ACOMP 2016

2016 International Conference on Advanced Computing and Applications

23-25 November 2016, Can Tho City, Vietnam

Edited by Lam-Son Lê, Tran Khanh Dang, Josef Küng,
Nam Thoai, and Roland Wagner

Proceedings

2016 International Conference on Advanced Computing and Applications

ACOMP 2016

23-25 November 2016
Can Tho City, Vietnam

Proceedings

2016 International Conference on Advanced Computing and Applications

ACOMP 2016

23-25 November 2016
 Can Tho City, Vietnam

Editors

Lam-Son Lê
Tran Khanh Dang
Josef Küng
Nam Thoai
Roland Wagner

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P5978
ISBN-13: 978-1-5090-6143-3
BMS Part \# CFP16E01-PRT
Additional copies may be ordered from:

IEEE Computer Society	IEEE Service Center	IEEE Computer Society
Customer Service Center	445 Hoes Lane	Asia/Pacific Office
10662 Los Vaqueros Circle	P.O. Box 1331	Watanabe Bldg., 1-4-2
P.O. Box 3014	Piscataway, NJ 08855-1331	Minami-Aoyama
Los Alamitos, CA 90720-1314	Tel: + 17329810060	Minato-ku, Tokyo 107-0062
Tel: + 18002726657	Fax: + 17329819667	JAPAN
Fax: + 17148214641	http://shop.ieee.org/store/	Tel: + 81334083118
http://computer.org/cspress csbooks@computer.org	customer-service@ieee.org	$\text { Fax: + } 81334083553$ tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: reprints@computer.org

Editorial production by Lisa O'Conner
Cover art production by Mark Bartosik

IEEE Computer Society
Conference Publishing Services (CPS)
http://www.computer.org/cps

2016 International Conference on Advanced Computing and Applications ACOMP 2016 Table of Contents

Message from the General Chairs viii
Message from the Program Chairs. ix
Organizing Committee. x
Program Committee xi
Section 1: Advances in Security and Information Systems
Solving the User-Role Reachability Problem in ARBAC with Role Hierarchy 3
Anh Truong and Dai Hai Ton That
Processing All k-Nearest Neighbor Query on Large Multidimensional Data 11
Huu Vu Lam Cao, Trong Nhan Phan, Minh Quang Tran, Thanh Luan Hong, and Minh Nhat Quang Truong
A Bidirectional Local Search for the Stable Marriage Problem 18
Hoang Huu Viet, Le Hong Trang, SeungGwan Lee, and TaeChoong Chung
Rew-XAC: An Approach to Rewriting Request for Elastic ABAC Enforcement with Dynamic Policies 25Ha Xuan Son, Luong Khiem Tran, Tran Khanh Dang, and Yen Nhi Pham
A Cross-Checking Based Method for Fraudulent Detection on E-Commercial Crawling Data 32Khanh Dang Tran, Duc Dan Ho, Duc Minh Chau Pham, An Khuong Vo,and Huu Huy Nguyen
Section 2: Model-Based Software Engineering and Enterprise Engineering
Software Keyphrase Extraction with Domain-Specific Features 43Oscar Karnalim
An Application of Bitwise-Based Indexing to Web Service Composition and Verification 51Huynh T. Khai, Bui H. Thang, and Quan T. Tho

A bidirectional local search for the stable marriage problem

Hoang Huu Viet
Information Technology Dept.,Vinh University
182 LeDuan Str., Vinh City, NgheAn, VietNam
Email: viethh@vinhuni.edu.vn (\boxtimes)
SeungGwan Lee
Humanitas College, Kyung Hee University
1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
Email: leesg@khu.ac.kr

Le Hong Trang
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology
268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam
Email: lhtrang@vinhuni.edu.vn
TaeChoong Chung
Computer Engineering Dept., Kyung Hee University
1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
Email: tcchung@khu.ac.kr

Abstract

This paper proposes a bidirectional local search algorithm to find the egalitarian and the sex-equal stable matchings in the stable marriage problem. Our approach simultaneously searches forward from the man-optimal stable matching and backwards from the woman-optimal stable matching until the search frontiers meet. By employing a breakmarriage strategy to find stable neighbor matchings of the current stable matching and moving to the best neighbor matching, the forward local search finds the solutions while moving towards the womanoptimal stable matching and the backward local search finds the solutions while moving towards the man-optimal stable matching. Simulations show that our proposed algorithm is efficient for the stable marriage problem.

Keywords-break marriage; gale-shapley algorithm; local search; stable marriage problem;

I. Introduction

The stable marriage (SM) problem is a well-known problem of matching an equal number men and women to satisfy a certain criterion of stability. This problem was first introduced by D. Gale et al. [1], and has recently received a great deal of attention from the research community due to its important role in a wide range of applications such as the Evolution of the Labor Market for Medical Interns and Residents [2], the Student-Project Allocation problem (SPA)[3] and the Stable Roommates problem (SR) [4], [5].

An instance of SM of size n, denoted by I, comprises a set of n men and a set of n women in which each person ranks all members of the opposite sex in order of preference in their preference list (PL). A matching M is a set of n disjoint pairs of men and women. If a man m and a woman w form a pair in M, then m and w are partners in M, denoted by $m=M(w)$ and $w=M(m)$. A man m and a woman w form a blocking pair in a matching M if m prefers w to $M(m)$ and w prefers m to $M(w)$. A matching M that has no any blocking pairs is said to be stable, otherwise it is said to be unstable. Let \mathcal{M} denote a set of all stable matchings, $m r(m, w)$ denote the rank of woman w in man m^{\prime} s PL, and $w r(w, m)$ denote the rank of man m in woman w^{\prime} s PL. For a stable matching $M \in \mathcal{M}$,
we define the man cost $\operatorname{sm}(M)$ and the woman cost $s w(M)$ as follows:

$$
\begin{align*}
& s m(M)=\sum_{(m, w) \in M} m r(m, w) \tag{1}\\
& s w(M)=\sum_{(m, w) \in M} w r(w, m) \tag{2}
\end{align*}
$$

Definition 1 (man-optimal and woman-optimal [6]). A stable matching M is called man-optimal (respectively womanoptimal) if it has the minimum value of $s m(M)$ (respectively $s w(M)$) for all $M \in \mathcal{M}$.

Gale and Shapley proposed an algorithm known as the GaleShapley algorithm to find an optimal solution of SM instances of size n in time $O\left(n^{2}\right)[1]$. The Gale-Shapley algorithm is basically a sequence of proposals from men to women to find the man-optimal stable matching. If the roles of men and women are interchanged, the matching found by the GaleShapley is the woman-optimal stable matching. It is proved that in the man-optimal stable matching, each woman has the worst partner that she can have in any stable matching and that in the woman-optimal stable matching, each man has the worst partner that he can have in any stable matching [7]. For an instance of SM of size n, there may be many other stable matchings between the man-optimal and womanoptimal stable matchings in general. Moreover, the manoptimal (respectively woman-optimal) stable matching is the "selfish" matching for men (respectively women) and therefore, it is appropriate to seek other optimal stable matchings such as an egalitarian or sex-equal stable matching to give more balanced preference for both men and women. For a stable matching $M \in \mathcal{M}$, we define the egalitarian cost $c(M)$ and the sex-equality cost $d(M)$ as follows:

$$
\begin{align*}
c(M) & =s m(M)+s w(M) \tag{3}\\
d(M) & =|s m(M)-s w(M)| . \tag{4}
\end{align*}
$$

Definition 2 (egalitarian and sex-equal [6]). A stable matching M is called egalitarian (respectively sex-equal) if it has the minimum value of $c(M)$ (respectively $d(M)$) for all $M \in \mathcal{M}$.

There are several approaches to find the egalitarian or sexequal stable matching. Nakamura et al. [6] proposed a genetic algorithm (GA) for sex-fair (i.e., sex-equal) SM problem. In their approach, the problem is transferred into a directed graph problem and GA is used to find the solution in the graph. Vien et al. [8] presented an ant colony system (ACS) algorithm for SM instances. Based on the heuristic functions defined for optimal stable matching criteria, a set of cooperating agents, called artificial ants, cooperates to find man-optimal, womanoptimal, egalitarian and sex-equal stable matchings. Iwama et al. [9] proposed an approximation algorithm for finding a near optimal solution in terms of sex-equal or egalitarian stable matching. Because the number of stable matchings of SM instances grows exponentially in general [10], the above approaches are inefficient for finding solutions of SM instances of large sizes. To find rapidly a solution of SM instance of a large size, an approach that may be useful is local search. In fact, Gelain et al. [11] recently have proposed local search approaches in stable matching problems that aim to accelerate the finding process of solutions. However, their approach finds only one stable matching of a given SM.

In this paper, we present a bidirectional local search (BiLS) algorithm to seek an egalitarian or sex-equal stable matching of SM instances. We aim to give a general approach, which is able to be applied to SM instances for some optimal criterion. BiLS algorithm runs two simultaneous local searches: one forward from the man-optimal and the other backward from the woman-optimal, stoping when the both stop and meet. For each local search, the Gale-Shapley algorithm [1] is used to find the initial state, the breakmarriage operation [12] is used to generate stable neighbor matchings of the current stable matching and the random walk is used to avoid getting stuck in a local optimum. The simulation results show that our approach is efficient in terms of computational time and solution quality for SM problem.

The rest of this paper is organized as follows: Section 2 describes the background, Section 3 presents the proposed approach, Section 4 discusses the simulations and evaluations, and Section 5 concludes our work.

II. Background

For illustrative purposes, we consider an instance of SM consisting of eight men and eight women with their preference lists shown in Table I.

Gale-Shapley algorithm. The Gale-Shapley algorithm [1] finds the man-optimal stable matching of SM instances. At the beginning, the algorithm assigns each person to be free. At each iteration step, the algorithm chooses a free man m and finds the most preferred woman w in m^{\prime} s preference list to whom m has not proposed. If w is free then w and m become engaged. If w is engaged to m^{\prime} then she rejects the man that she least prefers to engage to

TABLE I
Preference lists of eight men and women

Man	Preference list		Woman	Preference list	
m_{1}	477381526	w_{1}	13542687		
m_{2}	53421867	w_{2}	82453716		
m_{3}	38246751	w_{3}	58142367		
m_{4}	56834712	w_{4}	24365817		
m_{5}	135	28647	w_{5}	65481723	
m_{6}	86251743	w_{6}	74256813		
m_{7}	25836471	w_{7}	38657214		
m_{8}	5	74	16283	w_{8}	

the other man. The rejected man becomes free. The algorithm terminates when all men are engaged. If the roles of men and women are interchanged, the matching found by the Gale-Shapley is the woman-optimal stable matching. For example, the man- and woman-optimal stable matchings of Table I found by the Gale-Shapley algorithm are $M_{0}=\{(1,4),(2,3),(3,8),(4,5),(5,1),(6,6),(7,2),(8,7)\}$ and $M_{t}=\{(1,1),(2,4),(3,7),(4,8),(5,3),(6,5),(7,6)$, $(8,2)\}$, respectively.

Breakmarriage operation. Let M be a stable matching and (m, w) be an engaged pair in M. The breakmarriage operation [12], denoted by BreakMarriage (M, m), finds a stable matching from M and m. The idea of the breakmarriage operation is similar to the Gale-Shapley algorithm. At the beginning, the algorithm assigns the woman w to the partner of the man m and sets m to be free. At each iteration step, the algorithm performs a sequence of proposals, rejects and acceptances as those of the Gale-Shapley algorithm. The algorithm terminates when either some man has been rejected by all women or the woman w accepts a man m^{\prime} to whom she prefers to her partner. Because there is exactly one free man at any time of algorithm execution, if the woman w accepts a man m^{\prime} then there are no free men and $\operatorname{BreakMarriage}(M, m)$ returns a stable matching M^{\prime} of n engaged pairs. For example, $\operatorname{BreakMarriage}\left(M_{0}, 1\right)$ returns the stable matching $M^{\prime}=\{(1,4),(2,3),(3,2),(4,5),(5,1),(6,6),(7,8),(8,7)\}$ on man 3, while BreakMarriage $\left(M_{0}, 2\right)$ returns no stable matching.

Finding all the stable matchings. If the breakmarriage operation is applied for each man m in the men set, it would generate in general the same stable stable matching being obtained many times. In order to find all the stable matchings that every stable matching is produced once and only once, McVitie and Wilson proposed an algorithm [12] by imposing two restriction rules on the breakmarriage operation as follows:
$R 1$: If BreakMarriage (M, m) returns M^{\prime} on man m^{\prime} then BreakMarriage $\left(M^{\prime}, i\right)$ only be performed on men $i \geq m^{\prime}$.
$R 2$: In $\operatorname{BreakMarriage}(M, m)$ only men $m^{\prime} \geq m$ propose, i.e., if some man m^{\prime} is free and $m^{\prime}<m$ during the execution time then $\operatorname{BreakMarriage}(M, m)$ is stopped and said to be unsuccessful.
The breakmarriage operation with the above two restriction
rules leads to the following important theorem:
Theorem 1 ([12]). Every stable matching $M_{i}(i=1,2, \cdots, t)$ can be obtained by a series of breakmarriage operations starting from the man-optimal stable matching M_{0}, where M_{t} is the woman-optimal stable matching.

For a given SM instance, a dominance relation on the set of stable matchings is defined as follows:

Definition 3 (Dominance [13]). Let $M \in \mathcal{M}$ and $M^{\prime} \in \mathcal{M}$ be two stable matchings. M is said to dominate M^{\prime} under the men's point of view if and only if every man prefers his partner in M at least as well as to his partner in M^{\prime}.

Corollary 1 ([13]). If BreakMarriage (M, m) results in a stable matching M^{\prime}, then M^{\prime} dominates all stable matchings which are dominated by M and in which m is not married to his mate in M.

Breadth-first search algorithm. The algorithm for finding all the stable matchings [12] is an exhaustive search method. Therefore, to find the egalitarian and the sex-equal stable matchings in the stable marriage problem, a breadth-first search (BFS) algorithm based on the algorithm [12] can be described as Algorithm 1. At the beginning, the algorithm assigns the best solution $M_{b e s t}$ to the man-optimal M_{0} found by the Gale-Shapley algorithm, denoted by GaleShapley($I, M e n$) (i.e., a sequence of proposals from men to women), and assigns the parent set to M_{0}. At each iteration step, the algorithm finds a child set of matchings M in the parent set by performing a sequence of $\operatorname{BreakMarriage}(M, m)$ for each man m from i to n, where $i=\operatorname{brokenMan}(M)$ is the man corresponding to M obtained by some breakmarriage operation (i.e., apply the rule 1). If there exist no children, the algorithm ends. Otherwise, the algorithm evaluates all of the matchings in the child set using a cost function $f(M)$, which is the egalitarian cost in (3) (respectively sex-equal cost in (4)) for finding the egalitarian (respectively sex-equal) stable matching, and then selects the best child $M_{\text {best_child }}$ to be a matching with the smallest value of the cost function. If the best solution found so far is worse than the best child, the best solution is assigned to the best child solution. Finally, the algorithm assigns the parent set to the child set and repeats until it meets the ending condition.

By using BFS algorithm, all stable matchings of Table I are shown in Table II. Specifically, M_{0} is the man-optimal stable matching, M_{17} is the woman-optimal stable matching, M_{9} is the egalitarian stable matching and M_{4} is the sexequal stable matching. Figure 1 shows a tree-like structure found by BFS algorithm. The man-optimal stable matching is the top of the tree, each branch $M-M^{\prime}$ shows that M^{\prime} is obtained by $\operatorname{BreakMarriage}(M, m)$ on man m^{\prime}, where m^{\prime} is labeled on the branch. Because BFS algorithm is an exhaustive search method, it always finds exactly solutions of SM instances. However, the number of stable matchings of SM instances grows exponentially in general [10] and therefore, BFS algorithm is only efficient when the size of SM instances

```
Algorithm 1: BFS Algorithm
    Input : an instance \(I\) of SM
    Output: the best matching and all stable matchings
    \(M_{0}:=\) GaleShapley \((I, M e n) ; \triangleright\) men propose women;
    \(M_{\text {best }}:=M_{0}\);
    parentSet \(:=M_{0}\);
    stableSet \(:=M_{0}\);
    \(\operatorname{brokenMen}\left(M_{0}\right):=1\); \(\triangleright\) used for the rule \(R 1\);
    while (true) do
        childSet \(:=\emptyset\);
        for (each matching \(M\) in parentSet) do
            for \(m:=\operatorname{brokenMen}(M)\) to \(n\) do
                    \(\left[M_{\text {child }}, m^{\prime}\right]:=\operatorname{BrEaKMARRIAGE}(M, m)\);
                    if \(\left(M_{\text {child }} \neq \emptyset\right)\) then
                        childSet \(:=\) childSet \(\cup M_{\text {child }}\);
                        brokenMen( \(M_{\text {child }}\) ) \(:=m^{\prime}\);
                        stableSet \(:=\) stableSet \(\cup M_{\text {child }}\);
                    end
                end
        end
        if \((\) childSet \(=\emptyset)\) then
                break;
        end
        \(M_{\text {best_child }}:=\arg \min _{M \in \text { childSet }}(f(M))\);
        if \(f\left(\bar{M}_{\text {best }}\right)>f\left(M_{\text {best_child }}\right)\) then
            \(M_{\text {best }}:=M_{\text {best_child }} ;\)
        end
        parentSet \(:=\) childSet;
    end
    print \(M_{\text {best }}\) and stableSet;
```

is small.
TABLE II
EVALUATIONS OF STABLE MATCHINGS

Stable matchings	sm	sw	c	d	
$M_{0}=\{(1,4),(2,3),(3,8),(4,5),(5,1),(6,6),(7,2),(8,7)\}$	12	35	47	23	
$M_{1}=\{(1,3),(2,4),(3,8),(4,5),(5,1),(6,6),(7,2),(8,7)\}$	15	27	42	12	
$M_{2}=\{(1,4),(2,3),(3,2),(4,5),(5,1),(6,6),(7,8),(8,7)\}$	15	32	47	17	
$M_{3}=\{(1,4),(2,3),(3,8),(4,6),(5,1),(6,5),(7,2),(8,7)\}$	15	30	45	15	
$M_{4}=\{(1,1),(2,4),(3,2),(4,5),(5,3),(6,6),(7,8),(8,7)\}$	21	20	41	1	
$M_{5}=\{(1,3),(2,4),(3,2),(4,5),(5,1),(6,6),(7,8),(8,7)\}$	18	24	42	6	
$M_{6}=\{(1,3),(2,4),(3,8),(4,6),(5,1),(6,5),(7,2),(8,7)\}$	18	22	40	4	
$M_{7}=\{(1,4),(2,3),(3,2),(4,6),(5,1),(6,5),(7,8),(8,7)\}$	18	27	45	9	
$M_{8}=\{(1,1),(2,4),(3,7),(4,5),(5,3),(6,6),(7,8),(8,2)\}$	28	15	43	13	
$M_{9}=\{(1,1),(2,4),(3,2),(4,6),(5,3),(6,5),(7,8),(8,7)\}$	24	15	39	9	
$M_{10}=\{(1,3),(2,4),(3,7),(4,5),(5,1),(6,6),(7,8),(8,2)\}$	25	19	44	6	
$M_{11}=\{(1,3),(2,4),(3,2),(4,6),(5,1),(6,5),(7,8),(8,7)\}$	21	19	40	2	
$M_{12}=\{(1,4),(2,3),(3,2),(4,8),(5,1),(6,5),(7,6),(8,7)\}$	21	25	46	4	
$M_{13}=\{(1,1),(2,4),(3,7),(4,6),(5,3),(6,5),(7,8),(8,2)\}$	31	10	41	21	
$M_{14}=\{(1,1),(2,4),(3,2),(4,8),(5,3),(6,5),(7,6),(8,7)\}$	27	13	40	14	
$M_{15}=\{(1,3),(2,4),(3,7),(4,6),(5,1),(6,5),(7,8),(8,2)\}$	28	14	42	14	
$M_{16}=\{(1,3),(2,4),(3,2),(4,8),(5,1),(6,5),(7,6),(8,7)\}$	24	17	41	7	
$M_{17}=\{(1,1),(2,4),(3,7),(4,8),(5,3),(6,5),(7,6),(8,2)\}$	34	8	42	26	
$M_{18}=\{(1,3),(2,4),(3,7),(4,8),(5,1),(6,5),(7,6),(8,2)\}$	31	12	43	19	
$\bullet M_{0}:$ man-optimal, $M_{17}:$ woman-optimal.					
$\bullet M_{9}:$ egalitarian, M$M_{4}:$ sex-equal.					

III. PROPOSED ALGORITHM

Local search algorithms are among the popular methods for solving optimization problems because of two key advantages:

Fig. 1. The tree-like structure generated by the BFS algorithm for Table I
(i) they take very little memory; and (ii) they find quickly reasonable solutions in large or infinite state spaces. However, the local search algorithms often fail to find a global optimal solution when one exists because they can get stuck on a local optimum solution. To avoid this disadvantage, many of local search algorithms such as random-restart hill climbing, simulated annealing or local beam search have been proposed [14]. Basically, a classical local search algorithm starts from a given solution and tries to find a better one in the neighbors of the solution. If a better solution is found, the current solution is moved to the better one and the local search is repeated for the current solution. Such a local search can be considered as a unidirectional search. However, a unidirectional search can be inefficient for a problem of large size.

Since Theorem 1 and obviously if the roles of men and women are interchanged, then every stable matching can be obtained by a series of breakmarriage operations starting from the woman-optimal stable matching. Therefore, we propose a bidirectional local search (BiLS) algorithm to find an egalitarian or sex-equal stable matching of SM of size n. BiLS runs two simultaneous searches: one forward from the manoptimal and the other backward from the woman-optimal one. The framework of BiLS is shown in Algorithm 2. At the beginning, Procedure GaleShapley is called to find, respectively, the man- and woman-optimal matchings which are starting solutions for the bidirectional search. At each iteration, for one of two searching directions, the algorithm finds a neighbor set of the current solution, which are $M_{l e f t}$ or $M_{\text {right }}$, by calling Procedure BreakMarriage ($M_{\text {left }}, m$) (respectively BreakMarriage $\left(M_{\text {right }}, w\right)$) for each man (respectively woman) in turn in the men (respectively women) set. The algorithm evaluates all stable neighbor matchings in the neighbor set using the cost function $f(M)$ as defined in Algorithm 1. The algorithm then selects the next solution to be a neighbor whose smallest value of the cost function. The algorithm can also selects the next solution to be a

```
Algorithm 2: BiLS Algorithm
    Input : an instance \(I\) of SM
    Output: a stable matching
    \(M_{l e f t}:=\) GaleShapley \((I, M e n) ; \triangleright\) men propose women;
    \(M_{\text {right }}:=\) GALESHAPLEY(I,Women); \(\triangleright\) women propose men;
    if \(\left(f\left(M_{\text {left }}\right)<f\left(M_{\text {right }}\right)\right)\) then
        \(M_{\text {best }}:=M_{\text {left }} ;\)
    else
        \(M_{\text {best }}:=M_{\text {right }} ;\)
    end
    forward \(:=\) true
    backward := true;
    while (true) do
        if (forward) then
            neighborSet \(:=\emptyset\);
            for (each man \(m\) in the men set) do
                    stableMatching \(:=\operatorname{BreakMARRIAGE}\left(M_{l e f t}, m\right)\);
                    neighborSet \(:=\) neighborSet \(\cup\) stableMatching;
            end
            if (small random probability \(p\) ) then
                    \(M_{\text {next }}:=\) a random matching in neighborSet;
            else
                    \(M_{\text {next }}:=\arg \min _{M \in \text { neighborSet }}(f(M)) ;\)
            end
            if \(\left(f\left(M_{\text {next }}\right)>f\left(M_{\text {left }}\right)\right)\) then
                    forward \(:=\) false;
                    if \(f\left(M_{\text {best }}\right)>f\left(M_{\text {left }}\right)\) then
                    \(M_{\text {best }}:=M_{\text {left }} ;\)
                    end
            end
            \(M_{\text {left }}:=M_{\text {next }} ;\)
        end
        if (backward) then
            neighborSet \(:=\emptyset\);
            for (each woman \(w\) in the women set) do
                stableMatching := BreakMarriage \(\left(M_{\text {right }}, w\right)\);
                    neighborSet \(:=\) neighborSet \(\cup\) stableMatching;
            end
            if (small random probability \(p\) ) then
                    \(M_{\text {next }}\) := a random matching in neighborSet;
            else
                    \(M_{\text {next }}:=\arg \min _{M \in \text { neighborSet }}(f(M)) ;\)
            end
            if \(\left(f\left(M_{\text {next }}\right)>f\left(M_{\text {right }}\right)\right)\) then
                    backward \(:=\) false;
                    if \(f\left(M_{\text {best }}\right)>f\left(M_{\text {right }}\right)\) then
                    \(M_{\text {best }}:=M_{\text {right }}\);
                    end
            end
            \(M_{\text {right }}:=M_{\text {next }} ;\)
        end
        if ((not forward) and (not backward)) then
            if \(\left(s m\left(M_{\text {left }}\right) \leq \operatorname{sm}\left(M_{\text {right }}\right)\right)\) then
                forward \(:=\) true;
                backward \(:=\) true;
            else
                break;
            end
        end
    end
    return \(M_{\text {best }}\);
```

random neighbor with a small probability in order to avoid getting stuck in a local optimum. If the next solution of
each searching direction is worse than the current one, the search of the direction is paused. Furthermore, if the best solution of the direction found so far is worse than the current solution, the best one is assigned to the current one. The algorithm then moves the current solution to the next one and repeats the iteration. The algorithm terminates when either one of searching directions has no neighbors or two searching directions meet each other by means of the man cost. In particular, if both forward and backwards searches are pausing and the man cost of the current matching of the forward search $s m\left(M_{l e f t}\right)$ is equal or greater than that of the backwards one $\operatorname{sm}\left(M_{\text {right }}\right)$, then the bidirectional search is completed. The algorithm thus stops and gives the best solution so far. It should be noted that in the local search approach, for each stable matching, we must find all stable neighbor matchings instead of only one stable matching as in Algorithm 1. To do so, only the restriction rule $R 2$ is applied to the breakmarriage operation.

An illustration of Algorithm 2 to find a sex-equal stable matching for the SM in Table I is depicted in Figure 2, in which the probability to move the solution to a random neighbor is set to be zero. Initially, the algorithm assigns $M_{\text {left }}$ to the man-optimal M_{0} and assigns $M_{\text {right }}$ to the woman-optimal M_{17}. At the first iteration, the algorithm finds a better solution in the neighbors of $M_{l e f t}$ and moves $M_{l e f t}$ to M_{1}. The algorithm also finds a better solution in the neighbors of $M_{\text {right }}$ and then moves $M_{\text {right }}$ to M_{8}. The algorithm repeats for $M_{\text {left }}$ and $M_{\text {right }}$ until $M_{\text {left }}=M_{4}$ and $M_{\text {right }}=M_{4}$. At this point, no better solutions in the neighbors of $M_{\text {left }}$ and $M_{\text {right }}$ are found. So, both searching directions are paused and $M_{b e s t}=M_{l e f t}=M_{\text {right }}$. Then the algorithm moves $M_{\text {left }}$ to M_{9} and $M_{\text {right }}$ to M_{5}. Because of Corollary 1, $M_{\text {left }}$ and $M_{\text {right }}$ are generated in the way that $\operatorname{sm}\left(M_{l e f t}\right)$ increases while $s m\left(M_{\text {right }}\right)$ decreases. Since $\operatorname{sm}\left(M_{\text {left }}\right)>\operatorname{sm}\left(M_{\text {right }}\right)$, the algorithm terminates and returns the solution M_{4}. As shown in Table II, the algorithm finds exactly the sex-equal stable matching M_{4}.

IV. Simulations

This section presents simulations implemented with the Matlab software on a Core i5-2430M CPU 2.4 GHz with 4 GB RAM computer. The simulations are designed to evaluate the performance of BiLS algorithm for SM instances, in which the preference lists of men and women are generated randomly. The probability of choosing a random stable matching in stable neighbor matchings is set $p=0.05$.

First, we make simulations to evaluate the solution quality found by BiLS. To do so, we compare the solutions found by BiLS with those found by BFS algorithm. BFS algorithm is an exhaustive search method and therefore, it does not only find all stable matchings but also finds exactly the egalitarian and sex-equal stable matchings of SM instances. Obviously, using an exhaustive search algorithm like BFS to compare with BiLS is reasonable for evaluation of BiLS. Table III shows the simulation results of 15 SM instances. From the simulation results, three main observations are summarized as follows:

Fig. 2. The trace search for finding the sex-equal stable matching of Table I
TABLE III
The simulation results of the BFS and BiLS algorithms

$\begin{aligned} & \text { Data } \\ & \text { Set } \end{aligned}$	Size	BFS algorithm			BiLS algorithm			
		(1)	(2)	(3)	(1)	(3)	(2)	(3)
1	50	645	84	0.337	645	0.117	84	0.107
2	50	647	11	4.465	647	0.165	11	0.123
3	50	678	10	2.366	678	0.112	10	0.166
4	50	669	12	8.110	669	0.135	12	0.143
5	50	788	31	7.038	788	0.174	31	0.202
6	100	1930	63	41.881	1930	0.535	63	0.348
7	100	2021	5	58.872	2021	1.155	5	0.583
8	100	2098	17	17.172	2098	1.638	17	1.402
9	100	2030	13	15.265	2030	0.809	13	0.707
10	100	2031	13	30.293	2031	0.576	13	0.784
11	200	5674	111	888.997	5766^{\dagger}	3.513	$324{ }^{\dagger}$	1.853
12	200	5615	13	1052.289	5615	2.010	13	1.647
13	200	5594	9	2011.252	$5613{ }^{\dagger}$	1.549	9	1.041
14	200	5638	156	2412.611	5638	2.570	156	2.117
15	200	5376	14	748.382	5376	2.622	14	2.140
(1): egalitarian cost (2): sex-equal cost (3): time (second) \dagger : local optimum								

1) The running time of BFS or BiLS algorithms depends not only on the size of SM instances but also on the number of the stable matchings of SM instances.
2) The running time of BiLS is much smaller than that of BFS. In particular, BiLS is efficient when the size of SM instances is large, while BFS is not so since it is an exhaustive search algorithm.
3) The solutions found by BiLS are the same as those found by BFS when the size of SM instances is small. However, BiLS is a local search method and therefore, it can get stuck on a local optimum solution (e.g., the data set at the rows 11 or 13).

Second, we compare BiLS with two local search algorithms to evaluate the computational time and solution quality. The local search algorithms are as follows.

1) The first algorithm is the hill-climbing algorithm [14]. Specifically, the hill-climbing algorithm for SM problem is the same as the Algorithm 2, excepting the backward search phase and the ending condition (i.e, the algorithm ends when forward $=$ true).
2) The second algorithm comprises of a sequence of local searches (called SLS algorithm) [15], in which each search is a hill-climbing algorithm. The first hillclimbing algorithm starts from the man-optimal and the next one starts from the solution of the previous one. Because the woman-optimal solution does not generate any stable matching under the dominance relation of stable matchings from the mens point of view (Theorem 1), SLS algorithm ends when a hill-climbing algorithm reaches to the woman-optimal solution. The solution of SLS algorithm is the best solution among solutions of all hill-climbing searches.

We generate randomly 10 SM instances of size n. For each SM instance, we run 50 times and take the cost, the frequency and the average time of finding the solutions. Tables IV, V and VI show the simulation results of BiLS, the hill-climbing and SLS algorithms, respectively. Observations on simulation results can be summarized as follows:

1) The solutions found by BiLS are better than that found by the hill-climbing algorithm and SLS, while the solutions found by the hill-climbing algorithm are almost the same as those found by SLS. For examples in the data set of 7 (respectively 9), BiLS gives the egalitarian matching with cost of 10398 (respectively 21719), but the hill-climbing algorithm and SLS give the egalitarian matching with cost of 12776 (respectively 22014).
2) The frequency of finding the solutions of BiLS is higher than that of SLS. The frequency of finding the solutions of SLS is higher than that of the hill-climbing algorithm.
3) The running time of BiLS is approximately twice bigger than that of the hill-climbing algorithm. Meanwhile, the running time of BiLS is much smaller than that of SLS. Moreover, SLS is inefficient in terms of computational time when the size of SM instances is large.

Finally, we implement the ACS algorithm [8] to compare with BiLS. The simulations show that the ACS algorithm finds an egalitarian or sex-equal stable matching only for SM instances of small sizes ($n \leq 30$). This is because the ACS algorithm has to find a large amount of pairs (man,woman) to form a stable matching. For example, given an instance of SM of size $n=100$, the ACS algorithm has to find $n^{2}=10000$ pairs (man,woman) to form a stable matching of 100 engaged pairs. Even the size of SM instances is small, the simulations show that BiLS outperforms the ACS in terms of computational time and solution quality.

TABLE IV
The simulation results of BiLS

Data Set		Size	egalitarian					sex-equal			
		cost	$\%$	time(sec.)		cost	$\%$	time(sec.)			
1	50	689	94	0.144		3	98	0.103			
2	75	1188	100	0.196		52	96	0.167			
3	100	2074	90	0.786		142	100	0.674			
4	150	3655	100	1.737		143	100	1.282			
5	200	5262	96	3.299		15	100	3.770			
6	250	7534	92	3.061		210	94	3.042			
7	300	10398	90	6.702		3077	98	3.948			
8	400	15915	98	21.648		12	96	23.405			
9	500	21719	98	19.054		52	98	20.345			
10	700	36260	90	142.687		32	100	126.444			

TABLE V
The simulation results of the hill-CLimbing algorithm

Data Set	Size	egalitarian					sex-equal			
		cost	$\%$	time(sec.)		cost	$\%$	time(sec.)		
1	50	689	88	0.057		3	96	0.033		
2	75	1188	98	0.113		52	96	0.106		
3	100	2074	88	0.423		142	100	0.447		
4	150	3655	96	1.020		143	96	0.908		
5	200	5262	96	0.992	15	88	1.583			
6	250	7629	92	1.121		1234	98	0.799		
7	300	12776	90	2.303		7778	98	1.394		
8	400	15915	80	15.077		12	96	11.870		
9	500	22014	100	11.923		3962	100	8.909		
10	700	36338	82	60.258		32	88	84.624		

TABLE VI
The simulation results of SLS

Data Set	Size	egalitarian					sex-equal			
		cost	$\%$	time(sec.)		cost	$\%$	time(sec.)		
1	50	689	96	0.155		3	96	0.259		
2	75	1188	100	0.411		52	98	0.753		
3	100	2074	94	1.588		142	100	1.680		
4	150	3655	94	3.139		143	94	3.148		
5	200	5262	96	7.596		15	94	8.670		
6	250	7629	94	14.668		1234	100	14.692		
7	300	12776	96	9.258		7778	100	11.914		
8	400	15915	82	63.501		12	92	87.752		
9	500	22014	96	86.519		3962	100	89.681		
10	700	36260	84	732.249		32	88	827.714		

V. Conclusions

In this paper, we proposed a bidirectional local search algorithm to find an egalitarian or sex-equal stable matching of SM instances by using the Gale-Shapley algorithm [1], the breakmarriage operation [12], and a random walk. By using the breakmarriage operation to find stable neighbor matchings of the current stable matching, the forward local search finds the solutions while moving towards the woman-optimal stable matching and the backward local search finds the solutions while moving towards the man-optimal stable matching. The proposed algorithm interleaves iterations of the forward search and backwards search until their search frontiers meet. When the algorithm ends, the solution is the best solution of solutions found by the forward search and backwards search. The simulations show that the proposed algorithm is efficient in terms
of computational time and solution quality for SM problem. In the future, we plan to extend the proposed approach to a wide range of matching problems such as the Stable Marriage with Ties and Incomplete lists or the Roommate problem.

Acknowledgment

The authors are grateful to the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2014R1A1A2057735), IITP (2015-(R0134-151033)).

References

[1] D. Gale and L. S. Shapley, "College admissions and the stability of marriage," The American Mathematical Monthly, vol. 9, no. 1, pp. 915, 1962.
[2] A. E. Roth, "The evolution of the labor market for medical interns and residents: A case study in game theory," Journal of Pilitical Economy, vol. 92, no. 6, pp. 991-1016, 1984.
[3] D. J. Abraham, R. W. Irving, and D. F. Manlove, "The studentproject allocation problem," in Proceedings of the 14th International Symposium, Kyoto, Japan, Dec. 2003, pp. 474-484.
[4] T. Fleiner, R. W. Irving, and D. F. Manlove, "Efficient algorithms for generalized stable marriage and roommates problems," Theoretical Computer Science, vol. 381, no. 1-3, pp. 162-176, 2007.
[5] R. W. Irving, "An efficient algorithm for the "stable roommates" problem," Journal of Algorithms, vol. 6, no. 1, pp. 577-595, 1985.
[6] M. Nakamura, K. Onaga, S. Kyan, and M. Silva, "Genetic algorithm for sex-fair stable marriage problem," in Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on, vol. 1, Seattle, WA, Apr. 1995, pp. 509-512.
[7] D. Gusfield and R. W. Irving, The stable marriage problem: structure and algorithms. MIT Press Cambridge, 1989.
[8] N. A. Vien, N. H. Viet, H. Kim, S. Lee, and T. Chung, "Ant colony based algorithm for stable marriage problem," in Advances and Innovations in Systems, Computing Sciences and Software Engineering, vol. 1, 2007, pp. 457-461.
[9] K. Iwama, S. Miyazaki, and H. Yanagisawa, "Approximation algorithms for the sex-equal stable marriage problem," ACM Transactions on Algorithms, vol. 7, no. 1, pp. 2:1-2:17, 2010.
[10] R. W. Irving and P. Leather, "The complexity of counting stable marriages," SIAM Journal on Computing, vol. 15, no. 3, pp. 655-667, 1986.
[11] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, "Local search approaches in stable matching problems," Algorithms, vol. 6, no. 1, pp. 591-617, 2013.
[12] D. G. McVitie and L. B. Wilson, "The stable marriage problem," Communication of ACM, vol. 14, no. 7, pp. 486-490, 1971.
[13] D. Gusfield, "Three fast algorithms for four problems in stable marriage," SIAM Journal on Computing, vol. 16, no. 1, pp. 111-128, 1987.
[14] S. Russel and P. Norvig, Artificial Intelligence A Modern Approach. Pearson Education, 3nd Ed., 2010.
[15] H. H. Viet, L. H. Trang, S. G. Lee, and T. C. Chung, "An empirical local search for the stable marriage problem," in Proceedings of the 14th Pacific Rim International Conference on Artificial Intelligence PRICAI 2016: Trends in Artificial Intelligence, Phuket, Thailand, Aug. 2016, pp. 556-564.

