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ABSTRACT The co-authorship recommendation problem is attractive since it helps researchers extend
collaboration to improve the quality of scientific articles as well as promote innovation. This problem
involves suggesting authors join research groups based on their research interests, areas of expertise, and
past collaborative experiences to write scientific articles together. In this paper, we tackle the co-authorship
recommendation problem by modeling it as a co-authorship network, where each author is represented as a
vertex, and each collaboration between two authors is represented as an edge. Since the number of author
pairs without collaboration is much larger than those with collaboration, datasets created from co-authorship
networks are typically two-class imbalanced datasets. Accordingly, we propose an improved algorithm of
AdaBoost combined with the W-SVM algorithm, called Im.AdaBoost.W-SVM, to solve the classification
problem with two-class imbalanced datasets. To evaluate the performance of our Im.AdaBoost.W-SVM
algorithm for the co-authorship recommendation problem, we collected author and article data from the
website www.sciencedirect.com through ScienceDirect APIs and created two-class imbalanced datasets. Our
experimental results for our self-built co-authorship datasets with different sizes and imbalance ratios showed
that our Im.AdaBoost.W-SVM algorithm outperforms the AdaBoost.DecisionTree and AdaBoost.W-SVM
algorithms for the co-authorship recommendation problem.

INDEX TERMS AdaBoost, co-authorship network, imbalanced dataset, recommendation problem, support
vector machine.

I. INTRODUCTION
The co-authorship recommendation problem is to predict
the ability of co-authors to collaborate in the future [1].
In publishing scientific research works, the collaboration of
authors is demonstrated by their joint authorship in articles.
The relationship between authors and articles is a many-to-
many relationship since an author can participate in writing
many articles, and an article can have one or many authors,
thereby creating an academic network called a co-authorship
network [2], [3], [4]. In other words, a co-authorship network
is a specialized social network that represents the collabo-
rative relationship between scientists in publishing scientific
research works, where each author is represented as a vertex,
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and each collaboration between two authors is represented as
an edge.

The co-authorship recommendation problem is attractive
and has been received significant attention from researchers
since it helps researchers to share knowledge and foster
innovation. So far, the main approaches to solving the
co-authorship recommendation problem have been proposed,
such as network analysis [5], [6], [7], [8], machine learn-
ing [9], [10], [11], and similar-content analysis [12], [13].
Among these approaches, machine learning has emerged as a
popular and effective approach for solving the co-authorship
recommendation problem in co-authorship networks. This is
because, from the current co-authorship network, machine
learning algorithms can learn to identify the potential author
pairs that are likely to collaborate in the future, which is
referred to as co-authorship candidate pairs. In the machine
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learning approach, we have to compute various attributes for
every pair of vertices in a co-authorship network, which may
be correlated with the likelihood of a future collaboration
between the authors. Once computed, the set of attribute
values for a pair of vertices is referred to as a feature vec-
tor. Then, we need to label the feature vectors by checking
whether or not two authors have previously collaborated on
some article. If the author pair is co-authorships in an article,
then the feature vector is labeled as +1, else it is labeled as
−1. Finally, we apply classification algorithms to the dataset
of labeled feature vectors to predict co-authorship collabora-
tions.

In practice, co-authorship networks often exhibit a highly
imbalanced distribution of connections. This is because
authors typically collaborate with only a small subset of all
possible authors, and the number of potential collaborations
is much larger than the actual collaborations in the network.
Consequently, datasets created from co-authorship networks
are typically two-class imbalanced datasets, where the class
of minority samples is labeled as+1, and the class of majority
samples is labeled as −1. Hereafter, we refer to the samples
labeled +1 as positive samples and those labeled −1 as
negative samples.

Learning on imbalanced datasets is one of the challenging
problems in the machine learning field. Typically, classi-
fication algorithms attempt to achieve classification mod-
els with the highest possible accuracy rate. However, such
classification models will be biased toward recognizing the
majority class label for two-class imbalanced datasets. In a
co-authoring network, the training dataset often exhibits a
high imbalance between positive and negative samples. As a
result, classification models trained on such a dataset tend
to misclassify positive samples as negative samples. This
means that the classification models give a very high accu-
racy but fail to correctly classify almost all positive samples.
According to [14], approaches commonly used to improve
classification on imbalanced datasets are:

• Using preprocessing techniques on imbalanced datasets
such as: (i) reducing the number of negative samples; (ii)
generating additional positive samples; or (iii) combin-
ing both. These techniques aim to reduce the imbalance
of datasets to improve the performance of traditional
machine learning algorithms [15], [16], [17].

• Using techniques to improve algorithms such as: (i) error
weight assignment; (ii) cost-based learning [18], [19],
[20], [21], [22], [23], [24]; or (iii) applying deep learning
models to imbalanced datasets [25], [26], [27], [28].
These techniques aim tomodify traditional classification
algorithms to classify positive samples better.

Among the above approaches, cost-based learning algorithms
assign a higher cost weight when the training models mis-
classify positive samples as negative ones. Consequently,
these algorithms offer several advantages such as: (i) keeping
the original characteristics of datasets; (ii) providing various

methods to improve the training parameters; and (iii) mini-
mizing the error cost function through loops and parameter
tuning. Although using a single classification algorithm can
be effective in some cases, it may not take into account all the
characteristics of datasets. Hence, several researchers have
proposed combining multiple classifiers to create a more
accurate and robust aggregate classifier [29], [30].

The AdaBoost algorithm proposed by Freund [31] is
an ensemble learning method that combines several weak
classifiers to form a strong classifier. Recently, AdaBoost
has been improved by many researchers, notably the stud-
ies of combining AdaBoost with Support Vector Machine
(SVM) [32], [33], [34], [35], [36], [37], [38], [39]. These
improvements aim to take advantage of AdaBoost’s adaptive
iterability and SVM’s scalability on datasets with different
characteristics. In [33], Wonji et al. proposed a method that
combines AdaBoost with Weight SVM (W-SVM), namely
AdaBoost.W-SVM, to improve classification efficiency on
two-class imbalanced datasets. However, we recognize that
AdaBoost.W-SVM [33] and other studies [32], [35], [36],
[37], [38], [39] using AdaBoost on two-class imbalanced
datasets initialize equal error weights for each data sam-
ple. Thus, such algorithms can be improved to make them
more efficient for the classification problem of two-class
imbalanced datasets that require prioritizing the accurate
classification of positive samples. In addition, AdaBoost
computes the confidence weight of the membership clas-
sifiers by considering the total error in the entire dataset
without considering the specific characteristics of individ-
ual samples in a given dataset, while the attributes of each
sample are so important in enhancing the accurate classifi-
cation of positive samples. Therefore, in this study, we pro-
pose an improved algorithm of AdaBoost combined with
W-SVM algorithm, so called Im.AdaBoost.W-SVM, for the
co-authorship recommendation problem. Firstly, we propose
two significant improvements to the original AdaBoost: (i)
initializing the set of different error weights adapted to the
imbalance rate between positive and negative samples of
datasets; and (ii) calculating the confidence weights of mem-
ber classifiers based on their sensitivity to the total error
caused by positive samples, i.e., if the member classifier mis-
classified more positive samples, the confidence weights of
misclassified samples will be decreased. Secondly, we apply
the W-SVM algorithm as a membership classifier to our
Im.AdaBoost.W-SVM to enhance the correct classification
rate of positive samples. To evaluate the performance of
our Im.AdaBoost.W-SVM algorithm for the co-authorship
recommendation problem,we collected information on scien-
tific articles from thewebsitewww.sciencedirect.com through
ScienceDirect APIs and built two-class imbalanced datasets.
Our experimental results on various experimental scenar-
ios show that our Im.AdaBoost.W-SVM is more efficient
than AdaBoost.DecisionTree [29] (i.e., AdaBoost combined
with Decision Tree algorithm) and AdaBoost.W-SVM algo-
rithms [33] for the co-authorship recommendation problem.
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The remainder of this paper is structured as follows:
Section II provides preliminaries about the co-authorship
recommendation problem, AdaBoost and Weighted-SVM
algorithms; Section III presents our Im.AdaBoost.W-SVM;
Section IV describes our experimental results and discus-
sions; Section V concludes our work and offers directions for
future research.

II. PRELIMINARIES
A. CO-AUTHORSHIP RECOMMENDATION PROBLEM
We approach the co-authorship recommendation problem by
modeling it as a co-authorship network. A co-authorship
network is represented by GT = (V T ,ET ,PT ,T ), where
(i) T = {t1, t2, . . . , tk} is a set of timestamps; (ii) V T

=

{v1, v2, . . . , vN } is the set of vertices representing the authors
appearing in the articles at some time in T ; (iii) PT =

{p1, p2, . . . , pM } is the set of articles at some time in T ;
and (iv) ET = {vi, vj, pk , th} is the set of links between
authors at some time in T , where two authors (vi, vj) ∈

V T
× V T have the same article pk ∈ PT at the time th ∈ T .

In addition, the set V T can add attributes that carry specific
information about each author such as her/his information
about nationality, affiliation, and study topics. The set of
attributes is denoted by AT = {a1, a2, . . . , aN }, where ai is a
feature vector containing information about an author/vertex
pair (vi, vj) ∈ V T

× V T . Given a co-authorship network GT ,
the co-authorship recommendation problem aims to predict
the ability of authors to collaborate in the future. In other
words, we have to predict the potential links among authors
based on the information given in the sets ET and AT . Given
two connected vertices vi ∈ V T and vj ∈ V T in GT , the link
measures are classified into three main groups:

a) Link measures based on neighbors: Given a vertex
vi ∈ V T , we let0(vi) be the set of neighbors of vi. Then, some
popular link measures are Common Neighbor (CN ), Adamic
Adar (AA), Jaccard Coefficient (JC), Preferential Attachment
(PA), and Resource Allocation (RA) [40]:
1) CN is calculated by the number of common neighbors

of vi and vj:

CN (vi, vj) = |0(vi) ∩ 0(vj)|. (1)

This show that the greater the number of common
neighbors is, the greater theCN value is, i.e., the higher
the probability that the pair of authors (vi, vj) will col-
laborate in the future.

2) AA is calculated by the number of neighbor vertices of
each common neighbor:

AA(vi, vj) =

∑
vk∈0(vi)∩0(vj)

1
log(|0(vk )|)

, (2)

where vk is a common neighbor of both vi and vj.
3) JC is calculated by the ratio of the number of common

neighbors to the total number of neighbors of vi and vj:

JC(vi, vj) =
0(vi) ∩ 0(vj)
0(vi) ∪ 0(vj)

. (3)

4) PA is calculated by the number of neighbors of each
vertice vi and vj:

PA(vi, vj) = |vi| × |vj|, (4)

where |vi| and |vj| are the number of degrees of vi and
vj, respectively.

5) RA is similar to AA and it is calculated as follows:

RA(vi, vj) =

∑
vk∈0(vi)∩0(vj)

1
|0(vk )|

. (5)

b) Link measures based on paths: Some popular link
measures are Shortest Path (SPath) and Katz [40]:
1) The SPath metric considers the path distance between

two vertices vi and vj, denoted by d(vi, vj), through
intermediate vertices:

SPath(vi, vj) =
1

d(vi, vj)
. (6)

If there is no path between two vertices vi and vj, then
SPath(vi, vj) = 0.

2) Katz is the number of possible paths between two ver-
tices vi and vj:

Katz(vi, vj) =

∞∑
l=1

β l |pathlvi,vj | = βA+ βA2 + · · · ,

(7)

where Al = {pathlvi,vj |(vi, vj) ∈ V T
× V T

} is the set
of paths from vi to vj with length l (l ≥ 1) and β is an
optional constant.Katz(vi, vj) means that the farther the
path is, the less influence it has on the measurement.

c) Link measures based on additional personal infor-
mation: Some popular link measures are Similar Work (SW )
and Common Country (CC) [41]:

1) SW is the similarity of the workplace and nationality
among vertices v1, v2, · · · , vN :

SW (v1, · · · , vN ) =


2, if S1(v1) = · · · = S1(vN ),

1, if S2(v1) = · · · = S2(vN ),

0, otherwise,

(8)

where S1(vi) and S2(vi) are information about the work-
place and nationality of vi (i = 1, 2, · · · ,N ).

2) CC is the similarity of the workplace between two
authors in the same national or university:

CC(vi, vj) = SW (vi, vj) +

∑
vk∈0(vi)∩0(vj)

SW (vk , vi, vj).

(9)

The link measures are used for determining the collabora-
tive levels of authors in a co-authorship network. Considering
a set of timestamps in T1, the co-authorship candidate table
built on GT1 has the following structure: each row is the
information about a pair (vi, vj) of authors and the columns
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TABLE 1. Table of co-authorship candidates.

are candidate pairs, link measures, and labels of the candidate
pair of authors. Assuming that T2 is a set of timestamps after
T1, the co-authorship candidate table built on a co-authorship
network GT2 is considered to assign labels with true collabo-
ration (i.e., labeled +1) or no collaboration (i.e., labeled −1)
for data samples of candidate pairs, as illustrated in Table 1.
Visually, we see that the candidate data table can be con-

sidered as a set of co-authored data samples with the full
attributes and class labels. Therefore, the co-authorship rec-
ommendation problem is transformed into a classification
problem on a two-class labeled dataset, where one class is
labeled as +1 to represent a future collaboration, and the
other is labeled as −1 to represent no future collaboration.
Furthermore, in a large co-authorship network, the candidate
pairs can exponentially explode, resulting in many cases
where collaboration between authors does not exist, corre-
sponding to the label −1. This leads to the creation of a
two-class imbalanced dataset. Accordingly, with the clas-
sification model approach, the co-authorship recommenda-
tion problem becomes a classification problem on two-class
imbalanced datasets.

B. AdaBoost ALGORITHM
In the classification problem for a two-class imbalanced
dataset, using a single algorithm may not fully consider the
characteristics of datasets. Therefore, many studies combine
multiple classification algorithms, called membership classi-
fiers, to form a stronger classifier [29], [30]. The AdaBoost
algorithm proposed by Freund [31] is such a strong classifier.
Give a dataset, the main idea of AdaBoost is that in each
iteration, it assigns each data sample in the dataset to an
error weight and re-evaluates the classification results of the
membership classifiers, thereby allowing it to obtain better
values of parameters for the next iteration.

Specifically, AdaBoost is presented in Alg. 1. The inputs
of the algorithm include: (i) X is a dataset of N samples
(xi, yi) (i = 1, 2, · · · ,N ), where xi is an attribute vector and
yi ∈ {−1,+1} is a class label of xi; (ii) M is the maximum
number of iterations; and (iii) h1 is a membership classifier.
At the beginning, the algorithm assigns a set of equal error
weights D1

= {w1
i =

1
N } for each sample xi ∈ X . At each

iteration t (t = 1, 2, · · · ,M ), the classifier ht classifies the
dataset X (line 3). The classification quality of ht is evaluated
through the sum of error εt for the next iteration (line 4)
and the confidence weight αt (line 5). Then, the algorithm

updates the error weight distribution ωt+1
i (line 6). Finally,

an aggregate classification model is calculated according to
the formulaH (x) (line 7). The classification label of the sam-
ple is determined based on the sign function: label +1 when
H (x) > 0 and label − 1 when H (x) < 0. If the total error εt
on the dataset is equal to 0.5, then αt = 0, meaning that the
classifier ht does not contribute to the classification decision
of the ensemble classifier H .

Recently, Lee et al. proposed an AdaBoost.W-SVM
algorithm [33], where W-SVM [42] is a membership classi-
fier in AdaBoost algorithm. At each iteration t , AdaBoost.W-
SVM uses parameters zti to adjust the weights of samples
xi ∈ X in W-SVM. The value of zti is calculated based on the
number of samples xi ∈ X distributed in the SVM marginal
space as follows:

1) If the sample xi is in the bounded support vec-
tors (BSV), then

zti =


NBSV
2NBSV−

, if yi = −1,

NBSV
2NBSV+

, if yi = +1,
(10)

where NBSV is the total number of samples in BSV,
NBSV−

is the total number of negative samples in BSV,
and NBSV+

is the total number of positive samples in
BSV.

2) If the sample xi is on the margin boundaries of support
vectors (SV), then

zti =


NSV
2NSV−

, if yi = −1,

NSV
2NSV+

, if yi = +1,
(11)

where NSV is the total number of samples on SV, NSV−

is the total number of negative samples on SV, andNSV+

is the total number of positive samples on SV.
3) If the sample xi is noise, then

zti = exp(
Nnoisy
N+

), (12)

where Nnoisy is the total number of noise samples and
N+ is the total number of positive samples.

III. PROPOSED ALGORITHM
In this section, we propose two methods consisting of initial-
izing adaptive weights and adjusting positive label-sensitive
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Algorithm 1: AdaBoost
Input: A dataset X = {(x1, y1), . . . , (xN , yN )} with y = {−1,+1}; M : maximum iteration; h1: a member classifier.
Output: H : Ensemble classifier.

1 Initialize the error weight D1
= {ω1

i |ω
1
i =

1
N } on each sample (xi, yi) ∈ X ( i = 1, · · · ,N );

2 for t = 1 to M do
3 Train a classifier ht on X with the error weight Dt ;
4 Calculate the total error of ht : εt =

∑N
i=1 ωt

i , yi ̸= ht (xi);
5 Calculate the confident weight of ht : αt =

1
2 ln

1−εt
εt

;

6 Calculate the error weight: ωt+1
i =

ωti e
−αt yiht (xi)

Lt
, where Lt is a normalization constant and

∑N
i=1 ωt+1

i = 1;

7 return H (x) = sign(
∑M

t=1 αtht (x));

confidence weights of the membership classifier to over-
come the weakness of AdaBoost for two-class imbalanced
datasets. Subsequently, we propose an Im.AdaBoost.W-SVM
algorithm to deal with highly imbalanced two-class datasets
in the co-authorship recommendation problem.

A. INITIALIZE ADAPTIVE AdaBoost WEIGHTS
We find in the AdaBoost given in Alg. 1 that the set of the
initial error weights {ω1

i =
1
N , i = 1, 2, · · · ,N } assigned

to each data sample is initialized equally. At each iteration,
AdaBoost evaluates the classification result of each mem-
bership classifier and updates the weights for each sample.
Specifically, if a sample is misclassified, its error weight is
increased, while if a sample is correctly classified, its error
weight is decreased. However, in the case of an imbalanced
dataset, we need to adjust the algorithm to better adapt for
positive samples, that is, we should assign a higher error
weight to these samples. To overcome this weakness of
AdaBoost for two-class imbalanced datasets, we propose a
novel method to initialize error weights to better adapt to the
imbalance ratio of positive and negative samples of a dataset.
Our method aims to assign a higher initial error weight to
positive samples.

We assume that Nmin and Nmaj are the number of pos-
itive and negative samples (i.e., the number of samples
of the minority and majority classes), respectively, where
Nmin + Nmaj = N and Nmin ≤ Nmaj. We modify the error
weights by adding a 1min value to the error weights of
positive samples and subtracting a 1maj value from the error
weights of negative samples. This means the error weight
ω1
i of each sample (xi, yi) ∈ X (i = 1, 2, . . . ,N ) is defined as

follows:

ω1
i =


1
N

+ 1min, if yi = +1,

1
N

− 1maj, if yi = −1,
(13)

where 1min and 1maj must be satisfied two following
conditions:

1) Error weights are greater than 0 and less than 1
N , or

0 < 1min, 1maj <
1
N

. (14)

2) The total error on the samples is equal to 1, or

Nmin
N

+ Nmin × 1min +
Nmaj
N

− Nmaj × 1maj = 1.

(15)

We consider Eq. (15) along with Nmin + Nmaj = N ,
we have:

Nmin + Nmaj
N

+ Nmin × 1min − Nmaj × 1maj = 1, (16)

or

Nmin × 1min = Nmaj × 1maj. (17)

We assume that the ratio of the number of positive samples
to that of negative samples is δ =

Nmin
Nmaj

, where 0 < δ ≤ 1,
then from Eq. (17), we have:

1min =
Nmaj
Nmin

× 1maj =
1maj

δ
. (18)

From Eqs. (14) and (18), we have the following conditions
for 1min and 1maj:

0 < 1min, 1maj <
1
N

,

1min =
1maj

δ
.

(19)

We propose to choose 1maj =
1−δ
N , thus 1min =

1−δ
δ×N .

From Eq. (13), the set of initial weights is defined by D1
=

{ω1
i , i = 1, 2, . . . ,N }, where

ω1
i =


1
N

+ 1min =
1
N

+
1 − δ

δ × N
, if yi = +1,

1
N

− 1maj =
1
N

−
1 − δ

N
, if yi = −1.

(20)

It can be seen that, when applying Eq. (20) to datasets
with different imbalanced rates, the error weights of positive
samples tend to increase, while those of negative samples
tend to decrease, depending on the value of δ =

Nmin
Nmaj

. When
the dataset is balanced, meaning that δ = 1, 1min = 0,
and 1maj = 0, and therefore the initial weights D1 in our
proposed method are the same as those ofD1 in the AdaBoost
(i.e., the error weights on all samples are 1

N ).
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FIGURE 1. Scheme of our proposed Im.AdaBoost.W-SVM algorithm.

In addition, to dynamically adjust the1min and1maj values
according to the individual characteristics of datasets, we pro-
pose a more general formula using an exponential parameter
θ as follows:

1maj =
(1 − δ)θ

N
and 1min =

(1 − δ)θ

δ × N
. (21)

For each dataset, we can find the best value of θ through
testing on a set of given values. Obviously, our improvements
given in Eqs.(13) and (21) make AdaBoost more generaliz-
able on datasets with different imbalance rates.

B. ADJUST CONFIDENCE WEIGHTS OF THE MEMBERSHIP
CLASSIFIER
We find in the AdaBoost given in Alg. 1 that it calculates the
confidence weight of each membership classifier based on
the total error on the entire dataset without considering the
characteristics of positive and negative samples in two-class
imbalanced datasets, while these characteristics can have an
important influence on the results of membership classifiers.

To overcome this weakness of AdaBoost for two-class imbal-
anced datasets, we propose a novel method to adjust the
confidence weights of member classifiers based on their
sensitivity to the total error caused by positive samples. Our
method aims to decrease the confidence weights of misclas-
sified samples if the member classifier misclassifies more
positive samples.

We consider the line 5 in the AdaBoost algorithm, the
confidence weight αt of the membership classifier ht is cal-
culated by a function that is inversely proportional to the
total error εt . This total error is considered equally across the
misclassified samples. For a two-class imbalanced dataset,
AdaBoost should be modified such that it gives priority to
assigning a high error weight when it misclassifies many
positive samples. To do this, we propose a new total error
ε∗
t instead of εt , which is calculated by the total error of pos-
itive samples, denoted by ε+

t , and that of negative samples,
denoted by ε−

t , i.e.,

ε∗
t = ε−

t + ε+
t , (22)
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Algorithm 2: Im.AdaBoost.W-SVM
Input: A dataset with N samples X = {(x1, y1), . . . , (xN , yN )}; M : maximum iteration; h1: a W-SVM classifier;

C : a control parameter of W-SVM.
Output: H : Ensemble classifier.

1 Initialize {z1i = 1} and the error weight D1
= {ω1

i } for i = 1, 2, . . . ,N using Eqs.(20) and (21) ;
2 for t = 1 to M do
3 Train a classifier ht (i.e.,W-SVM) on X with the error weight Dt = {ωt

i } and {zti } for i = 1, 2, . . . ,N ;
4 Calculate {zt+1

i } using Eqs.(10), (11), and (12);
5 Calculate the total error of ht : ε∗

t (using Eq.(24));
6 Calculate the confidence weight of ht : α∗

t (using Eq.(25));

7 Calculate the error weight: ωt+1
i =

ωti e
−α∗

t yiht (xi)

Lt
, where Lt is a normalization constant and

∑N
i=1 ωt+1

i = 1;

8 return H (x) = sign(
∑M

t=1 α∗
t ht (x)).

where 
ε+
t =

∑N

i=1
ωt
i , yi ̸= ht (xi), yi = +1,

ε−
t =

∑N

i=1
ωt
i , yi ̸= ht (xi), yi = −1.

(23)

Obviously, ε∗
t depends on ε+

t and ε−
t , and if wewant themem-

bership classifier ht to classify positive samples correctly,
then we need to increase ε+

t . To do this, we define a parameter
γ to adjust the effect of the total error ε+

t on ε∗
t . Therefore,

we redefine ε∗
t as follows:

ε∗
t = ε−

t + γ ∗ ε+
t , subject to γ > 1. (24)

Since 0 < ε−
t + ε+

t < 1, we choose γ = 2 − (ε−
t + ε+

t ).
Then, the confidence weight αt of the membership classifier
ht in AdaBoost using our proposed method becomes:

α∗
t =

1
2
ln
1 − ε∗

t

ε∗
t

. (25)

It is evident that the total error value ε∗
t in Eq. (24) increases

with ε+
t and γ , resulting in the confidence weight value α∗

t
being adjusted down accordingly. This allows the algorithm
can correctly classify as many positive samples as possible.

C. Im.AdaBoost.W-SVM ALGORITHM
This section proposes a novel algorithm to efficiently clas-
sify two-class imbalanced datasets in the co-authorship rec-
ommendation problem. We call the AdaBoost algorithm
enhanced by our two improvements given in Secs. III-A
and III-B an Im.AdaBoost algorithm. As shown in [33],
AdaBoost combined W-SVM [42] gives a efficient clas-
sifier for two-class imbalanced datasets. Therefore, our
Im.AdaBoost utilizes W-SVM as a membership classifier,
so called Im.AdaBoost.W-SVM. The Im.AdaBoost.W-SVM
scheme is described in Fig. 1 and Im.AdaBoost.W-SVM
algorithm is shown in Alg. 2, where ht is a W-SVM mem-
bership classifier.

Our Im.AdaBoost.W-SVM algorithm initializes {z1i = 1}
and the set of adaptive error weights D1

= {ω1
i } for i =

1, 2, . . . ,N using by Eqs. (20) and (21) (i.e., the first input

in Fig. 1). The algorithm runs in M iterations and in each
iteration t (t = 1, 2, · · · ,M ), it performs as follows. First,
the algorithm uses ht (i.e., W-SVM) to classify the dataset
X by using the set of error weights Dt = {ωt

i } and the
parameters {zti } for i = 1, 2, · · · ,N (i.e., Train ht (X ) in
Fig. 1). Then, the algorithm computes and updates the param-
eters zt+1

i , ε∗
t , α∗

t , and Dt+1
= {ωt+1

i , i = 1, 2, . . . ,N }

based on the true/false classification results on the samples
(i.e., Calculate zt+1

i , Calculate ε∗
t , Calculate α∗

t , and Calculate
wt+1
i in Fig. 1). The values of zt+1

i and Dt+1
= {ωt+1

i , i =

1, 2, . . . ,N } are used for the next loop, while the value
of α∗

t is used for the ensemble classifier H . It should be
noted that the confidence α∗

t is calculated by Eq. (25). After
completing M iterations, the ensemble classifier H predicts
the class labels for the samples using the formula: H (x) =

sign(
∑M

t=1 α∗
t ht (x)), where ht is a W-SVM classifier and x is

a feature vector of some sample.
It should be emphasized that we can use the classification

algorithms such as Decision Tree [43] or SVM [44] as a
member classifier in Im.AdaBoost.

IV. EXPERIMENTS
In this section, we present experiments to evaluate the per-
formance of our Im.AdaBoost.W-SVM algorithm. As we
mentioned above, our Im.AdaBoost can utilize the Deci-
sion Tree (so called Im.AdaBoost.DecisionTree) or SVM
(so called Im.AdaBoost.SVM) algorithm as a member clas-
sifier. Therefore, in our following experiments, we not
only compare the performance of Im.AdaBoost.W-SVM
with that of other popular classification algorithms con-
sisting of Decision Tree [43], SVM [44], CNN [45],
W-SVM [42], AdaBoost.DecisionTree [29], AdaBoost.SVM
[35], AdaBoost.W-SVM [33], but also compare the perfor-
mance of Im.AdaBoost.W-SVM with that of Im.AdaBoost.
DecisionTree and Im.AdaBoost.SVM on three real-world
co-authorship datasets. We chose the Decision Tree, SVM,
W-SVM since they are not only popular shallow learning
techniques but also commonly used as membership clas-
sifiers in the AdaBoost algorithm. While, we chose CNN

VOLUME 11, 2023 89113



V. D. Quang et al.: Improved AdaBoost Algorithm for Highly Imbalanced Datasets

TABLE 2. Statistics of the journals from year 2000 to year 2017.

since it is a popular deep learning technique. Moreover, the
AdaBoost.DecisionTree, AdaBoost. SVM, and AdaBoost.W-
SVM algorithms are efficient ensemble techniques for imbal-
anced datasets. We ran all experiments of algorithms in
PyThon 3.11 software on a laptop computer with Core i7-
8550U CPU 1.8 GHz and 16 GB RAM on Windows 11.

A. DATASETS
In practice, authors often submit their articles to related jour-
nals rather than one. Therefore, we collected articles from
related journals to predict the ability of co-authors to collab-
orate in the future. To create datasets for the co-authorship
recommendation problem, we collected information about
authors and articles from ScienceDirect published in three
journals: Chemical Physics Letters, Journal of Molecular
Biology, Biochemical and Biophysical Research Communi-
cations, since they are related journals in the Biochemical and
Biophysical field. Specifically, we retrieved the information
from the website www.sciencedirect.com through ScienceDi-
rect APIs consisting of the article title, publication year,
content summary, keyword list, and author information in the
period from year 2000 to year 2017. The statistics of the num-
ber of articles, the number of authors, and the average number
of articles per year of these journals are shown in Table 2.
We used the information from journals from year 2010 to year
2014 to calculate the link measures between author pairs and
built one data table of co-authorship candidates as follows:
(i) each data sample is a pair of co-authorship candidates;
(ii) each sample has attributes of link measures as given in
Table 1. We used the information from journals from year
2015 to year 2017 to determine the labels of data samples.
Specifically, the label of each data sample is determined
by checking whether or not two authors have collaborated
on some article. If two authors are co-authors in an article,
then the data sample is labeled +1. Otherwise, if there is no
co-authorship in any article, then the data sample is labeled
as −1. By doing so, we created a co-authorship dataset con-
sisting of 372400 samples.

To comprehensively evaluate the performance of our
algorithm,we used a bootstrap technique on our co-authorship
dataset to create 21 sub-datasets, where the sub-datasets are
divided into three groups of small, middle, and large sizes.
Each group has seven datasets with the percentage of positive
samples in the total number of samples to be 20%, 15%, 10%,

TABLE 3. Description of Co-Authorship datasets.

8%, 6%, 4%, and 2% (i.e., the imbalanced ratios of positive
and negative samples are 1:4, 1:5.67, 1:9, 1:11.50, 1:15.67,
1:24, and 1:49, respectively). In other words, we evaluate the
performance of our algorithm for each imbalanced ratio on
three datasets of small, middle, and large sizes. The details
of our experimental datasets are shown in Table 3. It should
be emphasized that the datasets with a percentage of positive
samples being less than 10% are highly imbalanced.

B. METRICS
For a two-label classification problem, a confusion matrix
built based on the results of a classification algorithm is
defined as follows [46]:[

TP (True Positive) FP (False Positive)

FN (False Negative) TN (True Negative)

]
, (26)

where (i) TP is the number of samples that the algorithm
correctly classified positive samples; (ii) FP is the number of
samples that the algorithm misclassified positive samples as
negative samples; (iii) FN is the number of samples that the
algorithmmisclassified negative samples as positive samples;
and (iv) TN is the number of samples that the algorithm cor-
rectly classified negative samples. Accordingly, the accuracy
metric of the model achieved by the algorithm is defined by:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
. (27)

However, when we work with two-class imbalanced datasets,
the accuracy metric is insufficient to measure the achieved
model. For example, if a dataset consists of only 1% of pos-
itive and 99% of negative samples, a classification algorithm
that achieves a 99% accuracy ratio may misclassify all posi-
tive samples, resulting in a useless algorithm. For this reason,
several popular metrics used for evaluating a classification
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FIGURE 2. The values of Gmean over θ found by Im.AdaBoost.W-SVM.

TABLE 4. The best values of the parameter θ for Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM, and Im.AdaBoost.W-SVM algorithms.

model of two-class imbalanced datasets are given as follows:

Precision =
TP

TP+ FP
, (28)

Sensitivity = SE =
TP

TP+ FN
, (29)

Specificity = SP =
TN

TN + FP
. (30)

Precision is a metric to measure the percentage of positive
samples that are actually positive samples, but it does not
provide any insight into the number of samples from the
positive samples that were mislabeled as negative samples.
Therefore, using only Precision as a metric is insufficient to
evaluate the performance of a classification model. On the
other hand, Sensitivity (SE), also known as the Recall, mea-
sures the percentage of positive samples that were correctly
classified, but it does not take into account the number of
negative samples that were misclassified as positive samples.
A high sensitivity value indicates that a classification model
has a low rate of incorrectly classifying positive samples as
negative samples. Specificity (SP) measures the percentage of
negative samples that were correctly classified, but it does not
consider the number of positive samples that were misclassi-
fied as negative samples. A high specificity value indicates
that the classification model has a low rate of incorrectly
classifying negative samples as positive samples. To evaluate
a more accurate classification model for both positive and
negative samples, two other metrics have been proposed as
follows:

F1-score =
(1 + β2) × SE × Precision

β2 × SE + Precision
, (31)

Gmean =
√
SP× SE . (32)

F1-score (F1S) utilizes the harmonic mean of the pre-
cision and specificity metrics, where β is a coefficient to
adjust the relative importance of the precision and sensitivity
metrics. Gmean (geometric mean) utilizes the square root
of the product of SP and SE , and therefore it considers the
percentage of both negative and positive samples correctly
classified.

Another popular metric to measure the quality of a
classification model for two-class imbalanced datasets is
the AUC (Area Under the Curve). The AUC is the area
under the Receiver Operating Characteristic (ROC) curve,
where the ROC is a curve connecting the points represented
by the false positive rate (FPR) and the true positive rate
(TPR) for different classification thresholds:

FPR =
FP

FP+ TN
and TPR =

TP
TP+ FN

(i.e., SE). (33)

A higher AUC value means the model is performing better
and has a stronger ability to distinguish between positive and
negative samples.

Since our Im.AdaBoost.W-SVM is to classify highly
imbalanced datasets, we focus on analyzing the values of
SP, SE , Gmean, and AUC to compare the performance of
Im.AdaBoost.W-SVM with those of other algorithms.

C. EXPERIMENTAL RESULTS
In this section, we describe four experiments. The
first one aims to find the best parameter values for
Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM, and Im.Ada
Boost.W-SVM algorithms, while the other ones aim to com-
pare the performance of Im.AdaBoost.W-SVM with that
of the different classification algorithms on the datasets of
Groups I, II, and III.

VOLUME 11, 2023 89115



V. D. Quang et al.: Improved AdaBoost Algorithm for Highly Imbalanced Datasets

1) EXPERIMENT 1
In this experiment, we ran experiments to find the
best parameter values for Im.AdaBoost.DecisionTree,
Im.AdaBoost.SVM, and Im.AdaBoost.W-SVM on the cre-
ated datasets. To do this, we inherited the values of parameters
M = 10 and C = 10000 given in [47]. Then, we tested
the values of the parameter θ ∈ {0.2, 0.5, 0.8, 1.1, 1.4, 1.7,
2.0} for Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM,
and Im.AdaBoost.W-SVM algorithms. For each value θ ,
we found the value of Gmean and determined the best value
of θ such that Gmean is maximum.
Figure 2 shows a case where the values of Gmean were

found by Im.AdaBoost.W-SVM. It should be noted that if
there were some values of θ thatGmean is maximum, we took
one of the θ values.

Table 4 shows the best values of the parameter θ

for Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM, and
Im.AdaBoost.W-SVM ran on 21 datasets. Obviously, when
each dataset is created with a different percentage of positive
samples, the value of θ is also different.

2) EXPERIMENT 2
In this experiment, we compared the performance of
Im.AdaBoost.W-SVM with that of the classification algo-
rithms mentioned above on the datasets with a small size in
Group I.

Table 5 shows the results of this experiment. Accordingly,
we can give some main observations based on the values of
Gmean, SE , SP, and AUC as follows.

• When the percentage of positive samples in the
datasets decreases from 20% to 2%, meaning that
the imbalance ratio of positive samples increases,
only Im.AdaBoost.DecisionTree and Im.AdaBoost.W-
SVM found the maximum values of Gmean and
AUC . This shows that both Im.AdaBoost.DecisionTree
and Im.AdaBoost.W-SVM have a stronger ability to
distinguish between positive and negative instances
than the other algorithms. Moreover, Im.AdaBoost.W-
SVM found the maximum value of Gmean in four
of seven datasets and Im.AdaBoost.
DecisionTree found the maximum value of Gmean in
the remaining datasets. However, in three cases where
Im.AdaBoost.DecisionTree found the maximum value
of Gmean, Im.AdaBoost.W-SVM found a higher value
of SE than Im.AdaBoost.DecisionTree, meaning that
Im.AdaBoost.W-SVM classifies positive samples more
correctly than Im.AdaBoost.DecisionTree.

• When the percentage of positive samples in the datasets
is 10%, 8%, 6%, or 2%, Im.AdaBoost.SVM found 100%
of SE , 0% of Gmean, and 50% of AUC , meaning
that it correctly classified all positive samples, while
misclassifying all negative samples. In these cases,
Im.AdaBoost.W-SVM is better than Im.AdaBoost.SVM
for classifying both positive and negative samples.

• When the percentage of positive samples is low (e.g.,
2%), i.e., the imbalanced rate of positive and nega-
tive samples is high, all the SVM, CNN, W-SVM,
AdaBoost.DecisionTree, and AdaBoost.W-SVM algo-
rithms misclassified all positive samples since SE =

0, while Im.AdaBoost.SVM misclassified all negative
samples since SP = 0. Only three algorithms consist-
ing of Decision Tree, Im.AdaBoost.DecisionTree, and
Im.AdaBoost.W-SVM can classify both negative and
positive samples. However, among these algorithms,
Im.AdaBoost.W-SVM is the best algorithm for cor-
rectly classifying positive samples since it gave the
highest value of SE compared to Decision Tree and
Im.AdaBoost.DecisionTree.

Figure 3 shows a visual comparison of values of
Gmean, SE , and SP found by CNN, W-SVM, AdaBoost.W-
SVM, Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM, and
Im.AdaBoost.W-SVM. We chose CNN, W-SVM, and
AdaBoost.W-SVM since (i) CNN is a popular deep learn-
ing technique; (ii) W-SVM is a membership classifier in
our Im.AdaBoost.W-SVM; and (iii) AdaBoost.W-SVM is an
efficient ensemble classifier for imbalanced datasets. Among
these algorithms, we see that Im.AdaBoost.DecisionTree
and Im.AdaBoost.W-SVM outperforms the others in clas-
sifying positive and negative samples. However, since
Im.AdaBoost.W-SVM found higher values of SE than
Im.AdaBoost.DecisionTree, indicating that Im.AdaBoost.W-
SVM classified positive samples more correctly than
Im.AdaBoost.DecisionTree.

3) EXPERIMENT 3
In this experiment, we compared the performance of all the
algorithms mentioned in Experiment 2 on the seven datasets
with a middle size in Group II.

Table 6 shows the results of this experiment. Accordingly,
we can draw several conclusions as follows:

• Im.AdaBoost.W-SVM found not only themaximumval-
ues of Gmean and AUC , but also the maximum values
of SE for all seven datasets, meaning that it classified
positive samples better than the other algorithms.

• When the percentage of positive samples in the
datasets is 20%, the deviation of the values of Gmean,
AUC , and SE found by Im.AdaBoost.W-SVM com-
pared with those found by the best algorithm (i.e.,
Im.AdaBoost.DecisionTree) among the remaining algo-
rithms is 2.76% (91.58% − 88.82%), 2.50%(91.63% −

89.13%), and 13.00% (94.67%−81.67%), respectively.
When the percentage of positive samples in the datasets
is 2%, the deviation of the values of Gmean, AUC ,
and SE found by Im.AdaBoost.W-SVM compared with
those found by the best algorithm (i.e., AdaBoost.W-
SVM) is 6.33% (87.99% − 81.66%), 5.64%(88.77% −

83.13%), and 26.67% (100% − 73.33%), respectively.
Overall, we see that when the percentage of positive
samples in the datasets decreases from 20% down to 2%,
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TABLE 5. The classification results of datasets in Group I.

the deviation of the values of Gmean, AUC , and SE was
found by Im.AdaBoost.W-SVM compared with the best
values of Gmean, AUC , and SE found by the remaining

algorithms increases. This means that Im.AdaBoost.W-
SVM outperforms the other algorithms when the imbal-
anced rate of positive and negative samples increases.
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FIGURE 3. The values of Gmean, SE , and SP found on the datasets in Group I.

• When we applied the membership classifiers con-
sisting of Decision Tree, SVM, and W-SVM to our
Im.AdaBoost, Im.AdaBoost.DecisionTree, Im.AdaBoost.
SVM, and Im.AdaBoost.W-SVM gave higher values
of Gmean, AUC , and SE than AdaBoost.DecisionTree,
AdaBoost.SVM, and AdaBoost.W-SVM, respectively,
for all seven datasets. This shows that our Im.AdaBoost
significantly improved the ability to differentiate
between positive and negative samples compared with
the original AdaBoost.

Figure 4 compares values of Gmean, SE , and SP
found by CNN, W-SVM, AdaBoost.W-SVM, Im.AdaBoost.
DecisionTree, Im.AdaBoost.SVM, and Im.AdaBoost.W-
SVM. We see that Im.AdaBoost.W-SVM found much higher
values of Gmean, SE , and lower values of SP than the
compared algorithms. This means that Im.AdaBoost.W-SVM
found a classification model with a high rate of correctly
classifying positive samples. Moreover, when the percent-
age of positive samples in the datasets decreases from 20%
to 2%, Im.AdaBoost.W-SVM achieved the value of Gmean
decreased from 91.58% down to 87.99%, SE increased from
94.67% to 100%, and SP decreased from 88.60% to 77.53%.
This means that the values of Gmean, SE , and SP found
by Im.AdaBoost.W-SVM insignificantly changed even when
the percentage of positive samples significantly decreased.
In other words, Im.AdaBoost.W-SVM is efficient for classi-
fying samples in the highly imbalanced datasets in Group II.

4) EXPERIMENT 4
In this experiment, we compared the performance of algo-
rithms given in Experiment 1 for all seven datasets in
Group III, in which the datasets have a much larger number
of samples than that of the datasets in Group I and Group II.

Table 7 shows the results of this experiment. Accordingly,
we can outline several main observations as follows:

• Im.AdaBoost.W-SVM found the maximum values of
Gmean and AUC for all seven datasets and the

maximum values SE for six datasets. However, when
the percentage of positive samples in the datasets is
2%, Im.AdaBoost.SVM found 100% of SE and 0%
of SP, meaning that Im.AdaBoost.SVM misclassified
all negative samples as positive samples. Therefore,
Im.AdaBoost.W-SVM performs better than the com-
pared algorithms in correctly classifying the positive
samples in the datasets.

• When the percentage of positive samples in the
datasets is 20%, the deviation of the values of
Gmean, AUC , and SE found by Im.AdaBoost.W-
SVM compared with these second-highest values found
by Im.AdaBoost.DecisionTree is 3.72% (88.87% −

85.15%), 3.20%(88.87% − 85.67%), and 11.67%
(87.92% − 76.25%), respectively. However, these devi-
ation values increase 16.25% (84.92% − 68.67%) for
Gmean, 12.00%(85.17% − 73.17%) for AUC , and
43.75% (91.67%−47.92%) for SE when the percentage
of positive samples in the datasets is 4%. When the
percentage of positive samples in the datasets is 2%, the
deviation of the values of Gmean, AUC , and SE found
by Im.AdaBoost.W-SVM compared with those found
by AdaBoost.W-SVM is 10.41%(86.92% − 76.51%),
8.96%(87.04% − 78.08%), and 29.17%(91.67% −

62.50%), respectively. Overall, we see that when the
percentage of positive samples decreases, the devia-
tion of the values of Gmean, AUC , and SE found by
Im.AdaBoost.W-SVM compared with the highest val-
ues of Gmean and SE found by the other algorithms
increases. This means that Im.AdaBoost.W-SVM is
more efficient than the other algorithms when the imbal-
anced rate of positive and negative samples increases.

• As in the results of Experiment 2, we see that when
we applied the membership classifiers consisting of
Decision Tree, SVM, and W-SVM to our Im.AdaBoost,
Im.AdaBoost.DecisionTree, Im.AdaBoost.SVM, and
Im.AdaBoost.W-SVM gave higher values of
Gmean, AUC , and SE than AdaBoost.DecisionTree,
AdaBoost.SVM, and AdaBoost.W-SVM, respectively,
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TABLE 6. The classification results of datasets in Group II.

for all seven datasets. This shows again that our
Im.AdaBoost significantly outperformed the original

AdaBoost in ability to distinguish between positive and
negative samples.
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TABLE 7. The classification results of datasets in Group III.

Figure 5 compares Gmean, SE , and SP found by CNN,
W-SVM, AdaBoost.W-SVM, Im.AdaBoost.DecisionTree,

Im.AdaBoost.SVM, and Im.AdaBoost.W-SVM. We see that
Im.AdaBoost.W-SVM achieved not only the highest values
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FIGURE 4. The values of Gmean, SE , and SP found on the datasets in Group II.

FIGURE 5. The values of Gmean, SE , and SP found on the datasets in Group III.

of Gmean but also the highest values of SE . This means
that Im.AdaBoost.W-SVM has the highest ability among the
algorithms to detect accurate positive samples. Moreover, the
values ofGmean, SE , and SP found by Im.AdaBoost.W-SVM
lightly changed even when the percentage of positive samples
significantly decreases. Specifically, the value ofGmean only
decreases from 88.87% to 86.92%, while the percentage of
positive samples decreases from 20% to 2%. In other words,
Im.AdaBoost.W-SVM is efficient for classifying samples in
the highly imbalanced datasets in Group III.

In summary, the results of the three experiments above
show that (i) Im.AdaBoost.W-SVM outperforms the com-
pared algorithms when the imbalanced rate of positive and
negative samples increases; (ii) Even when the percentage
of positive samples significantly decreases, Im.AdaBoost.W-
SVM is efficient for classifying samples with highly imbal-
anced rates in datasets; (iii) When the number of data
samples in datasets significantly increases, Im.AdaBoost.W-
SVM exhibits more explicit performance in correctly clas-
sifying the positive samples in the datasets. This is because
in Im.AdaBoost.W-SVM, we proposed two significant
improvements to the original AdaBoost. Firstly, we initialize

the set of different error weights adapted to the imbalance rate
between positive and negative samples of datasets. Secondly,
we calculate the confidence weights of member classifiers
based on their sensitivity to the total error caused by positive
samples. By doing so, our Im.AdaBoost.W-SVM increases
the influence of positive samples and decreases the influence
of negative samples in constructing a classifier model.

V. CONCLUSION
In this paper, we solved the co-authorship recommendation
problem as a classification problem. Since the datasets gener-
ated from this problem exhibit a significant class imbalance,
making it challenging to address. To overcome this issue,
we proposed a novel algorithm named Im.AdaBoost.W-SVM
to effectively handle the challenges caused by these highly
imbalanced two-class datasets. Specifically, we first proposed
two significant improvements to the original AdaBoost: (i)
initializing the set of different error weights adapted to the
imbalance rate of datasets, which is adjusted by a param-
eter θ ; and (ii) calculating the confidence weights of the
member classifiers based on sensitivity to the total error
caused on positive-class samples such that if the member
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classifier misclassifies more positive-class sample, then the
confidence weights of these samples are increased. We then
used the W-SVM algorithm as a membership classifier in our
Im.AdaBoost.W-SVM to classify the imbalanced datasets.
To evaluate the performance of our Im.AdaBoost.W-SVM
algorithm for the co-authorship recommendation problem,
we collected information about authors and articles from the
website www.sciencedirect.com and built two-class imbal-
anced datasets. Our experimental results for our self-built co-
authorship datasets showed that our Im.AdaBoost.W-SVM
algorithm is efficient for the co-authorship recommendation
problem with highly imbalanced two-class datasets. In the
future, we will apply our algorithm to datasets created from
the co-author recommendation problem using various met-
rics to improve the quality of collaborative recommendations
among authors. Another potential future extension is that we
combine the Im.AdaBoost algorithm with weighted member-
ship classifiers to comprehensively evaluate the performance
of our algorithm. In addition, we find that the classification
problem in highly imbalanced datasets is a common problem
in many fields such as health, agriculture, transportation, etc.
Therefore, we intend to extend the proposed algorithm to
apply to classification problems in these fields to effectively
solve the challenges of imbalanced datasets.
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