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ABSTRACT 
We propose a method, called QSQN-WF, for evaluating queries 
to Datalog¬ databases under the well-founded semantics. It is 
the first one that is set-at-a-time and strictly goal-directed w.r.t. 
SLS-resolution defined by Przymusinski. These properties are 
important for reducing accesses to the secondary storage and 
redundant computations. The first property distinguishes our 
method from the one based on SLG-resolution by Chen, Swift, 
and Warren (1995) (which is tuple-at-a-time). The second 
property distinguishes our method from the ones based on 
the magic-sets transformation by Kemp, Srivastava, and Stuckey 
(1995) and Morishita (1996), which use magic atoms not in the 
most appropriate way and are not strictly goal-directed w.r.t. 
SLS-resolution. Our method follows SLS-resolution, with Van 
Gelder’s alternating fixpoint semantics on the background, but 
uses a query-subquery net to implement tabulation and the set- 
at-a-time technique, reduce redundant computations, and allow 
any control strategy within each iteration of the main loop. It is 
sound and complete w.r.t. the well-founded semantics and has 
PTIME data complexity. 
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Introduction 

Datalog¬ is an important query language, as it expresses the class of all PTIME 
queries on ordered databases (see, e.g., Abiteboul, Hull, and Vianu 1995) 
when used either with the noninflationary semantics or the well-founded 
semantics. The well-founded semantics is a better choice for Datalog¬, as it 
always gives a unique intended model for a Datalog¬ database and coincides 
with the standard semantics for stratified deductive databases. 

Datalog¬ programs are normal logic programs without function symbols 
and are usually assumed to be safe in the sense that every variable occurring 
in the head or a negative literal in the body of a program clause also occurs in 
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a positive literal in its body. The well-founded semantics was originally intro-
duced in (Gelder, Ross, and Schlipf 1991) for normal logic programs. In 
(Gelder 1993), the author characterized the well-founded semantics by the 
alternating fixpoint. As calculi for normal logic programs that are sound 
and complete w.r.t. the well-founded semantics, there are SLS-resolution 
(Przymusinski 1989), global SLS-resolution (Ross 1992), SLG-resolution 
(Chen, Swift, and Warren 1995), and SLDFA-resolution (Drabent 1995). 
Among these calculi, SLS-resolution is most closely related to the alternating 
fixpoint characterization. 

For the implementation issue of query evaluation for normal logic programs 
under the well-founded semantics, Chen, Swift, and Warren (1995) presented 
efficient techniques for implementing SLG-resolution, which maintain positive 
and negative dependencies among subgoals in a top-down evaluation. The 
method proposed by Chen, Swift, and Warren (1995), however, is tuple-at-a- 
time but not set-at-a-time and thus not suitable for evaluating queries to 
Datalog¬ databases. It relies on detecting positive and negative loops, delaying 
subgoals when possible loops occur, checking completion of subgoals and 
resuming their activeness when possible. It follows depth-first computation 
and maintains a stack of subgoals as in Prolog. All of these techniques are 
tuple-oriented and it is hard to convert the method to a set-oriented one. 

Some authors (Kemp, Srivastava, and Stuckey 1995; Morishita 1996) 
proposed bottom-up evaluation methods for Datalog¬ under the well-founded 
semantics. Their methods are based on the magic-sets transformation and 
Van Gelder’s alternating fixpoint characterization. As discussed below, they 
have certain drawbacks. 

The magic-sets transformation (Beeri and Ramakrishnan 1991) is a tabulation 
technique originally formulated for Datalog (without negation). It simulates the 
top-down QSQR (query-subquery recursive) evaluation (Vieille 1989) by rewrit-
ing the considered program together with the given query to another equivalent 
one that can then be evaluated using a bottom-up technique (e.g., the improved 
semi-naive evaluation). The magic-sets transformation is usually formulated 
using adornments. It simulates SLD-resolution (defined for positive logic 
programs) in pushing constants from goals to subgoals. A strict simulation of 
SLD-resolution is obtained only when the magic-sets technique is used together 
with annotations for pushing variable repeats from goals to subgoals (see, e.g., 
Abiteboul, Hull, and Vianu 1995). Also note that magic relations consist of 
tuples of constants and are less general than “input” relations, which consist 
of tuples of terms possibly with variables. Thus, the corresponding subsumption 
is not checked, which may lead to redundant computations and waste of 
memory. 

The evaluation methods proposed for Datalog¬ under the well-founded 
semantics (Kemp, Srivastava, and Stuckey 1995; Morishita 1996) use the 
magic-sets transformation with adornments but without annotations. The 
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method by Kemp, Srivastava, and Stuckey (1995) applies the alternating 
fixpoint computation for the transformed program in a differential way for 
truth facts. The method by Morishita (1996) uses a modified version of the 
alternating fixpoint computation, where the sequence of underestimates does 
not always increase. Both of the methods have the drawback that they use 
magic atoms not in the most appropriate way. Namely, magic atoms for 
deriving failures are used also for deriving successes, and conversely, magic 
atoms originated from the seed for deriving successes are used also for deriv-
ing failures. Thus, the mentioned methods are not strictly goal-directed w.r.t. 
SLS-resolution. 

Query processing for Datalog¬ under the well-founded semantics is an 
important topic due to practical applications. As discussed above, the 
previously known evaluation methods for that have certain drawbacks and 
it is worth doing further research on the topic. 

In this article, we extend query-subquery nets to formulate a method, called 
QSQN-WF, for evaluating queries to Datalog¬ databases under the well- 
founded semantics. Query-subquery nets were introduced by Nguyen and 
Cao (2012). Using such nets they proposed a method, called QSQN, for eval-
uating queries to Horn knowledge bases. The method is goal-directed, set-at- 
a-time, and has been designed so that the query processing is divided into 
appropriate steps which can be delayed to maximize adjustability, allow vari-
ous control strategies, and reduce the redundant recomputation as much as 
possible. Cao and Nguyen (2015) developed the QSQN-TRE evaluation 
method as an extension of QSQN with tail-recursion elimination. Cao 
(2015) also extended QSQN to obtain the QSQN-STR method for 
evaluating queries to stratified knowledge bases. We refer the reader to 
(Cao 2016a) for further details on the mentioned methods. 

Our method QSQN-WF provided in this article is the first evaluation 
method for Datalog¬ databases under the well-founded semantics that is 
set-at-a-time and strictly goal-directed w.r.t. SLS-resolution. These properties 
are important for reducing accesses to the secondary storage and redundant 
computations. Our method follows SLS-resolution, with Van Gelder’s alter-
nating fixpoint semantics on the background, but uses a query-subquery 
net to implement tabulation and the set-at-a-time technique, reduce redun-
dant computations, and allow any control strategy within each iteration of 
the main loop. It is sound and complete w.r.t. the well-founded semantics 
and has PTIME data complexity. 

The rest of this article is structured as follows. The next section recalls the 
most important concepts and definitions that are related to our work.  After 
that, we present our QSQN-WF evaluation method. We then provide proofs of 
soundness, completeness, and PTIME data complexity of the method. Conclu-
sions and a plan for future work are presented at the end. In addition, the related 
functions and procedures used for QSQN-WF are presented in the appendix. 
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Preliminaries 

We assume that the reader is familiar with the basic notions of first-order 
logic such as substitution, unification, positive logic program, goal, Horn 
knowledge bases, stratified negation, and related ones. In this section, we recall 
only the most important definitions and notions that are needed for our work 
and refer the reader to other works (Lloyd 1987; Abiteboul, Hull, and Vianu 
1995; Madalinska-Bugaj and Nguyen 2012) for further reading. 

A term is either a constant or a variable. An atom is an expression of the 
form p(t1, … , tn), where n ≥ 0, p is an n-ary predicate and each ti is a term. 
If an atom contains no variables, it is called a ground atom. A literal is either 
an atom (called a positive literal) or the negation of an atom (called a negative 
literal). Each predicate is classified either as intensional or as extensional. An 
expression is either a term, a tuple of terms, or a formula (or a list of formulas) 
without quantifiers. A simple expression is either a term or an atom. 

A substitution is a finite set θ ¼ {x1/t1, … , xk/tk}, where x1, … , xk are pair-
wise distinct variables, t1, … , tk are terms, and ti ≠ xi for all 1 � i � k. The set 
dom(θ) ¼ {x1, … , xk} is called the domain of θ. The set range(θ) ¼ {t1, … , tk} 
is called the range of θ. The empty substitution is denoted by ε. The restriction 
of a substitution θ to a set X of variables is the substitution θ|X ¼ {(x/t) ∈ θ | 
x ∈ X}. 

Let E be an expression and θ ¼ {x1/t1, … , xk/tk} be a substitution. The 
instance of E by θ, denoted by Eθ, is the expression obtained from E by 
simultaneously replacing all occurrences of the variable xi in E by the term 
ti, for all 1 � i � k. 

Let θ ¼ {x1/t1, … , xk/tk} and δ ¼ {y1/s1, … , yh/sh} be substitutions (where 
x1, … , xk are pairwise distinct variables, and y1, … , yh are also pairwise dis-
tinct variables). The composition of θ and δ, denoted by θδ, is the substitution 
obtained from the sequence {x1/(t1δ), … , xk/(tkδ), y1/s1, … , yh/sh} by deleting 
any binding xi/(tiδ) for which xi ¼ (tiδ) and deleting any binding yj/sj for 
which yj ∈ {x1, … , xk}. 

A substitution θ ¼ {x1/t1, … , xk/tk} is idempotent if none of x1, … , xk 
occurs in any t1, … , tk, which means θθ ¼ θ. If θ and δ are substitutions such 
that θδ ¼ δθ ¼ ε, then we call them renaming substitutions. An expression E is 
a variant of an expression E0 if there exist substitutions θ and γ such that 
E ¼ E0θ and E0 ¼ Eγ. 

A substitution θ is more general than a substitution δ if δ ¼ θc for some 
substitution γ. Let Γ be a set of simple expressions. A substitution θ is called 
a unifier for Γ if Γθ is a singleton. A unifier θ for Γ is called a most general 
unifier (mgu) for Γ if θ is more general than every unifier of Γ. 

We denote the set of variables occurring in E by Vars(E), where E is an 
expression or a substitution. A fresh variant of a formula φ, where φ can be 
an atom, a goal, or a program clause, is a formula φθ, where θ is a renaming 
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substitution such that dom(θ) ¼ Vars(φ) and range(θ) consists of variables 
that were not used in the computation. 

Datalog¬ 

In this subsection, we recall the Datalog¬ language and related notions. 

Definition 1 (Safe Datalog¬ Program) 
A safe Datalog¬ program clause (w.r.t. the leftmost selection function) is an 
expression of the form A ← B1, … , Bk with k ≥ 0, such that: 
– A is an atom and each Bi is a literal, where negation is denoted by ∼ instead 

of ¬, 
– every variable occurring in A also occurs in (B1, … , Bk), 
– every variable occurring in a negative literal Bj also occurs in some positive 

literal Bi with i < j. 
The atom A is called the head and (B1, … , Bk) the body of the program 

clause. A safe Datalog¬ program (w.r.t. the leftmost selection function) is a 
finite set of safe Datalog¬ program clauses. 

A safe Datalog¬ program without negative literals in the clauses’ bodies is 
called a safe Datalog program. From now on, by a Datalog¬ (resp. Datalog) 
program we mean a safe Datalog¬ (resp. Datalog) program. 

Definition 2 (Extensional Instance) 
An instance of extensional predicates is a mapping I that associates each 
extensional n-ary predicate p to a finite set I(p) of n-ary tuples of constants. 
Sometimes, I is treated as the set {p(�t) | �t ∈ I(p)}. The size of I is defined to 
be the cardinality of this set. 

Definition 3 (Datalog¬ Database) 
A Datalog¬ database is defined to be a pair (P, I), where P is a Datalog¬ pro-
gram for defining intensional predicates and I is an instance of extensional 
predicates. 

In what follows, let (P, I) be a Datalog¬ database. 

Definition 4 (Herbrand Base and Herbrand Interpretation)  
– The Herbrand universe of (P, I), denoted by UP,I, is the set of all constants 

occurring in (P, I). 
– The Herbrand base of (P, I), denoted by BP,I, is the set of all ground atoms of 

the form p(t1, … , tn), where p is a predicate used in (P, I) and each ti 
belongs to UP,I. 

– A Herbrand interpretation for (P, I) is a subset of BP,I. 
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Let M be a Herbrand interpretation. If p(�t) is a ground atom, then  

Mðpð�tÞÞ �
def

pð�tÞ 2 M;

Mð�pð�tÞÞ �
def

pð�tÞ =2 M:

Definition 5 (Immediate Consequence Operator) 
Let ground (P ∪ I) be the set of all ground instances of clauses in P ∪ I and M a 
Herbrand interpretation for (P, I). The immediate consequence operator of 
(P, I), denoted by TP,I, is defined on M as follows:  

TP;I Mð Þ ¼ fA j A  B1; . . . ;Bk 2 ground ðP [ IÞ and
M Bið Þ holds for all 1 � i � kg:

Let TP,I ↑ ω be defined as follows:  

TP;I "0 ¼ I;

TP;I " nþ 1ð Þ ¼ TP;IðTP;I "nÞ [ TP;I "n; for n 2 N   

TP;I "x ¼
[x

n¼0
TP;I "n:

The Well-Founded Semantics of Datalog¬ 

Let (P, I) be a Datalog¬ database. Let J be a Herbrand interpretation such that 
I ⊆ J and J \ I consists of only atoms of intensional predicates. The positivized 
ground version of P given J, denoted by pg(P, J), is the smallest set of ground 
Datalog program clauses such that: if φ ¼ (A ← B1, … , Bn) is a ground instance 
of a program clause from P that uses only constants occurring in P or J, and Ci 
∉ J for all 1 � i � n such that Bi ¼ ∼Ci is a negative literal, then the clause 
obtained from φ by deleting all negative literals in its body belongs to pg(P, J). 

We define  

conseqP;I Jð Þ ¼ TpgðP;JÞ " x   

I0 ¼ conseqP;I BP;I
� �

Inþ1 ¼ conseqP;I Inð Þ for n � 0:

Observe that the operator conseqP,I is antimonotonic (w.r.t. ⊆). Hence 

I0 � I2 � I4 � . . . � I5 � I3 � I1: ð1Þ
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Let  

I� ¼
[

i � 0
I2i and I� ¼

\

i � 0
I2iþ1:

The well-founded model of (P, I) is the three-valued Herbrand 
interpretation  

I�� ¼ I� [ f�A j A =2 I�g

We will denote In, I*, I*, I�� also by conseqn(P, I), conseq*(P, I), conseq�(P, I), 
WF(P, I), respectively. 

A query to a Datalog¬ database (P, I) is a formula of the form q(�t), where q 
is an intensional predicate and �t is a tuple of terms. An answer for a query q(�t) 
to a Datalog¬ database (P, I) w.r.t. the well-founded semantics is a ground 
instance �t0 of �t such that q(�t0) ∈ WF(P, I). Without loss of generality, we will 
consider only queries of the form q(�x), where �x is a tuple of pairwise distinct 
variables. The reason is that, if q(�t) is a query, �x is the tuple of all pairwise 
distinct variables in �t, p is a fresh intensional predicate of the same arity of 
�x and θ is a substitution, then �tθ is an answer for the query q(�t) to (P, I) 
w.r.t. the well-founded semantics if �xθ is an answer for the query p(�x) to 
(P0, I) w.r.t. the well-founded semantics, where P0 ¼ P ∪ {p(�x) ← q(�t)}. 

Query-Subquery Nets for Datalog¬ 

Query-subquery nets (QSQN) and the QSQN evaluation method were defined 
previously (Nguyen and Cao 2012) for evaluating queries to a Horn knowl-
edge base. They were extended to QSQN-STR by Cao (2015) for dealing with 
stratified knowledge bases. In this section, we make a further extension for 
dealing with Datalog¬ under the well-founded semantics. 

Let P be a Datalog¬ program and φ1, … , φm be all the program clauses of P, 
with φi ¼ (Ai ← Bi,1, … , Bi,ni) for 1 � i �m. 

Definition 6 (QSQN-WF Structure) 

A query-subquery net structure of a Datalog¬ program P, denoted by QSQN- 
WF structure, is a tuple (V, E, T), where V is a set of nodes, E is a set of edges, 
and T is a function called the memorizing type of the net structure. In 
particular, 
– V consists of the following nodes: 

.� input_p and ans_p, for each intensional predicate p of P, 

.� pre_filteri, filteri,1, … , filteri,ni, post_filteri, for each 1 � i �m. 
– E consists of the following edges: 

.� (filteri,1, filteri,2), … , (filteri,ni − 1, filteri,ni), for each 1 � i �m, 
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.� (input_p, pre_filteri) and (post_filteri, ans_p), for each 1 � i �m, where 
p is the predicate of Ai, 

.� (pre_filteri, filteri,1) and (filteri,ni, post_filteri), for each 1 � i �m such 
that ni ≥ 1, 

.� (pre_filteri, post_filteri), for each 1 � i �m such that ni ¼ 0, 

.� (filteri,j, input_p), for each intensional predicate p, 1 � i �m and 
1 � j � ni such that Bi,j is an atom of p, 

.� (ans_p, filteri,j), for each intensional predicate p, 1 � i �m and 1 � j �
ni such that Bi,j is an atom of p and Bi,j is a positive literal. 

– T maps each filteri,j ∈ V such that the predicate of Bi,j is extensional to true 
or false (As can be seen later, the aim of T is that if T(filteri,j) ¼ false then 
subqueries for filteri,j are always processed immediately without being accu-
mulated at filteri,j). 
If (v, w) ∈ E then we call w a successor of v. Note that V and E are uniquely 

specified by P. The pair (V, E) is called the QSQN-WF topological structure of P. 
If P is a stratified Datalog¬ program, then a QSQN-WF structure of P is also 

a QSQN-STR structure of P. 

Example 1. Consider the following Datalog¬ program P (Gelder, Ross, and 
Schlipf 1991; Abiteboul, Hull, and Vianu 1995), where win is an intensional 
predicate, moves is an extensional predicate, and x, y are variables:  

win xð Þ  moves x; yð Þ; �win yð Þ:

Figure 1 illustrates the QSQN-WF topological structure of this program. 
Example 2. This example was given in (Ramamohanarao and Harland 
1994). It uses the following Datalog¬ program P:  

path x; yð Þ  edge x; yð Þ

path x; yð Þ  edge x; zð Þ; path z; yð Þ

acyclic x; yð Þ  path x; yð Þ;�path y; xð Þ

where path and acyclic are intensional predicates, edge is an extensional 
predicate and x, y, z are variables. The QSQN-WF topological structure of 
the program P is illustrated in Figure 2.  

Figure 1. The QSQN-WF topological structure of the program given in Example 1.  
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Definition 7 (QSQN-WF) 
A query-subquery net of a Datalog¬ program P (under the well-founded 
semantics), denoted by QSQN-WF, is a tuple N ¼ (V, E, T, C) such that 
(V, E, T) is a QSQN-WF structure of P, and C is a mapping that associates each 
node v ∈ V with a structure called the contents of v with the following properties: 
– If v ∈ {input_p, ans_p} then C(v) consists of: 

.� tuples(v): a set of pairs (k, �t), where k ∈ ℕ and �t is a tuple of terms with 
the same arity as p, 

.� unprocessed(v, w) for each (v, w) ∈ E: a subset of tuples(v). 
– If v ¼ pre_filteri then C(v) consists of: 

.� atom(v) ¼ Ai, 

.� post_vars(v) ¼ Vars((Bi,1, … , Bi,ni)), 

.� pos_clause(v) ¼ true if all Bi,1, … , Bi,ni are positive literals, and 
pos_clause(v) ¼ false otherwise. 

– If v ¼ post_filteri then C(v) is empty, but we assume pre_vars(v) ¼ ø, 
– If v ¼ filteri,j and p is the predicate of Bi,j then C(v) consists of: 

.� neg(v) ¼ true if Bi,j is a negative atom, and neg(v) ¼ false otherwise, 

.� kind(v) ¼ extensional if p is extensional, and kind(v) ¼ intensional 
otherwise, 

.� pred(v) ¼ p (called the predicate of v) , 

.� atom(v) ¼ Bi,j if Bi,j is a positive literal, and atom(v) ¼ B0 if Bi,j ¼∼B0, 

.� pre_vars(v) ¼ Vars((Bi,j, … , Bi,ni)) and post_vars(v) ¼ Vars((Bi,j þ 1, … , 
Bi,ni)), 

.� subqueries(v): a set of tuples of the form (k, �t, δ), where k ∈ ℕ, �t is a 
tuple of terms with the same arity as the predicate of Ai, and δ is 
an idempotent substitution such that dom(δ) ⊆ pre_vars(v) and 
dom(δ)∩Vars(�t) ¼ ø, 

.� unprocessed_subqueries(v) ⊆ subqueries(v), 

Figure 2. The QSQN-WF topological structure of the program given in Example 2.  
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.� in the case p is intensional: 
* unprocessed_subqueries2(v) ⊆ subqueries(v), 

.� in the case p is intensional and neg(v) ¼ false: 
* unprocessed_tuples(v): a set of pairs (k, �t), where k ∈ ℕ and �t is a tuple 

of terms with the same arity as p. 
– If v ¼ filteri,j, kind(v) ¼ extensional and T(v) ¼ false, then subqueries(v) and 

unprocessed_subqueries(v) are empty (and we can ignore them). 
Observe that, for each (v, w) ∈ E: 

– if v is either pre_filteri or post_filteri or filteri,j with kind(v) ¼ extensional, 
then v has exactly one successor, denoted by succ(v); 

– if v is filteri,j with kind(v) ¼ intensional and pred(v) ¼ p, then v has exactly 
two successors: succ(v) ¼ filteri,j þ 1 if ni > j; succ(v) ¼ post_filteri otherwise; 
and succ2(v) ¼ input_p.  

Example 3. Figure 3 illustrates a QSQN-WF of the program P given in 
Example 1.  

A QSQN-WF of P is empty if all the sets of the form tuples(v), unprocessed 
(v, w), subqueries(v), unprocessed_subqueries(v), unprocessed_subqueries2(v), 
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and unprocessed_tuples(v) are empty. Assume that (P, I) is the considered 
Datalog¬ database. An index k ∈ ℕ in tuples from those sets are related to 
the computation of Ik ¼ conseqk(P, I). QSQN-WF differs from QSQN-STR 
(Cao 2015) by having those indices and the attribute pos_clause(v) for 
v ¼ pre_filteri. We denote 

tuples(v, k) ¼ {�t | (k, �t) ∈ tuples(v)} 
all_inputs(k) ¼

S
{p(�t) | p is an intensional predicate and �t ∈ tuples(input_p, k)}. 

Because of (1), for a natural number k, we also define: 
all_tuples(ans_p, 2k) ¼

S k
h ¼ 0 tuples(ans_p, 2h) 

all_tuples(ans_p, 2k þ 1) ¼ all_tuples(ans_p, 2k) ∪ tuples(ans_p, 2k þ 1) 
all_answers(k) ¼

S
{p(�t) | p is an intensional predicate and �t ∈ tuples(ans_p, k)}. 

Let �t and �t0 be tuples of terms. We say that �t is more general than �t0, and �t0 is 
an instance of �t, if there exists a substitution θ such that �tθ ¼�t0. We say that a 
pair (k, �t) is more general than (k0, �t0), and (k0, �t0) is less general than (k, �t), if 
k ¼ k0 and �t0 is an instance of �t. 

A subquery is a tuple of the form (k, �t, δ), where k ∈ ℕ, �t is a tuple of terms, 
and δ is an idempotent substitution such that dom(δ) ∩ Vars(�t) ¼ ø. The set 
unprocessed_subqueries2(v) (resp. unprocessed_subqueries(v)) contains the 
subqueries that were not transferred through the edge (v, succ2(v)) (resp. (v, 
succ(v))). We say that (k, �t, δ) is more general than (k0, �t0, δ0) w.r.t. v, and 
(k0, �t0, δ0) is less general than (k, �t, δ) w.r.t. v, if k ¼ k0 and there exists a 
substitution θ such that �tθ ¼�t0 and (δθ)|pre_vars(v) ¼ δ0. 

A QSQN-WF is said to be stable at level k if it does not contain any pair 
(k, �t) in any set of the form unprocessed(v, w) or unprocessed_tuples(v), and 
any tuple (k, �t, δ) in any set of the form unprocessed_subqueries(v) or 
unprocessed_subqueries2(v). 

Algorithm 1 presents our method for evaluating a Datalog¬ query under the 
well-founded semantics. It is based on SLS-resolution (Przymusinski 1989) and 

Figure 3. The QSQN-WF of the program given in Example 1.  
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the alternating fixpoint characterization (Gelder 1993). During each iteration of 
the main loop, which is used to reach the alternating fixpoint, the algorithm selects 
an active edge and fires the operation for the edge. The function active-edge(u, v) 
in the appendix returns true if some data accumulated in u can be processed to 
produce data to transfer through the edge (u, v). If the function active-edge(u, 
v) returns true then the procedure fire(u, v) in the appendix processes the data 
accumulated in u that has not been processed before and transfers appropriate 
data through the edge (u, v). The procedure fire uses the procedures add-tuple, 
add-subquery and transfer in the appendix. The procedure transfer(D, u, v) 
specifies the effects of transferring data D through the edge (u, v) of a QSQN-WF. 

Due to the lack of space, a trace of running Algorithm 1 step by step on an exam-
ple query together with an intuitive presentation is provided online (Cao 2016b). 

Data Complexity, Soundness, and Completeness 

The data complexity of an algorithm that evaluates a query q(�x) to a deductive 
database (P, I) is measured in the size of the extensional instance I, while 
assuming that the used predicates, the program P and the query q(�x), are fixed. 

Lemma 1. Algorithm 1 terminates and has PTIME data complexity.  

Proof. (Sketch). Let m be the size of I. Observe that |BP,I| � f(m) for some 
polynomial f. During the run of Algorithm 1, all_answers(h) ⊆ BP,I and thus 
|all_answers(h)| � f(m). As relations tuples(input_p) keep only fresh variants 
of the most general pairs, we also have that |all_inputs(h)| � g(m) for some 
polynomial g. Each iteration except the last one of the “repeat” loop extends 
either all_answers(h) or all_inputs(h), where all_answers(h) is accumulative 
when h increases. Hence, the loop repeats no more than f(m) × g(m) times. 
Observe that each iteration of that loop is executed in polynomial time in 
m. Therefore, Algorithm 1 terminates and has PTIME data complexity.  

Lemma 2. Let (P, I) be a Datalog¬ database. During the run of Algorithm 1 
for (P, I) and a query, for every intensional predicate p of P, every tuples �t, �t0
and every natural number k: 
1. if p(�t) ∈ all_answers(k), then p(�t) ∈ conseqk(P, I), 
2. if p(�t) ∈ all_inputs(k), the net N is stable at the level k, p(�t0) ∈ conseqk(P, I) 

and �t0 is an instance of �t, then p(�t0) ∈ all_answers(k).  

The first assertion of the above lemma states soundness of Algorithm 1, 
while the second one states conditional completeness of Algorithm 1. This 
lemma can be proved in a similar way as done for Lemma 5.1 in (Cao 2016a). 

Lemma 3. Let h0 and n0 be the values of h and n, respectively, when 
Algorithm 1 terminates. Then: 
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1. 0 � h0 � n0 − 2, all_answers(h0) ¼ all_answers(n0), all_answers(h0), and 
all_inputs(h0) were not changed during the last iteration of the “repeat” loop, 

2. for every intensional predicate p, every �t ∈ tuples(input_p, h0) is an instance 
of a tuple from tuples(input_p, h0 þ 2).  

Proof. The first assertion clearly holds. Consider the second assertion. Sup-
pose that �t ∈ tuples(input_p, h0) and (h0, �t) was added to tuples(input_p) due 
to the processing of a pair (k, �x0) in tuples(input_q) with an even k ≥ h0. Since 
all_inputs(h0) was not changed during the last iteration of the “repeat” loop, 
k � n0−2. There exists (k þ 2, �x00) ∈ tuples(input_q), where �x00 is a tuple of 
pairwise distinct variables. The processing of (k þ 2, �x00) in tuples(input_q) 
was similar to the processing of (k, �x0) in tuples(input_q) and caused addition 
of (h0 þ 2, �t0) to tuples(input_p) for some tuple �t0 more general than �t. The 
reason is that at any moment after the hth

0 iteration of the “repeat” loop, for 
any even number l between h0 and n0 − 2, all_answers(l) ¼ all_answers(h0) 
and conseqP,I(all_answers(l) ∪ I) ¼ conseqP,I(all_answers(h0) ∪ I).  

Lemma 4. If the “repeat” loop of Algorithm 1 is allowed to run forever by 
deleting the steps 14 and 15, then no further pair (k, �t) with an even k will 
be added to any relation of the form tuples(ans_p).  

Proof. (Sketch). Let h0 and n0 be the values of h and n, respectively, when 
Algorithm 1 terminates. We have that h0 þ 2 � n0. Now, assume that the loop 
is allowed to run forever by deleting the steps 14 and 15. We first show that: 

for any pair ðk;�tÞ in any relation tuples input pð Þ with an even
k > h0 þ 2; there exists ðh0 þ 2; �t0Þ 2 tuples input pð Þ such that
�t is an instance of �t0 and ðh0 þ 2; �t0Þ was added to tuples input pð Þ

no later than the nth
0 iteration of the ‘‘repeat’’ loop:

ð2Þ

We prove this by induction on the moment when (k, �t) is added to tuples 
(input_p). The case when that addition occurs at the step 7 of Algorithm 1 is 
clear. Consider the case when that addition occurs at the step 16 of the 
procedure transfer. It must originate from the processing of a pair (k þ 2, �s) 
from tuples(input_p). By the inductive assumption of (2), there exists a pair (h0  
þ 2, �s0) ∈ tuples(input_p) such that �s is an instance of �s0 and (h0 þ 2, �s0) was added 
to tuples(input_p) no later than the nth

0 iteration of the “repeat” loop. The 
processing of (h0 þ 2, �s0) in tuples(input_p) must have added a pair (h0, �t00) to 
tuples(input_p) for some �t00 more general than �t. The reason is that 
all_answers(h0) ¼ all_answers(k) and conseqP,I(all_answers(h0) ∪ I) ¼
conseqP,I(all_answers(k) ∪ I). By the second assertion of Lemma 3, at the 
end of the nth

0 iteration of the “repeat” loop, there exists (h0 þ 2, �t0) ∈ 
tuples(input_p) such that �t00 is an instance of �t0. Clearly, �t is an instance of �t0. 
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Since Algorithm 1 keeps in relations tuples(input_p) only the most general 
pairs, as a consequence of (2), we have that: 

for any k � h0 þ 2; all inputs kð Þ and all answers kð Þ

do not change after the nth
0 iteration of the ‘‘repeat’’ loop:

ð3Þ

Now, let us consider the assertion of the lemma. By (2), the processing of any 
pair (k0, �t0) in tuples(input_p) with an even k0 > h0 þ 2 is subsumed by the pro-
cessing of a pair (h0 þ 2, �t00) in tuples(input_p) with �t00 being more general than 
�t0. Any candidate pair (k, �t) that would be added to tuples(ans_p) by the former 
has earlier been added to tuples(ans_p) by the latter. Once again, the reason is 
that all_answers(h0) ¼ all_answers(k0 − 2) and conseqP,I(all_answers(h0) ∪ I) ¼
conseqP,I(all_answers(k0 − 2) ∪ I). By the first assertion of Lemma 3, subqueries 
of the form (h0 þ 2, �t00) in tuples(input_p) do not cause addition of any pair (k, 
�t) with an even k to tuples(ans_p) during the nth

0 iteration of the “repeat” loop. 
By (3), it follows that no pair (k, �t) with an even k will be added to any relation 
of the form tuples(ans_p) after the nth

0 iteration of the “repeat” loop. 

Theorem 1. Algorithm 1 is correct and has PTIME data complexity.  

Proof. By Lemma 1, Algorithm 1 has PTIME data complexity. As the sound-
ness, by the assertion 1 of Lemma 2, for every tuple �t returned by Algorithm 1, 
q(�t) ∈ WF(P, I). For the completeness, let q(�t) ∈ WF(P, I), i.e., q(�t) ∈ conseqk(P, 
I) for some even number k. We show that �t ∈ all_tuples(ans_q, k). By Lemma 
4, without loss of generality, we assume that the “repeat” loop is allowed to 
run forever by deleting the steps 14 and 15. Then, since (k, �x0) ∈ tuples 
(input_q) and the net N is stable at the level k after the kth iteration of that 
“repeat” loop and �t is an instance of �x0, by the assertion 2 of Lemma 2, �t ∈ 
all_tuples(ans_q, k). This completes the proof.  

Conclusions 

We have developed the QSQN-WF method as the first one for evaluating 
queries to Datalog¬ databases under the well-founded semantics that is 
set-at-a-time and strictly goal-directed w.r.t. SLS-resolution. These properties 
are important for reducing accesses to the secondary storage and redundant 
computations. Our method follows SLS-resolution, with Van Gelder’s alternat-
ing fixpoint semantics on the background, but uses a query-subquery net to 
implement tabulation and the set-at-a-time technique, reduce redundant com-
putations, and allow any control strategy within each iteration of the main 
loop. We have proved that the QSQN-WF method is sound and complete w. 
r.t. the well-founded semantics and has PTIME data complexity. As future 
work, we intend to develop an appropriate control strategy for QSQN-WF, 
implement the method, and compare it empirically with the other ones. 
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Another area of interest for the application of the proposed method is in work-
ing with large datasets (Tachmazidis, Antoniou, and Faber 2014; Vossen 2014). 
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Appendix A 

Functions and Procedures Used for Algorithm 1 

This appendix presents a list of all functions and procedures that are used for 
Algorithm 1. 
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