
Tongliang Liu
Geoff Webb
Lin Yue
Dadong Wang (Eds.)

 123

LN
AI

 1
44

71

36th Australasian Joint Conference on Artificial Intelligence, AI 2023
Brisbane, QLD, Australia, November 28 – December 1, 2023
Proceedings, Part I

AI 2023: Advances in
Artificial Intelligence

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14471
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

Finding Maximum Weakly Stable
Matchings for Hospitals/Residents

with Ties Problem via Heuristic Search

Son Thanh Cao, Le Van Thanh, and Hoang Huu Viet(B)

Faculty of Information Technology, Vinh University, Vinh City, Vietnam
{sonct,thanhlv,viethh}@vinhuni.edu.vn

Abstract. The Hospitals/Residents with Ties Problem is a many-one
stable matching problem, in which residents need to be assigned to hospi-
tals to meet their constraints. In this paper, we propose a simple heuristic
algorithm but solve this problem efficiently. Our algorithm starts from
an empty matching and gradually builds up a maximum stable match-
ing of residents to hospitals. At each iteration, we propose a heuristic
function to choose the best hospital for an active resident to form a
resident-hospital pair for the matching. If the chosen hospital overcomes
its offered capacity, we propose another heuristic function to remove the
worst resident among residents assigned to the hospital in the matching.
Our algorithm returns a stable matching if it finds no active resident.
Experimental results show that our algorithm is efficient in execution
time and solution quality for solving the problem.

Keywords: Gale-Shapley algorithm · Hospitals/Residents with Ties ·
Heuristic algorithm · Weakly stable matching

1 Introduction

The Hospitals/Residents problem, as defined by Gale and Shapley in 1962,
was initially called the “College Admissions Problem” [3]. This classic prob-
lem addresses the issue of matching medical residents to hospitals in a way that
is both stable and satisfactory for all parties involved. In the original formulation
of the problem, there are a set of hospitals and a set of residents. Each hospital
has a ranking of the residents based on their preferences, while each resident has
a ranking of the hospitals. The goal is to find a stable matching, where no two
hospitals and residents would prefer each other over their current assignments.

Since its introduction, the Gale-Shapley (GS) algorithm has inspired further
research and variations on the Hospitals/Residents (HR) problem, including the
consideration of ties in preference rankings and the exploration of different opti-
mization objectives. These developments continue to shape the field and con-
tribute to improving the allocation of medical residents to hospitals and other
related matching problems. We can find HR applications in various contexts and
systems worldwide. Notable examples include the National Resident Matching
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
T. Liu et al. (Eds.): AI 2023, LNAI 14471, pp. 442–454, 2024.
https://doi.org/10.1007/978-981-99-8388-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8388-9_36&domain=pdf
https://doi.org/10.1007/978-981-99-8388-9_36

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 443

Program (NRMP) in the United States, the Scottish Pre-registration House Offi-
cer Allocations (SPA) matching scheme, and the Canadian Resident Matching
Service (CaRMS) in Canada [9].

The Hospitals/Residents problem with Ties (HRT) is an extension of the
classic Hospitals/Residents problem that allows ties in the preferences of both
residents and hospitals, in which participants can rank a subset of the other
set with equal preference, indicating that they consider those options equally
desirable [9]. Stability in HRT implies that there are no resident-hospital pairs
who both prefer each other over their current assignments, considering the ties in
their preferences. There are various criteria for stability, such as weak-stability,
strong-stability, or super-stability [8,9], which determine the level of preference
satisfaction and the absence of blocking pairs.

Solving the HRT problem poses computational challenges, as including ties
in preferences increases the complexity of finding stable matchings. The prob-
lem of finding a weakly stable matching with the maximum number of resi-
dents assigned to hospitals, known as MAX-HRT, has been proven to be NP-
hard [9]. Researchers have proposed different algorithms and approaches to tackle
the HRT problem, including integer programming [1,12], local and adaptive
search [4,13], approximation [11], and heuristic repair [2] algorithms. However,
finding efficient solutions for large-sized instances of HRT remains an area of
ongoing research.

This paper proposes a heuristic algorithm to deal with the MAX-HRT prob-
lem. Our algorithm starts from an empty matching and proceeds iteratively to
achieve a maximum stable matching of residents and hospitals. At each itera-
tion, we design a heuristic function for choosing a hospital to assign to an active
resident such that the hospital has not only the minimum remaining capac-
ity but also the minimum remaining preference list. If the chosen hospital is
over -subscribed , we design another heuristic function for removing a resident
from the hospital such that the removed resident has not only the maximum
rank among residents assigned to the hospital but also the maximum remaining
preference list. The algorithm repeats until it finds no active resident and returns
a stable matching. Experimental results show that our algorithm is efficient in
solving the large-sized MAX-HRT problem.

The remaining sections of this paper are organized as follows. Section 2 pro-
vides a brief background on HRT. Section 3 outlines the details of our algo-
rithm. Section 4 shows the results obtained from our experiments. Finally, Sect. 5
presents the concluding remarks of our work.

2 Preliminaries

In this section, we remind a brief background on HRT taken from [9,12]. An
instance I of HRT consists of two sets, a set R = {r1, r2, . . . , rn} of residents
and a set H = {h1, h2, . . . , hm} of hospitals. Each resident ri ∈ R, 1 ≤ i ≤ n,
has a preference list that ranks a subset of hospitals in her/his preference with
tie allowed. Similarly, each hospital hj ∈ H, 1 ≤ j ≤ m, has a preference list

444 S. T. Cao et al.

that ranks a subset of residents in its preference with tie allowed. Each hospital
hj is assigned a capacity cj ∈ Z

+, indicating the maximum number of residents
it can accommodate.

We denote the rank of hj ∈ H (resp. ri ∈ R) in ri’s (resp. hj ’s) preference
list by rank(ri, hj) (resp. rank(hj , ri)). Accordingly, if ri (resp. hj) ranks hj

(resp. ri) in her/his (resp. its) preference list, then 1 ≤ rank(ri, hj) ≤ n (resp.
1 ≤ rank(hj , ri) ≤ n), otherwise, rank(ri, hj) = 0 (resp. rank(hj , ri) = 0). If
ri (resp. hj) strictly prefers hj (resp. ri) to hk (resp. rt), then we denote by
rank(ri, hj) < rank(ri, hk) (resp. rank(hj , ri) < rank(hj , rt)). If ri (resp. hj)
prefers hj (resp. ri) and hk (resp. rt) equally, i.e. ri (resp. hj) ranks hj (resp.
ri) and hk (resp. rt) with the same tie in her/his (resp. its) preference list, then
we denote by rank(ri, hj) = rank(ri, hk) (resp. rank(hj , ri) = rank(hj , rt)).

A pair (ri, hj) ∈ R × H is called an acceptable pair in I if rank(ri, hj) ≥ 1
and rank(hj , ri) ≥ 1, i.e. ri and hj rank each other in their preference lists. A
set of acceptable pairs is denoted by A = {(ri, hj) ∈ R×H|rank(ri, hj) ≥ 1 and
rank(hj , ri) ≥ 1}, i.e., both the resident ri and the hospital hj must rank each
other in their preference lists.

An assignment M in I is defined as a subset of A, i.e., M = {(ri, hj) ∈ A}.
If (ri, hj) ∈ M , we say that ri is assigned to hj and vice versa. For any hospital
hj ∈ H, we denote M(hj) by the set of residents assigned to hj (i.e., M(hj) =
{ri|(ri, hj) ∈ M}) and M(ri) by the hospital hj assigned to ri (i.e., M(ri) = hj),
respectively. We denote by M(ri) = ∅ if ri is unassigned in M . A hospital hj ∈ H
is referred to as under-subscribed, full-subscribed, or over -subscribed depending
on the conditions |M(hj)| < cj , |M(hj)| = cj , or |M(hj)| > cj , respectively.

A matching M in I is an assignment such that |M(ri)| ≤ 1, ∀ri ∈ R, and
|M(hj)| ≤ cj , ∀hj ∈ H. These conditions ensure that each resident is assigned
to at most one hospital, and no hospital exceeds its capacity. As we mentioned
above, this paper only considers the problem of finding maximum weakly stable
matchings in I. Hereafter, we use the term matching to refer to weak matching.

A pair (ri, hj) ∈ R × H is a blocking pair for a matching M if the fol-
lowing conditions hold: (i) (ri, hj) ∈ A; (ii) M(ri) = ∅ or rank(ri, hj) <
rank(ri,M(ri)); and (iii) |M(hj)| < cj or rank(hj , ri) < rank(hj , rw), where
rw is the worst resident in M(hj). When a blocking pair exists, it implies that
M is unstable because there are participants who would both prefer each other if
given a chance, otherwise, M is called stable. The number of residents assigned to
hospitals in M is denoted by |M |. If |M | = n, then M is called perfect, otherwise,
M is called non-perfect.

Example 1. Let’s consider the following example to provide greater clarity to
mentioned notations. Given an instance of HRT consisting of a set R =
{r1, r2, r3, r4, r5, r6} of six residents, and a set H = {h1, h2, h3} of three hospitals.
Additional details can be found in Table 1, which presents the preference lists of
residents and hospitals, including any ties indicated within round brackets. In the
hospitals’ preference lists of Table 1, let’s focus on the second row for the hospital
h2. The notation “h2 : r2 r1 r6 (r4 r5)” indicates that h2 strictly prefers r2 to r1, r1
to r6, and r6 to both r4 and r5. Also, in this particular case, h2 considers r4 and r5

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 445

Table 1. An instance of HRT

Residents’ preference list Hospitals’ preference list Residents’ rank list Hospitals’ rank list

r1: h1 h2 h1: r1 r2 r3 r6 r1: 1 2 0 h1: 1 2 3 0 0 4

r2: h1 h2: r2 r1 r6 (r4 r5) r2: 1 0 0 h2: 2 1 0 4 4 3

r3: h1 h3 h3: r5 (r3 r4) r3: 1 0 2 h3: 0 0 2 2 1 0

r4: h2 r4: 0 1 0

r5: h2 (h1 h3) r5: 2 1 2

r6: h1 h2 r6: 1 2 0

Hospitals’ capacities: c1 = c2 = c3 = 2

to be equally preferred. Accordingly, we have rank(h2, r2) = 1, rank(h2, r1) = 2,
rank(h2, r6) = 3, and rank(h2, r4) = rank(h2, r5) = 4. The same notations are
utilized for the residents’ preference lists. The rank lists corresponding to both the
residents’ and hospitals’ preference lists are presented on the right-hand side of
Table 1. The matching M = {(r1, h2), (r2, h1), (r3, h3), (s4, h2), (r5, h3), (r6, h1)}
is unstable due to the presence of blocking pairs {(r1, h2), (r3, h3)} for M .
Particularly, we have rank(r1, h1) < rank(r1, h2), indicating that (r1, h2)
forms a blocking pair. A similar explanation holds for the pair (r3, h3). The
matching M = {(r1, h1), (r2, h1), (r3, h3), (r4,∅), (r5, h2), (r6, h2)} is stable
because there are no blocking pairs for M . However, this matching is con-
sidered non-perfect due to its cardinality |M | = 5. Similarly, the matching
M = {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r5, h3), (r6, h2)} is stable since no block-
ing pair can be formed for M . In this case, M is a perfect matching since
|M | = 6. �

3 Heuristic Algorithm for MAX-HRT

In this section, we propose a heuristic algorithm to deal with the MAX-HRT

problem. We consider the resident-oriented GS algorithm for HR problem given
in [7]. At the beginning, a matching M is initialized to be empty, meaning
that every resident is unassigned to any hospital ranked by her/him. At each
iteration, an unassigned resident ri ∈ R with a non-empty preference list is
provisionally assigned to the most preferred hospital hj in her/his preference
list to form a pair (ri, hj) ∈ M . If the hospital hj is over -subscribed , then the
worst resident rw assigned to hj in M(hj) becomes free and hj deletes rw in its
preference list (i.e. rank(hj , rw) = 0). If the hospital hj is full, then hj deletes
the successor residents of the worst resident rw in its preference list to accelerate
finding a stable matching. The algorithm terminates with a resident-optimal
stable matching M .

It is evident that we can apply the resident-oriented GS algorithm to find
a stable matching for an instance of HRT. However, the stable matchings of
an instance of HRT may be of different sizes [7]. Therefore, we are to extend
the resident-oriented GS algorithm to find maximum stable matchings of HRT

446 S. T. Cao et al.

instances. Since the preference lists of both residents and hospitals in HRT

include ties, we need to solve two issues in iterations of the resident-oriented
GS algorithm: (i) an unassigned resident ri ∈ R with a non-empty preference
list is provisionally assigned to which most preferred hospital if there exist at
least two most preferred hospitals with the same ties in her/his preference list;
and (ii) if the hospital hj is over -subscribed , then which worst resident assigned
to hj in M(hj) should be removed if there exist at least two worst residents with
the same ties in its preference list.

For the first issue, we propose a heuristic function for all the hospital hj in
the preference list of an unassigned resident ri as follows:

f(hj) = rank(ri, hj) + 0.5 × (|M(hj)|/(cj + 1) + |rank(hj , rk)|/(n + 1)), (1)

where |rank(hj , rk)| is the number of residents rk ∈ R ranked by hj in its
preference list. Then, a hospital hj is chosen to assign to ri as follows:

hj = argmin
hj

f(hj),∀rank(ri, hj) > 0. (2)

We can see f(hj) in Eq. (1) that rank(ri, hj) is a positive integer and 0.5 ×
(|M(hj)|/(cj + 1) + |rank(hj , rk)|/(n + 1)) < 1. If a hospital hj is chosen such
that f(hj) is minimum, meaning that three following conditions are satisfied: (i)
ri prefers hj most; (ii) hj is being assigned to the least residents; and (iii) hj

ranks least residents in its preference list. These conditions ensure that the pair
(ri, hj) is not only a stable pair in M , but also hj with the least opportunities
is prioritized to assign to rj .

For the second issue, we propose another heuristic function for all the resi-
dents rw being assigned to an over -subscribed hospital hj as follows:

g(rw) = rank(hj , rw) + |rank(rw, ht)|/(m + 1)),∀rw ∈ M(hj), (3)

where |rank(rw, ht)| is the number of hospitals ht ∈ H ranked by rw in her/his
preference list. Then, a resident rw is chosen to remove from hj as follows:

rw = argmax
rw

g(rw),∀rw ∈ M(hj). (4)

We can see g(rw) in Eq. (3) that rank(hj , rw) is a positive integer and
|rank(rw, ht)|/(m + 1) < 1. If a resident rw ∈ M(hj) is chosen such that g(rw)
is maximum, meaning that two following conditions are satisfied: (i) rw is the
worst resident assigned to hj ; and (ii) rw ranks most hospitals in her/his pref-
erence list. In other words, rw is not only the worst resident assigned to hj , but
also has the highest number of opportunities to choose a hospital from her/his
preference list during the next iterations.

Based on two heuristic functions above, we propose a simple heuristic algo-
rithm shown in Algorithm 1. Initially, we set M = ∅ and active(ri) = 1, ∀ri ∈ R,
meaning that all residents are unassigned to any hospitals and ri is marked as
active. At each iteration, our algorithm checks if some active resident ri ∈ R

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 447

Algorithm 1: Heuristic Algorithm for MAX-HRT

Input : An instance I of HRT
Output : A stable matching M for HRT

1 M := ∅;
2 active(ri) := 1, ∀ri ∈ R;
3 while ∃ri such that active(ri) > 0 do
4 if (ri’s preference list is empty) then
5 active(ri) := 0;
6 continue;

7 end
8 f(hj) = rank(ri, hj) + 0.5(|M(hj)|/(cj + 1) + |rank(hj , rk)|/(n + 1));
9 hj = argmin

hj

f(hj), ∀rank(ri, hj) > 0;

10 M := M ∪ (ri, hj);
11 active(ri) := 0;
12 if hj is over-subscribed then
13 g(rw) := rank(hj , rw) + |rank(rw, ht)|/(m + 1)), ∀rw ∈ M(hj);
14 rw := argmax

rw

g(rw), ∀rw ∈ M(hj);

15 M := M \ (rw, hj);
16 rank(rw, hj) := 0;
17 rank(hj , rw) := 0;
18 active(rw) := 1;

19 end

20 end
21 return M ;

has no remaining hospital in her/his preference list, i.e. rank(ri, ht) = 0 for
∀ht ∈ H, then ri is marked as inactive permanently, and the algorithm runs the
next iteration (lines 4–7). Otherwise, ri remains unassigned. Next, the algorithm
finds a hospital hj such that f(hj) is minimum, assigns hj to ri to form a pair
(ri, hj) ∈ M , and marks ri as inactive (lines 8–11). If hj is over -subscribed , the
algorithm computes g(rw) for ∀rw ∈ M(hj), finds a resident rw such that g(rw)
is maximum, and removes the pair (rw, hj) from M . If so, rw deletes hj from
her/his preference list and vice versa, rw is marked as active again (lines 12–19).
The algorithm repeats until there exists no active resident and it returns a stable
matching.

We consider the time complexity of the proposed algorithm. In the best case,
if each resident proposes the first preferred hospital in her/his preference list and
she/he is assigned to this hospital to form a stable matching, then our algorithm
takes O(n) time, where n is the number of residents. In the worst case, if each
resident ranks m hospitals and proposes to all the hospitals in her/his preference
list, then our algorithm takes O(nm) time, which is a linear time complexity.

Example 2. This example shows how Algorithm 1 operates using the HRT

instance given in Table 1. Algorithm 1 initializes with M = ∅, active(ri) = 1 for

448 S. T. Cao et al.

Table 2. The step-by-step of running Algorithm 1 for the instance given in Table 1

Iter. ri hj Matching M (M = M ∪ {ri, hj}) Over-subscribed M = M \ {ri, hj}
1 r1 h1 {(r1, h1)}
2 r2 h1 {(r1, h1), (r2, h1)}
3 r3 h1 {(r1, h1), (r2, h1)} h1 M = M \ {r3, h1}
4 r3 h3 {(r1, h1), (r2, h1), (r3, h3)}
5 r4 h2 {(r1, h1), (r2, h1), (r3, h3), (r4, h2)}
6 r5 h2 {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r5, h2)}
7 r6 h1 {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r5, h2)} h1 M = M \ {r6, h1}
8 r6 h2 {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r6, h2)} h2 M = M \ {r5, h2}
9 r5 h3 {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r5, h3), (r6, h2)}

all ri ∈ R, 1 ≤ i ≤ n, and runs iterations shown in Table 2. At the ith iteration,
the algorithm executes as follows:

(1) r1 is assigned to h1 since f(h1) is minimum. We have M = {(r1, h1)} and
r1 is marked as inactive (i.e., active(r1) = 0).

(2) r2 is assigned to h1 since f(h1) is minimum. We have M = {(r1, h1), (r2, h1)}
and r2 is marked as inactive.

(3) r3 is assigned to h1 since f(h1) is minimum. We have M =
{(r1, h1), (r2, h1), (r3, h1)} and r3 is marked as inactive. However, h1 is
over -subscribed and g(r3) is maximum, therefore the pair (r3, h1) is removed
from M and r3 is active again. So, we have M = {(r1, h1), (r2, h1)}.

(4) r3 is assigned to h3 since f(h3) is minimum. We have M = {(r1, h1), (r2, h1),
(r3, h3)} and r3 is marked as inactive.

(5) r4 is assigned to h2 since f(h2) is minimum. We have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2)} and r4 is marked as inactive.

(6) r5 is assigned to h2 since f(h2) is minimum. We have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2), (r5, h2)} and r5 is marked as inactive.

(7) r6 is assigned to h1 since f(h1) is minimum. We have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2), (r5, h2), (r6, h1)} and r6 is marked as inactive. However,
h1 is over -subscribed and g(r6) is maximum, therefore the pair (r6, h1) is
removed from M and r6 is active again. So, we have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2), (r5, h2)}.

(8) r6 is assigned to h2 since f(h2) is minimum. We have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2), (r5, h2), (r6, h2)} and r6 is marked as inactive. However,
h2 is over -subscribed and g(r5) is maximum, therefore the pair (r5, h2) is
removed from M and r5 is active again. So, we have M = {(r1, h1), (r2, h1),
(r3, h3), (r4, h2), (r6, h2)}.

(9) Finally, r5 is assigned to h3 since f(h3) is minimum and r5 becomes inactive.
After this step, all residents are inactive, the algorithm returns a stable
matching M = {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r5, h3), (r6, h2)}. In this
case, M is also a perfect matching. �

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 449

4 Experiments

In this section, we present experiments to evaluate the performance of our
heuristic algorithm, namely HA, for finding maximum stable matchings of HRT

instances. We chose the heuristic repair (HR) algorithm [2] to compare with HA

since HR outperformed LS [4,5] in terms of the execution time and solution
quality as mentioned in [2].

Datasets: we adapted the SMTI generator given in [6] to generate random HRT

instances I(n,m, p1, p2, {c1, c2, · · · , cm}), where n is the number of residents, m is
the number of hospitals, p1 is the probability of incompleteness in preference lists
of residents and hospitals, and p2 is the probability of ties in the preference lists of
residents and hospitals, and cj is the capacity of each hospital hj ∈ H, 1 ≤ j ≤ m.
This means that on average, each resident ranks about m(1 − p1) hospitals
and each hospital ranks about n(1 − p1) residents in each HRT instance. Since
stable matchings of HRT instances consist of acceptable pairs, we generated HRT

instances in which the residents’ and hospitals’ preference lists of each instance
have only acceptable pairs. We implemented HA and HR algorithms by Matlab
2019a on a computer with a Core i7-8550U CPU 1.8 GHz and 16 GB memory.

4.1 Experiment 1

In this experiment, we randomly generated 100 HRT instances for each combina-
tion of values (n,m, p1, p2), where n = 500, m = 50, p1 ∈ {0.0, 0.1, · · · , 0.9}, and
p2 ∈ {0.0, 0.1, · · · , 1.0}. In each instance, we set cj = n/m for all hj ∈ H, 1 ≤
j ≤ m, meaning that the total capacities of hospitals are equal to n. It is evident
that this is a hard experiment for algorithms to find perfect matching in HRT

instances since each resident has only a post to be assigned to each hospital in
her/his preference list. We set the maximum number of iterations of HR to 500.

Figure 1(a) shows the percentage of perfect matchings found by HA and HR

when p1 varies from 0.6 to 0.9. It should be noted that when p1 varies from
0.0 to 0.5, both HA and HR find 100% of perfect matchings and therefore, we
do not depict in Fig. 1(a). We see that when p2 varies from 0.0 to 1.0, the
percentage of perfect matchings found by HA increases, while that found by HR

decreases, meaning that HA found perfect matchings easier than HR when ties
in the preference lists of residents and hospitals increase. When p1 = 0.6, the
percentage of perfect matchings found by HA is approximate to that found by
HR. When p1 ∈ {0.7, 0.8, 0.9}, the percentage of perfect matchings found by HA

is much higher than that found by HR.
Figure 1(b) shows the average number of unassigned residents in stable

matchings. When p2 varies from 0.1 to 1.0, HA finds a much smaller number
of unassigned residents than HR in stable matchings, meaning that HA finds
much larger stable matchings than HR. It should be noted that when p2 = 0.0,
meaning that the residents’ and hospitals’ preference lists do not contain ties,
both HA and HR find the same percentage of perfect matchings as well as the
same number of unassigned residents since all stable matchings have the same
size [14].

450 S. T. Cao et al.

Fig. 1. Comparing solution quality and execution time of HA and HR algorithms

Figure 1(c) shows the average execution time of HA and HR. When p1
increases from 0.6 to 0.9, the average execution time of HA and HR slightly
changed. When p2 increases from 0.0 to 1.0, the average execution time of HA and
HR slightly decreases. We can see that the average execution time of HA increases
from about 10−1.99 = 0.01 to 10−1.28 = 0.05 s, while that of HR increases from
about 10−0.62 = 0.24 to 100.22 = 1.66 s for every value of p1 and p2. This means
that HA runs from about 24 to 33 times faster than HR.

Figure 1(d) shows the average number of iterations used by HA. HA used
about 900 down to 500 iterations when p2 increases from 0.0 to 1.0. It should be
noted that we do not show the average number of iterations found by HR since
the iteration mechanism of HR is different from that of HA.

4.2 Experiment 2

In this experiment, we randomly generated 100 HRT instances for each combi-
nation of values (n,m, p1, p2) given in Experiment 1. In each instance, we set the
total capacity of hospitals to n and randomly distributed n to the capacity cj of
each hospital hj such that 1 ≤ cj ≤ 20. Besides, we set the maximum number
of iterations of HR to 500.

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 451

Fig. 2. Comparing solution quality and execution time of HA and HR algorithms

Figure 2(a) shows the percentage of perfect matchings found by HA and HR.
Again, HA finds a much higher percentage of perfect matchings than HR. More-
over, both HA and HR find stable matchings more difficult when cj = n/m as
shown in Experiment 1. Figure 2(b) shows the average number of unassigned
residents in stable matchings. When p2 varies from 0.1 to 1.0, HA finds a much
smaller number of unassigned residents in stable matchings than HR, meaning
that HA finds much larger stable matchings than HR.

Figure 2(c) shows the average execution time of HA and HR. When p2 varies
from 0.0 to 1.0, the average execution time of HA and HR slightly changed. When
p1 varies from 0.6 to 0.9, the average execution time of HA decreases from about
10−1.3 = 0.050 down to 10−1.8 = 0.016 s, while that of HR increases from about
10−0.2 = 0.631 to 100.4 = 2.512 s. On average over p1, the average execution time
of HA and HR is with respective to 10−1.5 = 0.032 and 100 = 1.0 s, meaning
that HA runs about 31 times faster than HR.

Figure 2(d) shows the average number of iterations used by HA. When p2
varies from 0.0 to 0.9, HA runs from about 800 to 1200 iterations. When
p2 = 1.0, the average number of iterations used by HA increases significantly,
but the average execution time of HA increases sightly. This indicates that at
each iteration, HA used a small amount of time to find a resident-hospital pair
for a stable matching.

452 S. T. Cao et al.

Fig. 3. Comparing solution quality and execution time of HA and HR algorithms

4.3 Experiment 3

In this experiment, we varied the number of hospitals. Specifically, we randomly
generated 100 HRT instances for each combination of parameters (n,m, p1, p2),
where n = 1000, m ∈ {50, 75, 100}, p1 = 0.9, and p2 ∈ {0.0, 0.1, · · · , 1.0}. This
means that each resident ranks on average at 5, 7.5, and 10 hospitals when m =
50, 75, and 100, respectively, and each hospital ranks about 100 residents in the
instances. In each instance, we set cj = n/m for all hj ∈ H, 1 ≤ j ≤ m, meaning
that each resident has one post assigned to each hospital. We set the maximum
number of iterations of HR to 1000. Figure 3 shows the results of this experiment.
Again, we see that our HA not only outperforms HR in matching quality shown
by the percentage of perfect matchings and the number of unassigned residents,
but also runs much faster than HR shown by the average execution time.

5 Conclusions

In this paper, we proposed a simple heuristic algorithm but it efficiently solved
the MAX-HRT problem. Our algorithm starts from an empty matching to find a
maximum stable matching of an HRT instance. At each iteration, the algorithm
finds a hospital to assign to an active resident based on a heuristic function such
that the hospital has not only the minimum remaining capacity but also the

Finding Maximum Stable Matchings for HRT Problem via Heuristic Search 453

minimum preference list. If the chosen hospital overcomes its offered capacity, the
algorithm finds a resident to remove her/him from the hospital based on another
heuristic function such that the resident has not only the maximum rank among
the residents being assigned to the hospital but also the maximum preference
list. The algorithm repeats until it finds no active resident and returns a stable
matching. Experiments showed that our algorithm is efficient in execution time
and solution quality for large-sized HRT instances. In the future, we plan to
extend this approach to find strongly- or super-stable matchings for HRT [9,10].

References

1. Biró, P., Manlove, D.F., McBride, I.: The hospitals/residents problem with couples:
complexity and integer programming models. In: Proceeding of SEA 2014: 13th
International Symposium on Experimental Algorithms, Copenhagen, Denmark,
pp. 10–21 (2014)

2. Cao, S.T., Anh, L.Q., Viet, H.H.: A heuristic repair algorithm for the hospi-
tals/residents problem with ties. In: Rutkowski, L., Scherer, R., Korytkowski, M.,
Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2022. LNCS, vol.
13588, pp. 340–352. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
23492-7 29

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 9(1), 9–15 (1962)

4. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search for stable
marriage problems with ties and incomplete lists. In: Proceedings of 11th Pacific
Rim International Conference on Artificial Intelligence, Daegu, Korea, pp. 64–75
(2010)

5. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches
in stable matching problems. Algorithms 6(4), 591–617 (2013)

6. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties
and incomplete lists. In: Proceedings of the 15th European Conference on Artificial
Intelligence, Lyon, France, pp. 141–145 (2002)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press Cambridge, New York (1989)

8. Irving, R.W.: Stable marriage and indifference. Discret. Appl. Math. 48, 261–272
(1974)

9. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties.
In: Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, Bergen,
Norway, pp. 259–271 (2000)

10. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the hospitals/residents
problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 39

11. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(1), 471–484 (2013)

12. Kwanashie, A., Manlove, D.F.: An integer programming approach to the hospi-
tals/residents problem with ties. In: Huisman, D., Louwerse, I., Wagelmans, A.P.M.
(eds.) Operations Research Proceedings 2013. ORP, pp. 263–269. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07001-8 36

https://doi.org/10.1007/978-3-031-23492-7_29
https://doi.org/10.1007/978-3-031-23492-7_29
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1007/978-3-319-07001-8_36

454 S. T. Cao et al.

13. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: A local
search algorithm for SMTI and its extension to HRT problems. In: Proceedings
of the 3rd International Workshop on Matching Under Preferences, pp. 66–77.
University of Glasgow (2015)

14. Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Exp. Algorithmics
14(1), 1–2 (2009)

