMÞ< smðM0Þ
and consequently, swðMÞ> swðM0Þ.

Proof. Since ShortL-BreakM returns a stable matching, M0, there exists a subsequence of men,
denoted by m1;m2; . . . ;mk , such that, in M0, mi engages the woman following MðmiÞ in his
preference list (by line 10), where m1 ¼ m and 2 � k � n. This means that

pmiðMðmiÞÞ< pmiðM0ðmiÞÞ; for i ¼ 1; 2; . . . ; k: (7)

Summing up each side of Equation (7) yields the following:

Xk
i¼1

pmiðMðmiÞÞ<
Xk
i¼1

pmiðM0ðmiÞÞ:

Since ShortL-BreakM only changes k � 1 pairs in M, n� k þ 1 remaining pairs are unchanged in
M0. Hence, smðMÞ< smðM0Þ.

We note also that if M dominates M0 from the man’s point of view, then M0 dominates M from
the woman’s point of view. This means that swðMÞ> swðM0Þ. ⁏

ShortL-BiLS algorithm

In this section, we propose a shortlist-based bidirectional local search algorithm, named ShortL-BiLS.
Our algorithm is shown in Algorithm 2 to find either the egalitarian or the sex-equal matching of SM
instances of size n. ShortL-BiLS runs two simultaneous searches: one forward from the man-optimal
matching and the other backward from the woman-optimal matching. At the beginning, the Gale-
Shapley algorithm is used to find the man- and woman-optimal matchings which are the starting
solutions for the bidirectional search. At each iteration, for one of two searching directions, the
algorithm finds a stable neighbour set, N , of all k-best stable matchings in the set N left (resp., N right)
by calling the ShortL-BreakMðX; Y,M0;m;MtÞ (resp., ShortL-BreakMðY,X,M0,w,M0Þ) function for eachman
(resp., woman), in turn, in the men (resp., women) set. The algorithm evaluates all the stable neighbour
matchings in N using the cost function, fðMÞ, which is cðMÞ or dðMÞ with respect to finding the
egalitarian or sex-equal matching. The algorithm then selects the next solution to be a neighbour
whose cost function is the smallest value. If the next solution of each searching direction is worse than
the current one, the search of the direction is paused. Furthermore, if the best solution of the direction
found so far is worse than the current solution, then the current solution is the best one. The algorithm
thenmoves the current solution to the next one, keeps the k-best matchings ofN inN left orN right and
repeats for the next iteration. The algorithm terminates when either one of the searching has no
neighbours or two searchings meet each other by means of the man cost. In particular, if both forward
and backward searches are paused and the man cost of the current matching of the forward search,
smðMleftÞ, is equal or greater than that of the backward search, smðMrightÞ, then the bidirectional search
is completed. Thus, the algorithm stops and gives the best solution so far.

Table 4. The men’s and women’s shortlists.

Man Shortlists Woman Shortlists

m1 4 0 3 8 1 0 0 0 w1 1 0 5 0 0 0 0 0
m2 0 3 4 0 0 0 0 0 w2 8 0 0 0 3 7 0 0
m3 0 8 2 4 0 7 0 0 w3 5 0 1 0 2 0 0 0
m4 5 6 8 0 0 0 0 0 w4 2 0 3 0 0 8 1 0
m5 1 3 0 0 0 0 0 0 w5 6 0 4 0 0 0 0 0
m6 0 6 0 5 0 0 0 0 w6 7 4 0 0 6 0 0 0
m7 2 0 8 0 6 0 0 0 w7 3 8 0 0 0 0 0 0
m8 0 7 4 0 0 2 0 0 w8 4 7 1 3 0 0 0 0
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Algorithm 2: ShortL-BiLS algorithm

Input : – The men’s preference list, A, and the women’s preference list, B
– An integer number, k

Output: – A stable matching, Mbest

1. ½XðmÞ; YðmÞ;M0� : = Gale-Shapley(A; B);
2. ½YðwÞ; XðwÞ;Mt� : = Gale-Shapley(B;A);
3. if (M0 ¼ Mt) then return Mt

4. X ¼ XðmÞ ^ XðwÞ; Y ¼ YðmÞ ^ YðwÞ;
5. Mbest :¼ argminðfðMÞÞ, where M 2 fM0;Mtg;
6. Mleft :¼ M0; Mright :¼ Mt ;
7. N left :¼ fM0g; N right :¼ fMtg;
8. forward :¼ true; backward :¼ true;
9. while (true) do

10. if (forward) then
11. N :¼ ;
12. for t :¼ 1 to cardðN leftÞ do
13. M0 :¼ N leftðtÞ;
14. for m :¼ 1 n do
15. Mchild : = ShortL-BreakM(X; Y;M0;m;Mt);
16. if (Mchild �NULL) then N :¼ N [ fMchildg;
17. Mnext :¼ argminðfðMÞÞ, where M 2 N ;
18. if (fðMnextÞ> fðMleftÞ) then
19. forward :¼ false;
20. if fðMbestÞ> fðMleftÞ then Mbest :¼ Mleft ;
21. Mleft :¼ Mnext ;
22. if (k � cardðN ÞÞ then
23. N left :¼ N ;
24. else
25. N left :¼ fMi 2 N jfðMiÞ is the ith smallest value; i ¼ 1; � � � ; k:g;

26. if (backward) then
27. N :¼ ;
28. for t :¼ 1 to cardðN rightÞ do
29. M0 :¼ N rightðtÞ;
30. for w :¼ 1 to n do
31. Mchild : = ShortL-BreakM(Y; X;M0;w;M0);
32. if (Mchild�NULL) then N :¼ N [ fMchildg;
33. Mnext :¼ argminðfðMÞÞ, where M 2 N ;
34. if (fðMnextÞ> fðMrightÞ) then
35. backward :¼ false;
36. if fðMbestÞ> fðMrightÞ then Mbest :¼ Mright;

37. Mright :¼ Mnext;

38. if (k � cardðN Þ) then
39. N right :¼ N ;
40. else

41. N right :¼ fMi 2 N jfðMiÞ is the ithsmallest value; i ¼ 1; � � � ; k:g;
42. if ((not forward) and (not backward)) then
43. if (smðMleftÞ � smðMrightÞ) then
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44. forward :¼ true; backward :¼ true;
45. else
46. break

47. return Mbest

An illustration of ShortL-BiLS to find a sex-equal matching for the SM instance in Table 1 is depicted in
Figure 2, where k ¼ 1. Initially, the algorithm assigns Mleft to M0 and Mright to M17. At the first iteration,
the algorithm finds a better solution in the neighbours of M0 and movesMleft toM1. The algorithm also
finds a better solution in the neighbours of M17 and then moves Mright to M8. The algorithm repeats for
Mleft and Mright until Mleft ¼ M4 and Mright ¼ M4. At this point, no better solutions in the neighbours of
Mleft and Mright are found. Therefore, both searching directions are paused and Mbest ¼ Mleft ¼ Mright .
Then, the algorithm moves Mleft to M9 and Mright to M5. Since smðMleftÞ> smðMrightÞ, the algorithm
terminates and returns M4, which is the sex-equal matching in Figure 1.

Theorem 4.3. ShortL-BiLS will stop after a finite number of iterations.

Proof. Gale and Shapley (Gale & Shapley, 1962) showed that there always exists at least one stable
matching for any SM instance. Therefore, if an SM instance has only one stable matching, i.e.,M0 ¼ Mt ,
then ShortL-BiLS returns M ¼ Mt. Otherwise, ShortL-BiLS runs two searches simultaneously, one from
man-optimal matching and the other from woman-optimal matching. For each step of moving of
a search, ShortL-BreakM is called tomove the next stable matching. According to Lemma 4.2, in forward
searching from theman-optimalmatchingwhich is theminimal value of theman cost, theman costs of
the stable matchings found by ShortL-BreakM increase. Meanwhile, the man costs decrease in

Figure 2. The search trace of finding the sex-equal matching of Table 1, where d indicated in any matching is the sex-equality
cost of that matching.
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backward searching where the algorithm starts at the woman-optimal matching which is the maximal
value of the man cost. Therefore, at some step, two searches have to pass each other by means of the
man cost of matchings, i.e., they respectively produce two stable matchings with smðMleftÞ > smðMrightÞ.
At this time, the algorithm terminates and gives the best matching obtained so far as a solution. ⁏

Theorem 4.4. ShortL-BiLS takes kOðdn3Þ time to find a solution of an SM instance of size n, where
k is the beam width and d is the maximum depth of search space.

Proof. ShortL-BiLS takes Oðn2Þ time to determine a stable neighbour matching, Mchild , of a stable
matching, M0, on a man, m, by using ShortL-BreakM(X; Y;M0;m;Mt) (line 15) or ShortL-BreakM
(Y; X;M0;w;M0) (line 31). Therefore, it takes Oðn3Þ time to determine all the stable
neighbour matchings of a stable matching, M0, by using ShortL-BreakM(X; Y;M0;m;Mt) for each
man m ¼ 1; 2; � � � ; n (or by using ShortL-BreakM(Y; X;M0;w;M0) for each woman w ¼ 1; 2; � � � ; n). At
each iteration, ShortL-BiLS takes kOðn3Þ time to determine the stable neighbour matching set, N , of
N left (or N rightÞ and therefore, ShortL-BiLS takes totally kdOðn3Þ ¼ kOðdn3Þ time to find a solution of
an SM instance of size n, where k is the beam width and d is the maximum depth of search space,
i.e. the iteration number of outer while loop. ⁏

Although the time complexity of ShortL-BiLS is Oðkdn3Þ, but at the beginning, all possible
blocking pairs are removed by the Gale-Shapley algorithm to obtain the men’s and women’s
shortlists, which are very sparse matrices (e.g., see Table 4). Therefore, the use of the shortlists in
the breakmarriage operation to produce a stable neighbour matching will significantly speed up
the execution time of ShortL-BiLS.

Performance evaluation

This section presents the experiments implemented by Matlab software on a Core i7-8550U CPU 1.8 GHz
computer with 16 GB RAM. To evaluate the performance of ShortL-BiLS algorithm, we randomly produced
240 SM instances of 12 difference sizes from 50 to 600 with step 50 and 20 variants per size.1

Solution quality evaluation

ShortL-BiLS is an approximation algorithm for finding the egalitarian or sex-equal matching of the SM
problem. Therefore, it is necessary to evaluate the solution quality obtained by ShortL-BiLS. We evaluated
the solution quality based on the percentage of exact solutions and the relative accuracy of algorithms.

First, we performed experiments to compare the percentage of exact solutions found by ShortL-BiLS
with that found by BiLS (Viet et al., 2016a) and SLS (Viet et al., 2016b) algorithms in order to identify which
algorithm gives the best result among all them. To do this, we compared the solutions found by the
algorithms with the exact solutions found by the BFS algorithm (i.e., Algorithm 1) for the SM instances.
Tables 5 and 6 show the experimental results. Specifically, the percentage of the egalitarian matchings as
well as that of the sex-equal matchings increases, respectively, with SLS, BiLS and ShortL-BiLS algorithms.
However, for ShortL-BiLS, the percentage is almost the same when k ¼ 3 or k ¼ 4 for both finding the
egalitarian and sex-equal matchings. Besides, even when k ¼ 1, the percentage of exact solutions found
by ShortL-BiLS is much higher than that found by BiLS and SLS algorithms. In briefly, ShortL-BiLS
significantly outperforms BiLS and SLS algorithms in terms of finding exact solutions.

Next, we performed experiments to compare the relative accuracy of solutions found by ShortL-BiLS,
BiLS and SLS algorithms. The relative accuracy of an algorithm A is defined by maxfðmaxðIÞ �
optðIÞÞ=ðmaxðIÞ � AðIÞÞg overall instances I, where optðIÞ, maxðIÞ, and AðIÞ are the costs of the optimal
solution, the worst solution, and the algorithm’s solution, respectively (Charikar & Wirth, 2004). For each
SM instance, letM0 andMt be the man- and woman-optimal matchings, respectively, found by the Gale-
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Shapley algorithm; let Mopt
e and Mopt

s be the egalitarian and sex-equal matchings, respectively, found by
the BFS algorithm. The relative accuracy of an algorithm A for finding the egalitarian and sex-equal
matchings, respectively, of each SM instance is

max
maxðcðM0Þ; cðMtÞÞ � cðMopt

e Þ
maxðcðM0Þ; cðMtÞÞ � cðMeÞ

� �
andmax

maxðdðM0Þ; dðMtÞÞ � dðMopt
s Þ

maxðdðM0Þ; dðMtÞÞ � dðMsÞ
� �

; (8)

where Me and Ms are solutions found by the algorithm A for finding the egalitarian and sex-equal
matchings, respectively. Obviously, if the relative accuracy of an algorithm is close to one, the solution
obtained by the algorithm is near to the optimal solution. For 240 SM instances in our experiments, the
relative accuracy of ShortL-BiLS, BiLS and SLS algorithms for finding the egalitarian matching is deter-
mined to be 1:0019, 1:0071 and 1:0264, respectively. While the relative accuracy of ShortL-BiLS, BiLS and
SLS algorithms for finding the sex-equal matching is 1:0081, 1:0182, and 1:0461, respectively. This
means that ShortL-BiLS, BiLS and SLS algorithms can obtained approximate solutions close to exact
solutions of the SM instances, but ShortL-BiLS gives the best solution among all them.

The main observations regarding the experimental results can be explained as follows. SLS algo-
rithm only performs one unidirectional local search from the man- to woman-optimal matching, i.e.,
the searching range is smallest and therefore, it gives the lowest percentage of exact solutions. By
performing two simultaneous searches, the searching range of BiLS is larger than that of SLS and
therefore, it gives the higher percentage of exact solutions compared with SLS. Also, performing two
simultaneous searches, but the searching range of ShortL-BiLS is more expanded when k increases. This
provides an opportunity to achieve better solutions compared with BiLS and SLS algorithms.

Execution time evaluation

In this section, we compared the execution time of the ShortL-BiLS with that of the BiLS, SLS, and
BFS algorithms. Figure 3 shows the average execution time of the algorithms for finding the
egalitarian and sex-equal matchings of the SM instances of the same size. Observations of the
experimental results can be summarized as follows:

(1) For all of the algorithms, the average execution time for finding the egalitarian matching is
almost the same as that for finding the sex-equal matching. This is because the search
mechanism for the egalitarian matching is the same as that for the sex-equal matching,
except for the evaluation functions.

(2) The execution time of ShortL-BiLS with k ¼ 1 is smaller than that of BiLS. For all of the SM
instances, ShortL-BiLS runs about 1:2 times faster than BiLS. For example, when the size of

Table 5. The percentage of the egalitarian matchings found by ShortL-BiLS, BiLS and SLS algorithms, where k is the number of
the best successors in the stable neighbour matching set.

ShortL-BiLS (%)

Data Set Size k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 BilS (%) SLS (%)

1 50 100 100 100 100 95 80
2 100 85 95 100 100 75 70
3 150 70 90 90 90 70 50
4 200 70 75 75 75 70 50
5 250 60 85 85 85 60 50
6 300 70 85 85 85 65 60
7 350 50 80 95 95 45 40
8 400 80 95 95 95 65 35
9 450 30 65 70 70 30 25
10 500 80 90 90 90 75 65
11 550 65 75 80 80 65 50
12 600 45 65 70 70 40 25
Average 67.08 83.33 86.25 86.25 62.91 50.00
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the SM instances is 350, the average execution time of BiLS and ShortL-BiLS for finding the
egalitarian matching is about 100:56 ¼ 3:63 and 100:41 ¼ 2:57 seconds, i.e., ShortL-BiLS runs
about 1:41 times faster than BiLS. This is because the ShortL-BreakM function used in ShortL-
BiLS ignores checking the women who do not appear in the men’s shortlists and vice versa
when it constructs a stable matching.

(3) The execution time of ShortL-BiLS increases when k increases. This is because the more k
increases, the more neighbours to be searched increases, however, ShortL-BiLS has many
opportunities to achieve better solutions.

(4) The execution time of ShortL-BiLS with k ¼ 4 is much smaller than that of SLS. For all of the
SM instances, ShortL-BiLS runs about 1:75 times faster than SLS. Figure 3 also shows that
ShortL-BiLS is efficient compared to SLS for large SM problems. For example, when the size of
the SM instances is 550, the average execution time of SLS and ShortL-BiLS for finding the
egalitarian matching is about 102:00 ¼ 100 and 101:60 ¼ 39:81 seconds, i.e., ShortL-BiLS runs
about 2:51 times faster than SLS. This is because ShortL-BiLS simultaneously performs two
searches ‘moving’ to the other by means of the man cost. In particular, both ShortL-BiLS and
SLS try to seek a best solution in the range between the man- and woman-optimal
matchings. While ShortL-BiLS performs searching in two directions (from the man- to
woman-optimal matching and vice versa) and stops when its searches meet or pass each
other in the middle, SLS only search from the man- to woman-optimal matching.

(5) For large SM problems, the execution time of ShortL-BiLS with k ¼ 4 is much smaller than
that of BFS. For example, when the size of the SM instances is 600, the average execution
time of BFS and ShortL-BiLS for finding the egalitarian matching is about 102:62 ¼ 416:86 and
101:74 ¼ 54:95 seconds, i.e., ShortL-BiLS runs about 8 times faster than BFS. This is because
BFS algorithm is an exhaustive search, it has to explore all the search space to find solutions
of the SM instances.

We would like to note that we compared our ShortL-BiLS with the SML algorithm (Gelain et al.,
2013) and ACS algorithm (Vien et al., 2007) in terms of both the execution time and solution
quality. Our experiments showed that our ShortL-BiLS runs much faster than the SML and the ACS
algorithms even when the size of SM instances is 50.
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Figure 3. The average execution time of the ShortL-BiLS, BiLS, SLS and BFS algorithms for finding (a) egalitarian and
(b) sex-equal matching of the SM instances.

14 H. H. VIET ET AL.



Experiment for large instances

In this section, we ran experiments to find the sex-equal matching of large SM instances.
Specifically, we randomly produced 3 SM instances of size 1000, 1500 and 2000. For each SM
instance, we ran ShortL-BiLS algorithm with k = 1, 2, 3 and 4 to determine the maximum depth, d,
of search space, the runtime, and the sex-equal cost dðMbestÞ, where Mbest is the solution found by
the algorithm. Table 7 shows the experimental results, where M0 and dðM0Þ are the man-optimal
matching and its sex-equal cost, respectively, and Mt and dðMtÞ are the woman-optimal matching
and its sex-equal cost, respectively, of the SM instances.

The experimental results show that for all of the SM instances, the maximum depth of searching
space is d ¼ 8. The runtime for all instance sizes is reasonable. When k is increased, the runtime
increases. This is because of the larger searching range of ShortL-BiLS. However, dðMbestÞ of each SM
instance probably keeps the same, excepting for k ¼ 4 with SM instance size of 1000. This indicates
the consistency of ShortL-BiLS. Moreover, dðMbestÞ is too small compared to dðM0Þ and dðMtÞ,
meaning that the solution Mbest found by the algorithm is the optimal or near optimal solution.

Conclusions

In this paper, we proposed a ShortL-BiLS algorithm to find an approximate solution in terms of the
egalitarian or sex-equal matching of the SM problem. ShortL-BiLS is a bidirectional local search, in
which the forward local search finds a solution while moving towards the woman-optimal match-
ing and the backward local search finds a solution while moving towards the man-optimal
matching. ShortL-BiLS interleaves iterations of the forward and backward searches until their search
frontiers meet each other. When the algorithm ends, the solution is the best one of the solutions
found by the forward and backward searches. The experiments show that ShortL-BiLS is efficient in
terms of the execution time and solution quality for the SM problem. In the future, we plan to
extend the proposed approach to a wide range of matching problems such as the stable marriage
with ties and incomplete lists (Manlove, 1999, July; Trang, Viet, & Chung, 2016) or the roommate
problem (Fleiner et al., 2007; Irving, 1985).

Endnote

1. Source codes are available at the URL: https://github.com/vietjho/ShortL-BiLS.

Table 7. Experimental results for large SM instances.

Instance size k d Runtime (sec.) dðMbestÞ dðM0Þ dðMtÞ
1000 1 7 60.76 134 121,785 113,674

2 7 101.94 134
3 7 145.91 134
4 7 215.02 133

1500 1 7 262.00 355 238,799 300,777
2 7 470.69 355
3 7 681.31 355
4 8 993.81 355

2000 1 7 664.63 423 496,068 582,589
2 7 1228.90 423
3 7 1733.37 423
4 7 2465.47 423
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