
Undefined 0 (2024) 1–0 1
IOS Press

An efficient two-heuristic algorithm for the
student-project allocation with preferences
over projects
Hoang Huu Viet a,∗, Nguyen Thi Uyen a, Son Thanh Cao a, and Long Giang Nguyen b

a Faculty of Information Technology, Vinh University, Nghe An, Vietnam
E-mail: {viethh,uyennt,sonct}@vinhuni.edu.vn
b Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
E-mail: nlgiang@ioit.ac.vn

Abstract. The Student-Project Allocation with preferences over Projects problem is a many-to-one stable matching problem
that aims to assign students to projects in project-based courses so that students and lecturers meet their preference and capacity
constraints. In this paper, we propose an efficient two-heuristic algorithm to solve this problem. Our algorithm starts from an
empty matching and iteratively constructs a maximum stable matching of students to projects. At each iteration, our algorithm
finds an unassigned student and assigns her/his most preferred project to her/him to form a student-project pair in the matching.
If the project or the lecturer who offered the project is over-subscribed, our algorithm uses two heuristic functions, one for the
over-subscribed project and the other for the over-subscribed lecturer, to remove a student-project pair in the matching. To reach
a stable matching of a maximum size, our two heuristics are designed such that the removed student has the most opportunities
to be assigned to some project in the next iterations. Experimental results show that our algorithm is efficient in execution time
and solution quality for solving the problem.
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1. Introduction

In project-based courses, students must be assigned
to projects to build projects together. To do this, ei-
ther lecturers can propose a list of students for their
projects or departments can assign students to lectur-
ers for doing projects. If doing so, it is evident that
there exist conflicts not only among lecturers but also
among students since lecturers usually choose good
academic students for their projects, while students
typically choose projects based on their preferences.
The question for this problem is how to allocate stu-
dents to projects to meet the preference requirements
of both students and lecturers. To solve this problem,
Abraham et al. introduced the Student-Project Alloca-
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tion problem (SPA) in 2003 [1]. In particular, an in-
stance of SPA involves three non-empty sets of stu-
dents, projects, and lecturers. Each lecturer offers a set
of projects and ranks a subset of students in strict or-
der of preference in their lists to whom they intend
to supervise, while each student ranks a subset of the
available projects in a strict order of preference in their
lists that they find acceptable. Moreover, each project
is offered by a unique lecturer, both projects and lec-
turers have capacity constraints to indicate the maxi-
mum number of students assigned to projects and lec-
turers. In this context, a stable matching refers to an
assignment of students to projects such that there exist
no student-project unstable pairs, i.e., the student and
project are not matched together in the matching, but
they prefer each other to their current assigned part-
ners in the matching. Then, they proposed a student-
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oriented algorithm running in a linear time to find a
student-optimal stable matching for a given instance of
SPA, in which each student is assigned to the most pre-
ferred project they could get in any stable matching.
In 2007, Abraham et al. [2] extended their work and
introduced two algorithms for SPA. The first one is a
student-oriented algorithm described in their previous
work [1], while the second one is a lecturer-oriented
algorithm running in a linear time to find a lecturer-
optimal stable matching for a given instance of SPA, in
which each lecturer is assigned to the most preferred
students to whom they could get in any stable match-
ing.

In practical applications, requiring each lecturer to
rank a subset of students in a strict order as in SPA
is unfair for both lecturers and students. For exam-
ple, lecturers often strongly prefer to supervise stu-
dents with good academic results rather than students
with poor academic results. This sometimes leads to
conflicts among lecturers and students. Moreover, if
there are many students in SPA, it is difficult for lec-
turers to rank students in their lists. For these rea-
sons, in 2008, Manlove and O’Malley [12] proposed
a variant of SPA, called SPA with preferences over
Projects (SPA-P), where lecturers rank a subset of
projects in strict order rather than a subset of students
in their lists. Given an instance of SPA-P, Manlove
and O’Malley [12] showed that stable matchings could
have different sizes, and the problem of finding a max-
imum stable matching is NP-hard even if each project
and lecturer has a capacity 1.

In the last few years, several researchers have pro-
posed efficient approximation algorithms and provided
the lower and upper bounds for SPA-P. An algorithm is
said to be an r-approximation algorithm for SPA-P if it
results in a stable matching M with |Mopt|/|M | ≤ r
for all SPA-P instances, where Mopt is the stable
matching of maximum size. In 2008, Manlove and
O’Malley [12] extended the well-known Gale-Shapley
algorithm [5] to propose a 2-approximation algorithm
with linear time complexity, namely SPA-P-approx.
This algorithm consists of a sequence of proposals, in
which an unassigned student with a non-empty list pro-
poses the most preferred project on her/his list to form
student-project pairs of a matching such that the lectur-
ers and projects satisfy their capacity constraints. The
algorithm returns a stable matching in a finite num-
ber of iterations. In 2012, Iwama et al. [6] extended
the SPA-P-approx [12] using Király’s idea [8] and pro-
posed a 3

2 -approximation algorithm with a linear time
complexity, namely SPA-P-approx-promotion, to find a

stable matching for instances of SPA-P. In 2020, Viet
et al. [16] considered SPA-P as a constraint satisfac-
tion problem and proposed a local search approach
based on the min-conflicts algorithm [13,15] to solve
it. Recently, Manlove et al. [10,11] investigated an in-
teger programming approach to SPA-P and proposed
a 3

2 -approximation algorithm to find stable matchings
that are very close to having maximum cardinality over
their tested instances.

So far, both SPA and SPA-P have received signifi-
cant attention from the research community for their
roles in developing automated systems for student
project allocation. Several examples can be found at
various institutions, such as the School of Computing
Science at the University of Glasgow [9], the Faculty
of Science at the University of Southern Denmark [3],
and the Department of Computing Science at the Uni-
versity of York [7].

Our contribution: In this paper, we first analyze the
weaknesses of the SPA-P-approx [12] and the SPA-P-
approx-promotion [6] algorithms for solving the SPA-P
problem. Accordingly, we propose two heuristic func-
tions to improve the drawbacks of the SPA-P-approx
and SPA-P-approx-promotion algorithms. We then pro-
pose an efficient two-heuristic algorithm, namely SPA-
P-heuristic, for solving the SPA-P problem. We also
show that our algorithm returns a stable matching af-
ter a finite number of iterations. To conduct our ex-
periments, we propose a method to generate random
SPA-P instances. Our experimental results over all the
tested scenarios show that our proposed algorithm is
much more efficient than the SPA-P-approx [12] and
SPA-P-approx-promotion [6] algorithms in terms of ex-
ecution time and solution quality for SPA-P instances
of large sizes. Therefore, our algorithm can be applied
to develop intelligent systems for student project allo-
cation.

The remainder of this paper is structured as follows.
Section 2 gives a formal definition of SPA-P, Section 3
presents our proposed algorithm, Section 4 discusses
the experiments, and Section 5 concludes our work.

2. SPA-P Problem

In this section, we remind the SPA-P problem given
in [12,6]. An instance I of the SPA-P problem com-
prises a set S = {s1, s2, · · · , sn} of students, a set
P = {p1, p2, · · · , pq} of projects, and a set L =
{l1, l2, · · · , lm} of lecturers, where (i) Each lecturer
lk ∈ L offers a non-empty set Pk of projects in strict
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order of preference in their lists, subject to P1 ∪ P2 ∪
· · · ∪ Pm = P and Pk1

∩ Pk2
= ∅, ∀k1 ̸= k2; (ii)

Each student si ∈ S ranks a non-empty set Ai ⊆ P of
projects in strict order of preference in their lists; (iii)
Each lecturer lk ∈ L has a capacity dk ∈ Z+ to indi-
cate the maximum number of students to whom they
can supervise; and (iv) Each project pj ∈ P has a ca-
pacity cj ∈ Z+ to indicate the maximum number of
students who can work pj together. Hereafter, we use
the list of notations shown in Table 1 for reader conve-
nience.

For ∀si ∈ S, ∀lk ∈ L, and ∀pj ∈ P , we denote
rank(si, pj) and rank(lk, pj) by the rank of pj in si’s
and lk’s lists, respectively. If si and lk prefer pj as the
αth and βth choices in their lists (1 ≤ α, β ≤ q), then
rank(si, pj) = α and rank(lk, pj) = β, respectively.
For ∀pj ∈ Ai and ∀pt ∈ Ai, if si prefers pj to pt,
we denote by rank(si, pj) < rank(si, pt). For ∀pj ∈
Pk and ∀pt ∈ Pk, if lk prefers pj to pt, we denote
by rank(lk, pj) < rank(lk, pt). Moreover, we denote
rank(si, pj) = 0 for ∀pj ∈ P \Ai and rank(lk, pj) =
0 for ∀pj ∈ P \ Pk.

An assignment M in I is a subset of S × P such
that if (si, pj) ∈ M , then pj ∈ Ai. If lk offers pj and
(si, pj) ∈ M , then we say that si is assigned to pj and
lk in M , pj is assigned to si in M , and lk is assigned
to si in M .

For ∀si ∈ S, we denote M(si) by the set of projects
assigned to si in M and |M(si)| by the number of
projects in M(si). If M(si) = ∅, then we say that si
is unassigned in M . For ∀pj ∈ P , we denote M(pj)
by the set of students assigned to pj in M and |M(pj)|
by the number of students in M(pj). If |M(pj)| > cj ,
|M(pj)| < cj , or |M(pj)| = cj , then we say that
pj is over-subscribed, under-subscribed, or full, re-
spectively. For ∀lk ∈ L, we denote M(lk) by the
set of students assigned to lk in M and |M(lk)| by
the number of students in M(lk). If |M(lk)| > dk,
|M(lk)| < dk, or |M(lk)| = dk, then we say that lk
is over-subscribed, under-subscribed, or full, respec-
tively.

A matching M in I is an assignment such that
|M(si)| ≤ 1, |M(pj)| ≤ cj , and |M(lk)| ≤ dk for
∀si ∈ S, ∀pj ∈ P , and ∀lk ∈ L. If |M(si)| = 1, we
denote M(si) by the project assigned to si in M .

A pair (si, pj) ∈ (S×P ) \M is a blocking pair for
a matching M if all the following conditions are met,
where pt = M(si):

1. pj ∈ Ai, i.e., si finds pj acceptable;
2. either pt = ∅ or rank(si, pj) < rank(si, pt), i.e.,

si prefers pj to pt;

Table 1
List of some notations

I Instance of the SPA-P problem
S Set of students
L Set of lecturers
P Set of projects
Ai Set of projects ranked by student si ∈ S

Pk Set of projects offered by lecturer lk ∈ L

M Matching
M(si) Set of projects assigned to student si in M

M(pj) Set of students assigned to project pj in M

M(lk) Set of students assigned to lecturer lk in M

si Student
lk Lecturer
pj Project
cj Capacity of project pj ∈ P

dk Capacity of lecturer lk ∈ L

n Number of students
m Number of lecturers
q Number of projects

3. |M(pj)| < cj and either
(a) si ∈ M(lk) and rank(lk, pj)< rank(lk, pt), or
(b) si /∈ M(lk) and |M(lk)| < dk, or
(c) si /∈ M(lk), |M(lk)| = dk, and rank(lk, pj)
< rank(lk, pz), where pz is lk’s worst non-empty
project, i.e., lk ranks pz with the lowest priority in
M(lk), where M(pz) ̸= ∅.

The concept of blocking pair refers to a situation where
a student si finds a project pj acceptable and si prefers
pj to her/his currently assigned project, then si and pj
have the potential to form a better matching than the
current matching by replacing their current assigned
partners.

A matching M in I is called stable if no block-
ing pair exists for M ; otherwise, M is called unsta-
ble. Given a stable matching M , we denote |M | by the
number of students assigned in M , i.e., the size of M .
If |M | = n, then M is called perfect; otherwise, M is
called non-perfect. The SPA-P problem aims to find a
stable matching with maximum size, known as MAX-
SPA-P [12].

An instance I of the SPA-P problem is given in Ta-
ble 2, where S = {s1, s2, s3, s4, s5, s6}, P = {p1, p2,
p3, p4, p5}, L = {l1, l2}. The students’ and lecturers’
lists columns show the preference lists of students and
lecturers over projects, respectively, i.e., A1 = {p1, p2,
p5}, A2 = {p1, p4}, A3 = {p2, p1, p4}, A4 = {p3},
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Table 2
An instance of the SPA-P problem

Students’ lists Lecturers’ lists Students’ ranks Lecturers’ ranks

s1: p1 p2 p5 l1: p3 p1 p2 s1: 1 2 0 0 3 l1: 2 3 1 0 0

s2: p1 p4 l2: p4 p5 s2: 1 0 0 2 0 l2: 0 0 0 1 2

s3: p2 p1 p4 s3: 2 1 0 3 0

s4: p3 s4: 0 0 1 0 0

s5: p3 p4 s5: 0 0 1 2 0

s6: p5 p3 p4 s6: 0 0 2 3 1

Projects’ capacities: c1 = 2, c2 = 2, c3 = 1, c4 = 1, c5 = 2.
Lecturers’ capacities: d1 = 3, d2 = 3.

A5 = {p3, p4}, A6 = {p5, p3, p4}, P1 = {p3, p1,
p2}, and P2 = {p4, p5}. The students’ and lectur-
ers’ ranks columns show the rank of projects in the
students’ and lecturers’ lists, respectively, where if si
and lk prefer pj as the αth and βth choices in their
lists, then rank(si, pj) = α and rank(lk, pj) = β.
For example, in the students’ lists, we write “s1: p1 p2
p5”, meaning that s1 prefers p1 as the first choice, p2
as the second choice, and p5 as the third choice and
therefore, rank(s1, p1) = 1, rank(s1, p2) = 2, and
rank(s1, p5) = 3 in the students’ ranks. We use simi-
lar notations in the lecturers’ lists. The matching M =
{(s1, p5), (s2, p1), (s3, p2), (s4, p3), (s5, p4)} is unsta-
ble because there exist two blocking pairs consisting of
(s1, p1) and (s6, p5) for M . Specifically, (s1, p1) /∈ M
and s1 prefers p1 to p5, so s1 should be assigned to
p1. Meanwhile, (s6,∅) /∈ M , s6 prefers the most p5,
and |M(p5)| < c5, so s6 should be assigned to p5. The
matching M = {(s1, p1), (s2, p1), (s3, p4), (s4, p3),
(s6, p5)} is a stable matching of size |M | = 5. On the
contrary, the matching M = {(s1, p5), (s2, p1), (s3,
p1), (s4, p3), (s5, p4), (s6, p5)} is a maximum stable
matching and it is also perfect since its size is |M | = 6.

3. Proposed algorithm

In this section, we first propose two heuristic func-
tions used in our algorithm. Then, we propose an algo-
rithm to find stable matchings of maximum size for the
SPA-P problem. Finally, we give an execution of our
algorithm for the SPA-P instance given in Table 2.

3.1. Heuristic definitions

We consider the SPA-P-approx [12] and SPA-P-
approx-promotion [6] algorithms for finding maximum

stable matchings of SPA-P instances. The main prin-
ciple of SPA-P-approx is as follows. At the begin-
ning, the algorithm initializes a matching M to be
empty, meaning that every student is unassigned to
any project offered by lecturers. At each iteration, the
algorithm finds the first project pj of an unassigned
student si with a non-empty list. If pj is full, mean-
ing that pj does not have a slot for si, then the algo-
rithm deletes pj from si’s list so that it does not choose
pj for si in the next iterations. Otherwise, the algo-
rithm provisionally assigns pj to si to form a stable
pair (si, pj) ∈ M . When pj is assigned to si, the lec-
turer lk who offered pj is assigned to si. If lk is over-
subscribed, the algorithm removes an arbitrary student
sr from M(pz), where pz is lk’s worst non-empty
project, and deletes pz in sr’s list. Meanwhile, SPA-
P-approx-promotion [6] algorithm runs as follows. At
the beginning, the algorithm marks all students as un-
promoted. At each iteration, the algorithm chooses the
first project pj of an unassigned student si with a non-
empty list. If pj is full, the algorithm removes an arbi-
trary student sr from M(pj) and adds (si, pj) to M . If
lk is over-subscribed, the algorithm removes an arbi-
trary student sr from M(pz) such that lk is full, where
lk is the lecturer who offered pj and pz is lk’s worst
non-empty project in M(lk).

We found that removing an arbitrary student sr in
M(pj) or M(pz) is a weak point of both SPA-P-approx
and SPA-P-approx-promotion algorithms. For example,
we consider a specific case where the three following
conditions are met: (i) M(pz) consists of at least two
students sr and sw; (ii) sr ranks only one project; and
(iii) sw ranks more than one project. If we remove sr
from M , then sr is unassigned in M forever, while if
we remove sw from M , then sw can be assigned to
some project in her/his list at the next iterations.
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In the general case, we find in each iteration of the
above algorithms that when a project pj ∈ Ai is as-
signed to a student si ∈ S, if pj is over-subscribed, we
need to remove a student from M(pj) so that pj is full.
We recognize that the student removed from M(pj)
should have the most remaining projects in her/his list
since she/he has the most opportunity to be assigned
to some project at the next iterations. Moreover, when
a project pj is assigned to a student si, the lecturer lk
who offered pj can be over-subscribed. If lk is over-
subscribed, we need to remove a student from M(lk)
so that lk is full. To keep M stable, the student re-
moved from M(lk) must be a student assigned to a
project pz , which is lk’s worst non-empty project, so
that condition (3c) in the definition of a blocking pair
is not violated. Similar to the case where pj is over-
subscribed, the student removed from M(pz) should
have the most remaining projects in her/his list since
she/he has the most opportunity to be assigned to some
project at the next iterations. To solve these two issues,
we propose two heuristic functions as follows:

Case 1: When a project pj is over-subscribed, we
propose a heuristic function for every student sr ∈
M(pj) as follows:

f(sr) = rank(lk, pj) + |Ar|/(q + 1),∀sr ∈ M(pj), (1)

where |Ar| is the number of projects in Ar and q is the
number of projects in P . Then, the student is chosen to
be removed from M as follows:

sw = argmax(f(sr)),∀sr ∈ M(pj). (2)

It is evident that a student sw determined by Eq. (2)
means that rank(lk, pj) is maximum and |Aw| is max-
imum. If we remove sw from M(pj), then we keep the
students in M(pj) who have the least opportunity to
be reassigned to projects in their lists and remove the
student sw in M(pj) who has the most opportunity to
be reassigned to some project in her/his list at the next
iterations, since the student sw ranks the most projects
in her/his list.

Case 2: When a lecturer lk is over-subscribed, we
propose a heuristic function for every student sr ∈
M(lk) as follows:

g(sr) = rank(lk, pz) + |Ar|/(q + 1),∀sr ∈ M(lk), (3)

where pz = M(sr) is a project offered by lk. Then, the
student is chosen to be removed from M as follows:

sw = argmax(g(sr)),∀sr ∈ M(lk). (4)

Similarly, a student sw determined by Eq. (4) means
that rank(lk, pz) is maximum and |Aw| is maximum,
where pz = M(sw). Since rank(lk, pz) is a positive
integer number and 0 < |Aw|/(q + 1) < 1, if we
remove such a student sw meaning that pz is lk’s worst
non-empty project and sw ranks the most projects in
her/his list. By doing so, we not only keep M stable
but also keep in M(lk) the students who have the least
opportunity to be reassigned to projects in their lists
and remove the student sw in M(lk) who has the most
opportunity to be reassigned to some project in her/his
list at the next iterations

Since the student sw removed from M(pj) and
M(lk) corresponds to the maximum f(sw) and g(sw)
values given in Eq. (2) and Eq. (4), we call such a stu-
dent sw the worst student removed from either M(pj)
or M(lk).

3.2. Algorithm for SPA-P

Our heuristic algorithm for finding maximum sta-
ble matchings of SPA-P instances, namely SPA-P-
heuristic, is shown in Algorithm 1. During the execu-
tion of the algorithm, each student is marked active
(i.e., a(si) = 1) or inactive (i.e., a(si) = 0). At the be-
ginning, every student si ∈ S is active and unassigned
in M . At each iteration, if there exists an active stu-
dent si with an empty list, then she/he becomes inac-
tive forever (i.e., a(si) = 0). Therefore, she/he is unas-
signed in M and the algorithm runs the next iteration
(lines 5–8). Otherwise, she/he is assigned to her/his
most preferred project pj to form a pair (si, pj) in M ,
and she/he becomes inactive (lines 9–12). If pj is over-
subscribed, then the worst student sw in M(pj) deter-
mined by Eq. (2) is removed from M (lines 14–15), sw
deletes pj in her/his list (line 16), and she/he becomes
active again (line 17). If lk is over-subscribed, then the
worst student sw in M(lk) determined by Eq. (4) is
removed from M (lines 20–22). If so, sw deletes pz
in her/his list, where pz is offered by lk and assigned
to sw (line 23), and she/he becomes active again (line
24). The algorithm repeats until all students are inac-
tive and returns a stable matching.

Lemma 3.1 SPA-P-heuristic terminates after a finite
number of iterations.

Proof. Given an instance I of SPA-P, we have each
student si ∈ S ranked |Ai| projects. Initially, every
student si ∈ S is marked active. At each iteration, a
student si is assigned to her/his most preferred project
pj and she/he becomes inactive. When si is assigned
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Algorithm 1: SPA-P-heuristic Algorithm
1. function SPA-P-heuristic(I)
2. M := ∅;
3. a(si) := 1, ∀si ∈ S;
4. while there exists an active si do
5. if si’s list is empty then
6. a(si) := 0;
7. continue;
8. end
9. pj := the most prefered project on si’s list;

10. lk := lecturer who offers pj ;
11. M := M ∪ {(si, pj)};
12. a(si) := 0;
13. if pj is over-subscribed then
14. sw := argmax(f(sr)), f(sr) is Eq.(1);
15. M := M \ {(sw, pj)};
16. rank(sw, pj) := 0;
17. a(sw) := 1;
18. end
19. if lk is over-subscribed then
20. sw := argmax(g(sr)), g(sr) is Eq.(3);
21. pz := M(sw);
22. M := M \ {(sw, pz)};
23. rank(sw, pz) := 0;
24. a(sw) := 1;
25. end
26. end
27. return M ;

28. end function

to pj , the lecturer lk who offered pj is assigned to
si. If both pj and lk are not over-subscribed, then the
algorithm terminates after n iterations. If pj or lk is
over-subscribed, then some student sw ∈ M(pj) or
sw ∈ M(lk), respectively, is removed from M . If so,
sw deletes M(sw) from her/his list and becomes active
again. Although sw becomes active, since sw deletes
M(sw) in her/his list, sw is not reassigned to M(sw).
Thus, if some student sr is not assigned to any project,
then sr deletes every project pt ∈ Ar, making sr’s list
empty and sr inactive forever. We let S = S1 ∪ S2,
where S1 is a set of students assigned to projects and
S2 is a set of students not assigned to any project. If so,
we have (i) S1 ∩ S2 = ∅; (ii) every si ∈ S1 is inactive
since si is assigned to some project in her/his list; and
(iii) every sr ∈ S2 is inactive since sr’s list is empty
after deleting |Ar| projects in her/his list. This shows
that all students are inactive after a finite number of it-
erations and therefore, the algorithm terminates since
it runs when there exists an active student si ∈ S. □

Lemma 3.2 SPA-P-heuristic finds a solution of SPA-P
in O(n× q2) time.

Proof. It follows by the proof of Lemma 3.1 that
in the best case, where every student is assigned to
the first preferred project in their lists to form a stable
matching, our algorithm takes O(n) time. In the worst
case, where every student ranks all the projects in P
and proposes the last preferred project in their lists,
our algorithm takes O(n × q) time. When a project
pj is over-subscribed, our algorithm finds the worst
student sw in M(pj) to remove from M , so it takes
O(q) time in the worst case. When a lecturer lk is
over-subscribed, our algorithm finds the worst student
sw in M(lk) to remove from M , so it takes O(m)
time in the worst case. Therefore, our algorithm takes
O(n× q× (O(q)+O(m))) = O(n× q×max(q,m))
time to find a solution of SPA-P. Since each lecturer
must propose at least one project, we have q ≥ m or
max(q,m) = q. This shows that our algorithm takes
O(n × q × max(q,m)) = O(n × q2) time to find a
solution of SPA-P. □

Lemma 3.3 SPA-P-heuristic returns a stable match-
ing.

Proof. We assume that the algorithm returns a match-
ing M and there exists a blocking pair (sr, pt) ∈
(S×P ) \M for M . During the execution of the algo-
rithm, we consider two cases:

Case 1: If pt is not deleted from sr’s list, then sr’s
list is not empty. If sr is unassigned in M , then sr is
marked active. If so, the while loop would not have ter-
minated and we get a contradiction with Lemma 3.1.
Hence, sr is assigned in M . Since we assume that
(sr, pt) blocks M , i.e., sr prefers pt to pz = M(sr).
However, when sr proposes pz , pz was the first project
on sr’s list and we get a contradiction. Hence, M is
stable.

Case 2: If pt is deleted from sr’s list, then this
occurs when (i) pt is over-subscribed. If so, pt be-
comes full and (sr, pt) cannot block M ; or (ii) lk
is over-subscribed, where lk is the lecturer who of-
fered pt. If so, g(sr) is maximum as shown in Eq. (4),
i.e., rank(lk, pt) is maximum and |Ar| is maximum.
Since rank(lk, pt) is a positive integer number and
0 < Ar/(q + 1) < 1, meaning that pt is lk’s worst
non-empty project in M(lk). Now lk becomes full in
M and lk’s worst non-empty project in M(lk) is bet-
ter than pt. Hence, (sr, pt) cannot block M . Since we
assume that (sr, pt) blocks M , we get a contradiction.
Hence, M is stable. □
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Table 3
An execution of SPA-P-heuristic for the instance given in Table 2

Iter. si pj lk M∪(si, pj) Over-subscribed M \ (sr, pt) M

1 s1 p1 l1 (s1, p1) {(s1, p1)}
2 s2 p1 l1 (s2, p1) {(s1, p1), (s2, p1)}
3 s3 p2 l1 (s3, p2) {(s1, p1), (s2, p1), (s3, p2)}
4 s4 p3 l1 (s4, p3) l1 (s3, p2) {(s1, p1), (s2, p1), (s4, p3)}
5 s5 p3 l1 (s5, p3) p3 (s5, p3) {(s1, p1), (s2, p1), (s4, p3)}
6 s6 p5 l2 (s6, p5) {(s1, p1), (s2, p1), (s4, p3),(s6, p5)}
7 s3 p1 l1 (s3, p1) p1 (s1, p1) {(s2, p1), (s3, p1), (s4, p3),(s6, p5)}
8 s5 p4 l2 (s5, p4) {(s2, p1), (s3, p1), (s4, p3),(s5, p4),(s6, p5)}
9 s1 p2 l1 (s1, p2) l1 (s1, p2) {(s2, p1), (s3, p1), (s4, p3),(s5, p4), (s6, p5)}

10 s1 p5 l2 (s1, p5) {(s1, p5), (s2, p1), (s3, p1), (s4, p3),(s5, p4), (s6, p5)}

3.3. Example

In this section, we consider the execution of our al-
gorithm for the SPA-P instance given in Table 2. First,
our algorithm sets all students to be active and unas-
signed in a matching M , i.e., M = {}. Then, it runs
the iterations shown in Table 3, where pt = M(sr).
Specifically, the iterations are as follows:

1. At the 1st, 2nd, and 3rd iterations, s1, s2, and s3 are
assigned to their most preferred project p1, p1, and
p2, respectively, offered by l1. Therefore, we have
M = {(s1, p1), (s2, p1), (s3, p2)} and s1, s2, and
s3 are marked inactive.

2. At the 4th iteration, s4 is assigned to her/his
most preferred project p3 offered by l1. There-
fore, we have M = {(s1, p1), (s2, p1), (s3, p2),
(s4, p3)} and s4 is marked inactive. Since l1 is
over-subscribed, from Eq. (3), we have M(l1) =
{s1, s2, s3, s4}, g(s1) = 2.50, g(s2) = 2.33,
g(s3) = 3.50, and g(s4) = 1.17, i.e., g(s3) is max-
imum. From Eq. (4), (s3, p2) is removed from M .
So, we have M = {(s1, p1), (s2, p1), (s4, p3)},
s3 deletes p2 from her/his list and she/he is active
again.

3. At the 5th iteration, s5 is assigned to her/his
most preferred project p3 offered by l1. There-
fore, we have M = {(s1, p1), (s2, p1), (s4, p3),
(s5, p3)} and s5 is marked inactive. Since p3 is
over-subscribed, from Eq. (1), we have M(p3) =
{s4, s5}, f(s4) = 1.17, and f(s5) = 1.33, i.e.,
f(s5) is maximum. From Eq. (2), (s5, p3) is re-
moved from M . So, we have M = {(s1, p1),
(s2, p1), (s4, p3)}, s5 deletes p3 from her/his list
and she/he is active again.

4. At the 6th iteration, s6 is assigned to her/his most
preferred project p5 offered by l2. Therefore, we
have M = {(s1, p1), (s2, p1), (s4, p3), (s6, p5)}
and s6 is marked inactive.

5. At the 7th iteration, s3 is assigned to her/his most
preferred project p1 offered by l1. Therefore, we
have M = {(s1, p1), (s2, p1), (s3, p1), (s4, p3),
(s6, p5)} and s3 is marked inactive. Since p1 is
over-subscribed, from Eq. (1), we have M(p1) =
{s1, s2, s3}, f(s1) = 2.50, f(s2) = 2.33, and
f(s3) = 2.33, i.e., f(s1) is maximum. From
Eq. (2), (s1, p1) is removed from M . So, we have
M = {(s2, p1), (s3, p1), (s4, p3), (s6, p5)}, s1
deletes p1 from her/his list and she/he is active
again.

6. At the 8th iteration, s5 is assigned to her/his most
preferred project p4 offered by l2. Therefore, we
have M = {(s2, p1), (s3, p1), (s4, p3), (s5, p4),
(s6, p5)} and s5 is marked inactive.

7. At the 9th iteration, s1 is assigned to her/his
most preferred project p2 offered by l1. There-
fore, we have M = {(s1, p2), (s2, p1), (s3, p1),
(s4, p3), (s5, p4), (s6, p5)} and s1 is marked in-
active. Since l1 is over-subscribed, from Eq. (3),
we have M(l1) = {s1, s2, s3, s4}, g(s1) = 3.33,
g(s2) = 2.33, g(s3) = 2.33, and g(s4) = 1.17,
i.e., g(s1) is maximum. From Eq. (4), (s1, p2) is
removed from M . So, we have M = {(s2, p1),
(s3, p1), (s4, p3), (s5, p4), (s6, p5)}, s1 deletes p2
from her/his list and she/he is active again.

8. At the 10th iteration, s1 is assigned to her/his most
preferred project p5 offered by l2. Therefore, we
have M = {(s1, p5), (s2, p1), (s3, p1), (s4, p3),
(s5, p4), (s6, p5)} and s1 is marked inactive.

Since all students are inactive, the algorithm returns
a stable matching M = {(s1, p5), (s2, p1), (s3, p1),
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(s4, p3), (s5, p4), (s6, p5)} of size |M | = 6, which is
a perfect matching.

4. Experiments

In this section, we present some experiments to eval-
uate the performance of our SPA-P-heuristic algorithm.
We chose the SPA-P-approx [12] and SPA-P-approx-
promotion [6] (for short, we call it SPA-P-promotion)
algorithms to compare their solution quality and ex-
ecution time with those of our SPA-P-heuristic algo-
rithm since both SPA-P-approx and SPA-P-promotion
are approximation algorithms with a linear time com-
plexity. We implemented three algorithms by Matlab
R2019a software on a laptop computer with Core i7-
8550U CPU 1.8 GHz and 16 GB RAM, running on
Windows 11.

Datasets. To conduct our experiments, we gener-
ated random SPA-P instances with four parameters
(n,m, q, σ), where n is the number of students, m is
the number of lecturers, q is the number of projects,
and σ is the total capacity of q projects offered by all
the lecturers, i.e., σ =

∑q
j=1 cj . Given four parameters

(n,m, q, σ), our method to generate a random SPA-P
instance is as follows:

1. Generate a set S = {1, 2, · · · , n} of students, a
set P = {1, 2, · · · , q} of projects, and a set L =
{1, 2, · · · ,m} of lecturers.

2. Generate randomly non-empty sets P1, P2, · · · , Pm

of projects such that P1 ∪ P2 ∪ · · · ∪ Pm = P and
Pi∩Pj = ∅ for i = 1, 2, · · ·m, j = 1, 2, · · ·m, and
i ̸= j. We consider Pk as a set of projects offered
by lecturer lk ∈ L (k = 1, 2, · · · ,m).

3. Iterate for each lk ∈ L and each pj ∈ P , if pj is at
the position βth in Pk, then we set rank(lk, pj) =
β; otherwise, we set rank(lk, pj) = 0. By doing so,
we have a rank matrix of all the lecturers.

4. Distribute the total capacity σ of all the projects ran-
domly to the capacity cj of each project pj ∈ P
(j = 1, 2, · · · , q) such that 0 < cj < σ and∑q

j=1 cj = σ.
5. Calculate the total capacity ρk of all the projects

pj ∈ Pk and generate the capacity dk of each lec-
turer lk ∈ L by setting dk to be some percentage of
ρk (e.g., dk = 100%ρk, or dk is a random integer
number such that 80%ρk ≤ dk ≤ 100%ρk).

6. Generate randomly non-empty sets A1, A2, · · · , An

of projects such that Ai ⊆ P . We consider Ai as
a set of projects proposed by student si ∈ S (i =
1, 2, · · · , n).

Table 4
Parameter values for datasets in Experiments 1 and 2

ID n

Number of lecturers
(0.02n ≤ m ≤ 0.1n)

Number of projects
(0.1n ≤ q ≤ 0.4n)

Min Max Min Max

1 500 10 50 50 200
2 1000 20 100 100 400
3 1500 30 150 150 600
4 2000 40 200 200 800
5 2500 50 250 250 1000
6 3000 60 300 300 1200
7 3500 70 350 350 1400
8 4000 80 400 400 1600
9 4500 90 450 450 1800
10 5000 100 500 500 2000

7. Iterate for each si ∈ S and each pj ∈ P , if pj is at
the position αth in Ai, then we set rank(si, pj) =
α; otherwise, we set rank(si, pj) = 0. By doing
so, we have a rank matrix of all the students.

As a result, our method represents an instance of
SPA-P by a rank matrix of students, a rank matrix of
lecturers, a capacity list of projects, and a capacity list
of lecturers, which are inputs for our algorithm.

In our experiments, we generated 100 instances
of SPA-P for each value of n. In each instance, we
chose the values of m and q to make the student-to-
lecturer ratio and the student-to-project ratio suitable
for real applications. Besides, σ is chosen based on
the value of n. To compare the performance of our
SPA-P-heuristic algorithm with that of SPA-P-approx
and SPA-P-promotion algorithms for SPA-P instances,
we ran SPA-P-heuristic, SPA-P-approx, and SPA-P-
promotion algorithms for each instance to find their so-
lution and execution time. Then, we determined the
percentage of perfect matchings, the average of unas-
signed students, and the average execution time found
by each algorithm run on 100 instances of SPA-P to
compare their performance.

4.1. Experiment 1

In this experiment, we chose the values of parame-
ters n, m, and q as shown in Table 4. For each value of
n varying from 500 to 5000 with steps 500, we gener-
ated 100 instances of SPA-P of parameters n, m, and
q, where m and q are random numbers constrained
by 0.02n ≤ m ≤ 0.1n and 0.1n ≤ q ≤ 0.4n, re-
spectively. The constraints of m and q mean that the
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Fig. 1. Comparing solution quality and execution time of SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion algorithms

student-to-lecturer ratio is from 10 to 50 and each lec-
turer offers from 1 to 20 projects. In each instance, we
let each student randomly rank from 1 to 20 projects
in the set of projects offered by all lecturers. We set
the total capacity σ of projects offered by all lecturers
as n, i.e., σ = n. Then, we distributed σ randomly to
the capacity cj of each project pj ∈ P to ensure that∑q

j=1 cj = σ and 1 ≤ cj ≤ 100. Besides, we set the
capacity dk of each lecturer lk to the total capacity of
projects offered by lk, i.e., dk =

∑
ct, where ct is the

capacity of projects pt ∈ Pk. By setting so, this sce-
nario is a challenging experiment for the algorithms to
find perfect matchings in SPA-P instances since each
student has only a slot to be assigned to each project in
their lists.

Figure 1(a) shows the percentage of perfect match-
ings found by SPA-P-heuristic, SPA-P-approx, and
SPA-P-promotion algorithms. When n increases from
500 to 5000 with steps 500, SPA-P-heuristic finds
a much higher percentage of perfect matchings
than SPA-P-promotion and SPA-P-approx. Specifically,
SPA-P-heuristic finds from 73% to 88% of perfect
matchings, SPA-P-promotion finds from 51% to 73%

of perfect matchings, while SPA-P-approx fails to find
any perfect matchings of SPA-P instances.

Figure 1(b) shows the average number of unas-
signed students found by SPA-P-heuristic, SPA-P-
approx, and SPA-P-promotion algorithms. When n in-
creases from 500 to 5000 with steps 500, SPA-P-
approx finds stable matchings with more than 22
unassigned students. Meanwhile, SPA-P-heuristic finds
fewer unassigned students in stable matchings than
SPA-P-promotion. This means that the stable match-
ings found by SPA-P-heuristic are larger than those
found by SPA-P-promotion in terms of size.

Figure 1(c) shows the average execution time of
SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion
algorithms. When n increases from 500 to 5000 with
steps 500, the average execution time of SPA-P-approx
increases from 0.0097 seconds to 5.2027 seconds, the
average execution time of SPA-P-promotion increases
from 0.0327 seconds to 3.9276 seconds, and the aver-
age execution time of SPA-P-heuristic increases from
0.0150 seconds to 2.5655 seconds. We see that when
n ≥ 4000, SPA-P-heuristic runs about two times faster
than SPA-P-promotion and SPA-P-approx.
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Fig. 2. Comparing solution quality and execution time of SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion algorithms

Figure 1(d) shows the average number of itera-
tions found by SPA-P-heuristic, SPA-P-approx, and
SPA-P-promotion algorithms. We see that the aver-
age number of iterations found by SPA-P-heuristic is
slightly smaller than that found by SPA-P-promotion,
but larger than that found by SPA-P-approx. How-
ever, the average execution time of SPA-P-heuristic is
much smaller than that found by SPA-P-promotion and
SPA-P-approx, meaning that at each iteration, SPA-
P-heuristic needs a smaller computation than SPA-P-
promotion and SPA-P-approx.

4.2. Experiment 2

In this experiment, we chose the values of parame-
ters n, m, and q as those constraints in Experiment 1.
In each randomly generated instance of SPA-P, we set
each student to rank randomly from 1 to 20 projects in
the set of projects offered by all lecturers. Moreover,
we set the total capacity σ of projects offered by all
lecturers as 1.1n, i.e., σ = 1.1n, and distributed σ ran-
domly to the capacity cj of each project pj ∈ P such
that

∑q
j=1 cj = σ and 1 ≤ cj ≤ 100. Besides, we set

the capacity dk of each lecturer lk ∈ L to a random

integer number in [0.9ρk, ρk], where ρk is the total ca-
pacity of projects offered by lk. This means that σ =∑m

k=1 ρk =
∑q

j=1 cj = 1.1n. Since 0.9ρk ≤ dk ≤
ρk, we have 0.9

∑m
k=1 ρk ≤

∑m
k=1 dk ≤

∑m
k=1 ρk,

i.e., 0.99n ≤
∑m

k=1 dk ≤ 1.1n. Therefore, if some
generated instances that 0.99n ≤

∑m
k=1 dk < n, then

they have not any perfect matching.
Figure 2(a) shows the percentage of perfect match-

ings found by SPA-P-heuristic, SPA-P-approx, and
SPA-P-promotion algorithms. When n varies from 500
to 5000 with steps 500, SPA-P-heuristic finds from
74% to 89% of perfect matchings, SPA-P-promotion
finds from 69% to 85% of perfect matchings, while
SPA-P-approx finds only from 0% to 20% of perfect
matchings. It is obvious that SPA-P-heuristic finds a
higher percentage of perfect matchings than SPA-P-
promotion and SPA-P-approx. Compared to Experi-
ment 1, we can see that when the total capacity of
projects increases, i.e., the capacity of each project in-
creases, it is easy for these algorithms to find perfect
matchings in SPA-P instances.

Figure 2(b) shows the average number of unas-
signed students found by SPA-P-heuristic, SPA-P-
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approx, and SPA-P-promotion algorithms. When n in-
creases from 500 to 5000 with steps 500, SPA-P-
approx results in stable matchings with more than
15 unassigned students. In contrast, SPA-P-heuristic
yields stable matchings with fewer unassigned stu-
dents than SPA-P-promotion. This means that the sta-
ble matchings found by SPA-P-heuristic are larger than
those generated by SPA-P-promotion in terms of size.

Figure 2(c) shows the average execution time of
SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion
algorithms. When n varies from 500 to 5000 in incre-
ments of 500, the average execution time of SPA-P-
approx increases from 0.0083 seconds to 3.1844 sec-
onds, the average execution time of SPA-P-promotion
increases from 0.0220 seconds to 3.0629 seconds,
and the average execution time of SPA-P-heuristic in-
creases from 0.0083 seconds to 1.0946 seconds. This
shows that SPA-P-promotion and SPA-P-approx ex-
hibit similar execution time, while SPA-P-heuristic
runs approximately three times faster than both SPA-
P-promotion and SPA-P-approx.

Figure 2(d) shows the average number of iterations
used by SPA-P-heuristic, SPA-P-approx, and SPA-P-
promotion algorithms. As in Experiment 1, we can see
that SPA-P-heuristic used a smaller number of itera-
tions than SPA-P-promotion, but a larger number of it-
erations than SPA-P-approx. Moreover, we can see that
when the total capacity of projects increases, all these
three algorithms not only find stable matchings faster
than those, but also use a smaller number of iterations
compared to those in Experiment 1.

4.3. Experiment 3

In this experiment, we chose n = 5000 and varied
the total capacity σ of projects offered by all lecturers
from 0.8n to 1.5n with steps 0.1n, i.e., σ varied from
4000 to 7500 with steps 500. For each combination of
parameter values n and σ, we generated 100 instances
of SPA-P, in which other parameters were set as fol-
lows: (i) m and q were random integer numbers con-
strained by 0.02 ≤ m ≤ 0.1n and 0.1n ≤ q ≤ 0.4n,
i.e., 100 ≤ m ≤ 500 and 500 ≤ q ≤ 2000; (ii) σ was
distributed randomly to the capacity cj of each project
pj ∈ P such that

∑q
j=1 cj = σ and 1 ≤ cj ≤ 120; and

(iii) dk of each lecturer lk ∈ L was a random integer
number such that 0.8ρk ≤ dk ≤ 1.2ρk, where ρk is the
total capacity of projects offered by lk. As mentioned
in Experiment 1, the constraints of m and q mean that
the student-to-lecturer ratio was chosen from 10 to 50
and each lecturer offered from 1 to 20 projects.

Figure 3(a) shows the percentage of perfect match-
ings found by SPA-P-heuristic, SPA-P-approx, and
SPA-P-promotion algorithms. We see that when the
total capacity σ ∈ {4000, 4500}, all these three al-
gorithms cannot find any perfect matching since we
have σ < n, i.e., the total capacity σ of projects
is not enough slots for n students. However, when
σ = 5000, i.e., each project has only a slot for each
student, all these three algorithms cannot find any per-
fect matching. When σ increases, the percentage of
perfect matchings found by these algorithms increases
since the capacity of projects and lecturers increases.
However, SPA-P-heuristic finds a higher percentage
of perfect matchings than SPA-P-approx and SPA-P-
promotion.

Figure 3(b) shows the average of unassigned stu-
dents found by SPA-P-heuristic, SPA-P-approx, and
SPA-P-promotion algorithms. When σ increases, the
average of unassigned students found by these al-
gorithms decreases, meaning that the sizes of stable
matchings increase. Moreover, we see that SPA-P-
heuristic finds stable matchings whose sizes approx-
imate those of SPA-P-promotion (i.e., the green line
overlaps the blue line) but are larger than those of SPA-
P-approx.

Figure 3(c) shows the average execution time of
SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion
algorithms. When σ increases, the average execution
time found by these algorithms decreases since the
capacity of projects and lecturers increases, making
these algorithms find stable matchings easier. When
σ increases from 4000 to 7500, the average execution
time of SPA-P-heuristic decreases from 7.66 seconds
to 0.36 seconds, the average execution time of SPA-P-
approx decreases from 53.28 seconds to 0.75 seconds,
and the average execution time of SPA-P-promotion
decreases from 113.82 seconds to 0.78 seconds. When
σ = 4000, SPA-P-heuristic runs about 15 times faster
than SPA-P-promotion and about 7 times faster than
SPA-P-approx. When σ ≥ 5500, SPA-P-heuristic runs
about 2 times faster than SPA-P-promotion and SPA-P-
approx. In particular, when σ decreases from 5000 to
4000, the execution time of SPA-P-approx and SPA-P-
promotion significantly increases, while that of SPA-P-
heuristic almost remains unchanged.

Figure 3(d) shows the average number of iterations
used by SPA-P-heuristic, SPA-P-approx, and SPA-P-
promotion algorithms. As in Experiments 1 and 2, we
see that SPA-P-heuristic used a smaller number of it-
erations than SPA-P-promotion, but a larger number of
iterations than SPA-P-approx.
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Fig. 3. Comparing solution quality and execution time of SPA-P-heuristic, SPA-P-approx, and SPA-P-promotion algorithms

4.4. Remarks

In summary, we see from the three experiments
above that SPA-P-heuristic outperforms SPA-P-approx
and SPA-P-promotion in solution quality and execution
time. This can be explained as follows:

1. In SPA-P-approx, there are two main reasons to
show that this algorithm performed poorly in
finding maximum matchings for SPA-P instances.
Firstly, when an unassigned student si with a non-
empty list chooses the first project pj in her/his list,
if pj is full, then pj is not assigned to si. How-
ever, if si has only a project pj in her/his list and
if the algorithm does not assign pj to si, then si is
single. Since M(pj) is a set of students assigned
to pj , if the algorithm removes some student from
M(pj) and assigns pj to si, then si is not single.
Secondly, when a student si is assigned to a project
pj in her/his list, meaning that si is assigned to a
lecturer lk who offered pj . If lk is over-subscribed,
the algorithm removes an arbitrary student sr from
M(pz), where pz is lk’s worst non-empty project,
and deletes pz in sr’s list. If sr remains only a

project pz in her/his list, then sr becomes single.
Since M(pz) is a set of students assigned to pz and
in this case, the algorithm should remove another
student from M(pz) rather than sr. Moreover, re-
moving an arbitrary student sr from M(pz) makes
the algorithm find a stable matching difficult, lead-
ing to inefficient execution time.

2. In SPA-P-approx-promotion, If a project pj is full,
the algorithm removes an arbitrary student sr from
M(pj) and adds (si, pj) to M . If a lecturer lk is
over-subscribed, the algorithm removes an arbitrary
student sr from M(pz), where lk is the lecturer who
offered pj and pz is lk’s worst non-empty project in
M(lk). Similar to SPA-P-approx, removing an arbi-
trary student sr in M(pj) or M(pz) is a weak point
of SPA-P-approx-promotion. Moreover, when a stu-
dent si with a non-empty list is unpromoted, she/he
is allowed to recover her/his original list once again
to find a project again in her/his list. This makes the
algorithm inefficient in execution time.

3. In SPA-P-heuristic, our heuristic functions f(x) and
g(x) given in Eqs. (1) and (3) are used to keep the
students in M who have the least opportunity to be
reassigned to projects in their lists and remove the
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students in M who have the most opportunity to
be reassigned to projects in their lists. Therefore,
our SPA-P-heuristic solves the weaknesses of SPA-
P-approx and SPA-P-promotion algorithms.

Finally, the scenarios of our experiments, where
n = 5000, m ranges from 100 to 500, and q ranges
from 500 to 2000, show that our SPA-P-heuristic re-
sults in maximum stable matchings in approximately
1.0 to 7.0 seconds. This underscores the remarkable
efficiency of SPA-P-heuristic for dealing with large
SPA-P instances.

5. Conclusions

In this paper, we propose a SPA-P-heuristic algo-
rithm to find maximum stable matchings of SPA-P in-
stances. At the beginning, our algorithm initializes a
matching to be empty and sets all the students to be
active. At each iteration, our algorithm finds an ac-
tive student with a non-empty list. If such a student
exists, our algorithm assigns to her/him the most pre-
ferred project in her/his list to form a student-project
pair in the matching. If the assigned project overcomes
its capacity, our algorithm uses a heuristic function to
remove the worst student among students assigned to
the project in the matching. If the lecturer who offered
the project overcomes her/his capacity, our algorithm
uses another heuristic function to remove the worst
student among students assigned to the lecturer in the
matching. When a student is assigned to a project,
she/he becomes inactive. When a student removes a
project assigned to her/him, she/he deletes the project
from her/his list and becomes active again. Our algo-
rithm repeats until all the students are inactive. We
show that our algorithm returns a stable matching af-
ter a finite number of iterations. Our experimental re-
sults over all the tested scenarios show that our SPA-
P-heuristic algorithm outperforms SPA-P-approx and
SPA-P-promotion algorithms regarding solution qual-
ity and execution time for SPA-P instances of large
sizes.

The SPA-P problem consists of variants such as
the Student-Project Allocation with preferences over
Projects with Ties (SPA-PT), the Student-Project Allo-
cation problem with lecturer preferences over Students
(SPA-S) [2], or the Student-Project Allocation prob-
lem with lecturer preferences over Students with Ties
(SPA-ST) [4,14]. Therefore, our approach can be ex-
tended by defining suitable heuristic functions to solve
these problems efficiently.
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