
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ucbs20

Download by: [123.17.109.28] Date: 02 March 2017, At: 18:43

Cybernetics and Systems
An International Journal

ISSN: 0196-9722 (Print) 1087-6553 (Online) Journal homepage: http://www.tandfonline.com/loi/ucbs20

Extending Query-Subquery Nets for Deductive
Databases under the Well-Founded Semantics

Son Thanh Cao, Linh Anh Nguyen & Ngoc Thanh Nguyen

To cite this article: Son Thanh Cao, Linh Anh Nguyen & Ngoc Thanh Nguyen (2017) Extending
Query-Subquery Nets for Deductive Databases under the Well-Founded Semantics, Cybernetics
and Systems, 48:3, 249-266

To link to this article: http://dx.doi.org/10.1080/01969722.2016.1276777

Published online: 02 Mar 2017.

Submit your article to this journal

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=ucbs20
http://www.tandfonline.com/loi/ucbs20
http://dx.doi.org/10.1080/01969722.2016.1276777
http://www.tandfonline.com/action/authorSubmission?journalCode=ucbs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ucbs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/01969722.2016.1276777
http://www.tandfonline.com/doi/mlt/10.1080/01969722.2016.1276777
http://crossmark.crossref.org/dialog/?doi=10.1080/01969722.2016.1276777&domain=pdf&date_stamp=2017-03-02
http://crossmark.crossref.org/dialog/?doi=10.1080/01969722.2016.1276777&domain=pdf&date_stamp=2017-03-02

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL
2017, VOL. 48, NO. 3, 249–266
http://dx.doi.org/10.1080/01969722.2016.1276777

Extending Query-Subquery Nets for Deductive Databases
under the Well-Founded Semantics
Son Thanh Caoa, Linh Anh Nguyenb,c, and Ngoc Thanh Nguyend

aFaculty of Information Technology, Vinh University, Vinh, Nghe An, Vietnam; bDivision of Knowledge
and System Engineering for ICT, Faculty of Information Technology, Ton Duc Thang University, Ho Chi
Minh City, Vietnam; cInstitute of Informatics, University of Warsaw, Warsaw, Poland; dDepartment of
Information Systems, Faculty of Computer Science and Management, Wroclaw University of Science
and Technology, Wroclaw, Poland

ABSTRACT
We propose a method, called QSQN-WF, for evaluating queries
to Datalog¬ databases under the well-founded semantics. It is
the first one that is set-at-a-time and strictly goal-directed w.r.t.
SLS-resolution defined by Przymusinski. These properties are
important for reducing accesses to the secondary storage and
redundant computations. The first property distinguishes our
method from the one based on SLG-resolution by Chen, Swift,
and Warren (1995) (which is tuple-at-a-time). The second
property distinguishes our method from the ones based on
the magic-sets transformation by Kemp, Srivastava, and Stuckey
(1995) and Morishita (1996), which use magic atoms not in the
most appropriate way and are not strictly goal-directed w.r.t.
SLS-resolution. Our method follows SLS-resolution, with Van
Gelder’s alternating fixpoint semantics on the background, but
uses a query-subquery net to implement tabulation and the set-
at-a-time technique, reduce redundant computations, and allow
any control strategy within each iteration of the main loop. It is
sound and complete w.r.t. the well-founded semantics and has
PTIME data complexity.

KEYWORDS
Datalog with negation;
deductive databases; query
processing; query-subquery
nets; well-founded
semantics

Introduction

Datalog¬ is an important query language, as it expresses the class of all PTIME
queries on ordered databases (see, e.g., Abiteboul, Hull, and Vianu 1995)
when used either with the noninflationary semantics or the well-founded
semantics. The well-founded semantics is a better choice for Datalog¬, as it
always gives a unique intended model for a Datalog¬ database and coincides
with the standard semantics for stratified deductive databases.

Datalog¬ programs are normal logic programs without function symbols
and are usually assumed to be safe in the sense that every variable occurring
in the head or a negative literal in the body of a program clause also occurs in

CONTACT Linh Anh Nguyen nguyenanhlinh@tdt.edu.vn Division of Knowledge and System Engineering for
ICT, Faculty of Information Technology, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street, Tan Phong Ward,
District 7, Ho Chi Minh City, Vietnam.
© 2017 Taylor & Francis

http://dx.doi.org/10.1080/01969722.2016.1276777
mailto:nguyenanhlinh@tdt.edu.vn

a positive literal in its body. The well-founded semantics was originally intro-
duced in (Gelder, Ross, and Schlipf 1991) for normal logic programs. In
(Gelder 1993), the author characterized the well-founded semantics by the
alternating fixpoint. As calculi for normal logic programs that are sound
and complete w.r.t. the well-founded semantics, there are SLS-resolution
(Przymusinski 1989), global SLS-resolution (Ross 1992), SLG-resolution
(Chen, Swift, and Warren 1995), and SLDFA-resolution (Drabent 1995).
Among these calculi, SLS-resolution is most closely related to the alternating
fixpoint characterization.

For the implementation issue of query evaluation for normal logic programs
under the well-founded semantics, Chen, Swift, and Warren (1995) presented
efficient techniques for implementing SLG-resolution, which maintain positive
and negative dependencies among subgoals in a top-down evaluation. The
method proposed by Chen, Swift, and Warren (1995), however, is tuple-at-a-
time but not set-at-a-time and thus not suitable for evaluating queries to
Datalog¬ databases. It relies on detecting positive and negative loops, delaying
subgoals when possible loops occur, checking completion of subgoals and
resuming their activeness when possible. It follows depth-first computation
and maintains a stack of subgoals as in Prolog. All of these techniques are
tuple-oriented and it is hard to convert the method to a set-oriented one.

Some authors (Kemp, Srivastava, and Stuckey 1995; Morishita 1996)
proposed bottom-up evaluation methods for Datalog¬ under the well-founded
semantics. Their methods are based on the magic-sets transformation and
Van Gelder’s alternating fixpoint characterization. As discussed below, they
have certain drawbacks.

The magic-sets transformation (Beeri and Ramakrishnan 1991) is a tabulation
technique originally formulated for Datalog (without negation). It simulates the
top-down QSQR (query-subquery recursive) evaluation (Vieille 1989) by rewrit-
ing the considered program together with the given query to another equivalent
one that can then be evaluated using a bottom-up technique (e.g., the improved
semi-naive evaluation). The magic-sets transformation is usually formulated
using adornments. It simulates SLD-resolution (defined for positive logic
programs) in pushing constants from goals to subgoals. A strict simulation of
SLD-resolution is obtained only when the magic-sets technique is used together
with annotations for pushing variable repeats from goals to subgoals (see, e.g.,
Abiteboul, Hull, and Vianu 1995). Also note that magic relations consist of
tuples of constants and are less general than “input” relations, which consist
of tuples of terms possibly with variables. Thus, the corresponding subsumption
is not checked, which may lead to redundant computations and waste of
memory.

The evaluation methods proposed for Datalog¬ under the well-founded
semantics (Kemp, Srivastava, and Stuckey 1995; Morishita 1996) use the
magic-sets transformation with adornments but without annotations. The

250 S. T. CAO ET AL.

method by Kemp, Srivastava, and Stuckey (1995) applies the alternating
fixpoint computation for the transformed program in a differential way for
truth facts. The method by Morishita (1996) uses a modified version of the
alternating fixpoint computation, where the sequence of underestimates does
not always increase. Both of the methods have the drawback that they use
magic atoms not in the most appropriate way. Namely, magic atoms for
deriving failures are used also for deriving successes, and conversely, magic
atoms originated from the seed for deriving successes are used also for deriv-
ing failures. Thus, the mentioned methods are not strictly goal-directed w.r.t.
SLS-resolution.

Query processing for Datalog¬ under the well-founded semantics is an
important topic due to practical applications. As discussed above, the
previously known evaluation methods for that have certain drawbacks and
it is worth doing further research on the topic.

In this article, we extend query-subquery nets to formulate a method, called
QSQN-WF, for evaluating queries to Datalog¬ databases under the well-
founded semantics. Query-subquery nets were introduced by Nguyen and
Cao (2012). Using such nets they proposed a method, called QSQN, for eval-
uating queries to Horn knowledge bases. The method is goal-directed, set-at-
a-time, and has been designed so that the query processing is divided into
appropriate steps which can be delayed to maximize adjustability, allow vari-
ous control strategies, and reduce the redundant recomputation as much as
possible. Cao and Nguyen (2015) developed the QSQN-TRE evaluation
method as an extension of QSQN with tail-recursion elimination. Cao
(2015) also extended QSQN to obtain the QSQN-STR method for
evaluating queries to stratified knowledge bases. We refer the reader to
(Cao 2016a) for further details on the mentioned methods.

Our method QSQN-WF provided in this article is the first evaluation
method for Datalog¬ databases under the well-founded semantics that is
set-at-a-time and strictly goal-directed w.r.t. SLS-resolution. These properties
are important for reducing accesses to the secondary storage and redundant
computations. Our method follows SLS-resolution, with Van Gelder’s alter-
nating fixpoint semantics on the background, but uses a query-subquery
net to implement tabulation and the set-at-a-time technique, reduce redun-
dant computations, and allow any control strategy within each iteration of
the main loop. It is sound and complete w.r.t. the well-founded semantics
and has PTIME data complexity.

The rest of this article is structured as follows. The next section recalls the
most important concepts and definitions that are related to our work. After
that, we present our QSQN-WF evaluation method. We then provide proofs of
soundness, completeness, and PTIME data complexity of the method. Conclu-
sions and a plan for future work are presented at the end. In addition, the related
functions and procedures used for QSQN-WF are presented in the appendix.

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 251

Preliminaries

We assume that the reader is familiar with the basic notions of first-order
logic such as substitution, unification, positive logic program, goal, Horn
knowledge bases, stratified negation, and related ones. In this section, we recall
only the most important definitions and notions that are needed for our work
and refer the reader to other works (Lloyd 1987; Abiteboul, Hull, and Vianu
1995; Madalinska-Bugaj and Nguyen 2012) for further reading.

A term is either a constant or a variable. An atom is an expression of the
form p(t1, … , tn), where n ≥ 0, p is an n-ary predicate and each ti is a term.
If an atom contains no variables, it is called a ground atom. A literal is either
an atom (called a positive literal) or the negation of an atom (called a negative
literal). Each predicate is classified either as intensional or as extensional. An
expression is either a term, a tuple of terms, or a formula (or a list of formulas)
without quantifiers. A simple expression is either a term or an atom.

A substitution is a finite set θ ¼ {x1/t1, … , xk/tk}, where x1, … , xk are pair-
wise distinct variables, t1, … , tk are terms, and ti ≠ xi for all 1 � i � k. The set
dom(θ) ¼ {x1, … , xk} is called the domain of θ. The set range(θ) ¼ {t1, … , tk}
is called the range of θ. The empty substitution is denoted by ε. The restriction
of a substitution θ to a set X of variables is the substitution θ|X ¼ {(x/t) ∈ θ |
x ∈ X}.

Let E be an expression and θ ¼ {x1/t1, … , xk/tk} be a substitution. The
instance of E by θ, denoted by Eθ, is the expression obtained from E by
simultaneously replacing all occurrences of the variable xi in E by the term
ti, for all 1 � i � k.

Let θ ¼ {x1/t1, … , xk/tk} and δ ¼ {y1/s1, … , yh/sh} be substitutions (where
x1, … , xk are pairwise distinct variables, and y1, … , yh are also pairwise dis-
tinct variables). The composition of θ and δ, denoted by θδ, is the substitution
obtained from the sequence {x1/(t1δ), … , xk/(tkδ), y1/s1, … , yh/sh} by deleting
any binding xi/(tiδ) for which xi ¼ (tiδ) and deleting any binding yj/sj for
which yj ∈ {x1, … , xk}.

A substitution θ ¼ {x1/t1, … , xk/tk} is idempotent if none of x1, … , xk
occurs in any t1, … , tk, which means θθ ¼ θ. If θ and δ are substitutions such
that θδ ¼ δθ ¼ ε, then we call them renaming substitutions. An expression E is
a variant of an expression E0 if there exist substitutions θ and γ such that
E ¼ E0θ and E0 ¼ Eγ.

A substitution θ is more general than a substitution δ if δ ¼ θc for some
substitution γ. Let Γ be a set of simple expressions. A substitution θ is called
a unifier for Γ if Γθ is a singleton. A unifier θ for Γ is called a most general
unifier (mgu) for Γ if θ is more general than every unifier of Γ.

We denote the set of variables occurring in E by Vars(E), where E is an
expression or a substitution. A fresh variant of a formula φ, where φ can be
an atom, a goal, or a program clause, is a formula φθ, where θ is a renaming

252 S. T. CAO ET AL.

substitution such that dom(θ) ¼ Vars(φ) and range(θ) consists of variables
that were not used in the computation.

Datalog¬

In this subsection, we recall the Datalog¬ language and related notions.

Definition 1 (Safe Datalog¬ Program)
A safe Datalog¬ program clause (w.r.t. the leftmost selection function) is an
expression of the form A ← B1, … , Bk with k ≥ 0, such that:
– A is an atom and each Bi is a literal, where negation is denoted by ∼ instead

of ¬,
– every variable occurring in A also occurs in (B1, … , Bk),
– every variable occurring in a negative literal Bj also occurs in some positive

literal Bi with i < j.
The atom A is called the head and (B1, … , Bk) the body of the program

clause. A safe Datalog¬ program (w.r.t. the leftmost selection function) is a
finite set of safe Datalog¬ program clauses.

A safe Datalog¬ program without negative literals in the clauses’ bodies is
called a safe Datalog program. From now on, by a Datalog¬ (resp. Datalog)
program we mean a safe Datalog¬ (resp. Datalog) program.

Definition 2 (Extensional Instance)
An instance of extensional predicates is a mapping I that associates each
extensional n-ary predicate p to a finite set I(p) of n-ary tuples of constants.
Sometimes, I is treated as the set {p(�t) | �t ∈ I(p)}. The size of I is defined to
be the cardinality of this set.

Definition 3 (Datalog¬ Database)
A Datalog¬ database is defined to be a pair (P, I), where P is a Datalog¬ pro-
gram for defining intensional predicates and I is an instance of extensional
predicates.

In what follows, let (P, I) be a Datalog¬ database.

Definition 4 (Herbrand Base and Herbrand Interpretation)
– The Herbrand universe of (P, I), denoted by UP,I, is the set of all constants

occurring in (P, I).
– The Herbrand base of (P, I), denoted by BP,I, is the set of all ground atoms of

the form p(t1, … , tn), where p is a predicate used in (P, I) and each ti
belongs to UP,I.

– A Herbrand interpretation for (P, I) is a subset of BP,I.

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 253

Let M be a Herbrand interpretation. If p(�t) is a ground atom, then

Mðpð�tÞÞ �
def

pð�tÞ 2 M;

Mð�pð�tÞÞ �
def

pð�tÞ =2 M:

Definition 5 (Immediate Consequence Operator)
Let ground (P ∪ I) be the set of all ground instances of clauses in P ∪ I and M a
Herbrand interpretation for (P, I). The immediate consequence operator of
(P, I), denoted by TP,I, is defined on M as follows:

TP;I Mð Þ ¼ fA j A B1; . . . ;Bk 2 ground ðP [IÞ and
M Bið Þ holds for all 1 � i � kg:

Let TP,I ↑ ω be defined as follows:

TP;I "0 ¼ I;

TP;I " nþ 1ð Þ ¼ TP;IðTP;I "nÞ [TP;I "n; for n 2 N

TP;I "x ¼
[x

n¼0
TP;I "n:

The Well-Founded Semantics of Datalog¬

Let (P, I) be a Datalog¬ database. Let J be a Herbrand interpretation such that
I ⊆ J and J \ I consists of only atoms of intensional predicates. The positivized
ground version of P given J, denoted by pg(P, J), is the smallest set of ground
Datalog program clauses such that: if φ ¼ (A ← B1, … , Bn) is a ground instance
of a program clause from P that uses only constants occurring in P or J, and Ci
∉ J for all 1 � i � n such that Bi ¼ ∼Ci is a negative literal, then the clause
obtained from φ by deleting all negative literals in its body belongs to pg(P, J).

We define

conseqP;I Jð Þ ¼ TpgðP;JÞ " x

I0 ¼ conseqP;I BP;I
� �

Inþ1 ¼ conseqP;I Inð Þ for n � 0:

Observe that the operator conseqP,I is antimonotonic (w.r.t. ⊆). Hence

I0 � I2 � I4 � . . . � I5 � I3 � I1: ð1Þ

254 S. T. CAO ET AL.

Let

I� ¼
[

i � 0
I2i and I� ¼

\

i � 0
I2iþ1:

The well-founded model of (P, I) is the three-valued Herbrand
interpretation

I�� ¼ I� [f�A j A =2 I�g

We will denote In, I*, I*, I�� also by conseqn(P, I), conseq*(P, I), conseq�(P, I),
WF(P, I), respectively.

A query to a Datalog¬ database (P, I) is a formula of the form q(�t), where q
is an intensional predicate and �t is a tuple of terms. An answer for a query q(�t)
to a Datalog¬ database (P, I) w.r.t. the well-founded semantics is a ground
instance �t0 of �t such that q(�t0) ∈ WF(P, I). Without loss of generality, we will
consider only queries of the form q(�x), where �x is a tuple of pairwise distinct
variables. The reason is that, if q(�t) is a query, �x is the tuple of all pairwise
distinct variables in �t, p is a fresh intensional predicate of the same arity of
�x and θ is a substitution, then �tθ is an answer for the query q(�t) to (P, I)
w.r.t. the well-founded semantics if �xθ is an answer for the query p(�x) to
(P0, I) w.r.t. the well-founded semantics, where P0 ¼ P ∪ {p(�x) ← q(�t)}.

Query-Subquery Nets for Datalog¬

Query-subquery nets (QSQN) and the QSQN evaluation method were defined
previously (Nguyen and Cao 2012) for evaluating queries to a Horn knowl-
edge base. They were extended to QSQN-STR by Cao (2015) for dealing with
stratified knowledge bases. In this section, we make a further extension for
dealing with Datalog¬ under the well-founded semantics.

Let P be a Datalog¬ program and φ1, … , φm be all the program clauses of P,
with φi ¼ (Ai ← Bi,1, … , Bi,ni) for 1 � i �m.

Definition 6 (QSQN-WF Structure)

A query-subquery net structure of a Datalog¬ program P, denoted by QSQN-
WF structure, is a tuple (V, E, T), where V is a set of nodes, E is a set of edges,
and T is a function called the memorizing type of the net structure. In
particular,
– V consists of the following nodes:

.� input_p and ans_p, for each intensional predicate p of P,

.� pre_filteri, filteri,1, … , filteri,ni, post_filteri, for each 1 � i �m.
– E consists of the following edges:

.� (filteri,1, filteri,2), … , (filteri,ni − 1, filteri,ni), for each 1 � i �m,

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 255

.� (input_p, pre_filteri) and (post_filteri, ans_p), for each 1 � i �m, where
p is the predicate of Ai,

.� (pre_filteri, filteri,1) and (filteri,ni, post_filteri), for each 1 � i �m such
that ni ≥ 1,

.� (pre_filteri, post_filteri), for each 1 � i �m such that ni ¼ 0,

.� (filteri,j, input_p), for each intensional predicate p, 1 � i �m and
1 � j � ni such that Bi,j is an atom of p,

.� (ans_p, filteri,j), for each intensional predicate p, 1 � i �m and 1 � j �
ni such that Bi,j is an atom of p and Bi,j is a positive literal.

– T maps each filteri,j ∈ V such that the predicate of Bi,j is extensional to true
or false (As can be seen later, the aim of T is that if T(filteri,j) ¼ false then
subqueries for filteri,j are always processed immediately without being accu-
mulated at filteri,j).
If (v, w) ∈ E then we call w a successor of v. Note that V and E are uniquely

specified by P. The pair (V, E) is called the QSQN-WF topological structure of P.
If P is a stratified Datalog¬ program, then a QSQN-WF structure of P is also

a QSQN-STR structure of P.

Example 1. Consider the following Datalog¬ program P (Gelder, Ross, and
Schlipf 1991; Abiteboul, Hull, and Vianu 1995), where win is an intensional
predicate, moves is an extensional predicate, and x, y are variables:

win xð Þ moves x; yð Þ; �win yð Þ:

Figure 1 illustrates the QSQN-WF topological structure of this program.
Example 2. This example was given in (Ramamohanarao and Harland
1994). It uses the following Datalog¬ program P:

path x; yð Þ edge x; yð Þ

path x; yð Þ edge x; zð Þ; path z; yð Þ

acyclic x; yð Þ path x; yð Þ;�path y; xð Þ

where path and acyclic are intensional predicates, edge is an extensional
predicate and x, y, z are variables. The QSQN-WF topological structure of
the program P is illustrated in Figure 2.

Figure 1. The QSQN-WF topological structure of the program given in Example 1.

256 S. T. CAO ET AL.

Definition 7 (QSQN-WF)
A query-subquery net of a Datalog¬ program P (under the well-founded
semantics), denoted by QSQN-WF, is a tuple N ¼ (V, E, T, C) such that
(V, E, T) is a QSQN-WF structure of P, and C is a mapping that associates each
node v ∈ V with a structure called the contents of v with the following properties:
– If v ∈ {input_p, ans_p} then C(v) consists of:

.� tuples(v): a set of pairs (k, �t), where k ∈ ℕ and �t is a tuple of terms with
the same arity as p,

.� unprocessed(v, w) for each (v, w) ∈ E: a subset of tuples(v).
– If v ¼ pre_filteri then C(v) consists of:

.� atom(v) ¼ Ai,

.� post_vars(v) ¼ Vars((Bi,1, … , Bi,ni)),

.� pos_clause(v) ¼ true if all Bi,1, … , Bi,ni are positive literals, and
pos_clause(v) ¼ false otherwise.

– If v ¼ post_filteri then C(v) is empty, but we assume pre_vars(v) ¼ ø,
– If v ¼ filteri,j and p is the predicate of Bi,j then C(v) consists of:

.� neg(v) ¼ true if Bi,j is a negative atom, and neg(v) ¼ false otherwise,

.� kind(v) ¼ extensional if p is extensional, and kind(v) ¼ intensional
otherwise,

.� pred(v) ¼ p (called the predicate of v) ,

.� atom(v) ¼ Bi,j if Bi,j is a positive literal, and atom(v) ¼ B0 if Bi,j ¼∼B0,

.� pre_vars(v) ¼ Vars((Bi,j, … , Bi,ni)) and post_vars(v) ¼ Vars((Bi,j þ 1, … ,
Bi,ni)),

.� subqueries(v): a set of tuples of the form (k, �t, δ), where k ∈ ℕ, �t is a
tuple of terms with the same arity as the predicate of Ai, and δ is
an idempotent substitution such that dom(δ) ⊆ pre_vars(v) and
dom(δ)∩Vars(�t) ¼ ø,

.� unprocessed_subqueries(v) ⊆ subqueries(v),

Figure 2. The QSQN-WF topological structure of the program given in Example 2.

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 257

.� in the case p is intensional:
* unprocessed_subqueries2(v) ⊆ subqueries(v),

.� in the case p is intensional and neg(v) ¼ false:
* unprocessed_tuples(v): a set of pairs (k, �t), where k ∈ ℕ and �t is a tuple

of terms with the same arity as p.
– If v ¼ filteri,j, kind(v) ¼ extensional and T(v) ¼ false, then subqueries(v) and

unprocessed_subqueries(v) are empty (and we can ignore them).
Observe that, for each (v, w) ∈ E:

– if v is either pre_filteri or post_filteri or filteri,j with kind(v) ¼ extensional,
then v has exactly one successor, denoted by succ(v);

– if v is filteri,j with kind(v) ¼ intensional and pred(v) ¼ p, then v has exactly
two successors: succ(v) ¼ filteri,j þ 1 if ni > j; succ(v) ¼ post_filteri otherwise;
and succ2(v) ¼ input_p.

Example 3. Figure 3 illustrates a QSQN-WF of the program P given in
Example 1.

A QSQN-WF of P is empty if all the sets of the form tuples(v), unprocessed
(v, w), subqueries(v), unprocessed_subqueries(v), unprocessed_subqueries2(v),

258 S. T. CAO ET AL.

and unprocessed_tuples(v) are empty. Assume that (P, I) is the considered
Datalog¬ database. An index k ∈ ℕ in tuples from those sets are related to
the computation of Ik ¼ conseqk(P, I). QSQN-WF differs from QSQN-STR
(Cao 2015) by having those indices and the attribute pos_clause(v) for
v ¼ pre_filteri. We denote

tuples(v, k) ¼ {�t | (k, �t) ∈ tuples(v)}
all_inputs(k) ¼

S
{p(�t) | p is an intensional predicate and �t ∈ tuples(input_p, k)}.

Because of (1), for a natural number k, we also define:
all_tuples(ans_p, 2k) ¼

S k
h ¼ 0 tuples(ans_p, 2h)

all_tuples(ans_p, 2k þ 1) ¼ all_tuples(ans_p, 2k) ∪ tuples(ans_p, 2k þ 1)
all_answers(k) ¼

S
{p(�t) | p is an intensional predicate and �t ∈ tuples(ans_p, k)}.

Let �t and �t0 be tuples of terms. We say that �t is more general than �t0, and �t0 is
an instance of �t, if there exists a substitution θ such that �tθ ¼�t0. We say that a
pair (k, �t) is more general than (k0, �t0), and (k0, �t0) is less general than (k, �t), if
k ¼ k0 and �t0 is an instance of �t.

A subquery is a tuple of the form (k, �t, δ), where k ∈ ℕ, �t is a tuple of terms,
and δ is an idempotent substitution such that dom(δ) ∩ Vars(�t) ¼ ø. The set
unprocessed_subqueries2(v) (resp. unprocessed_subqueries(v)) contains the
subqueries that were not transferred through the edge (v, succ2(v)) (resp. (v,
succ(v))). We say that (k, �t, δ) is more general than (k0, �t0, δ0) w.r.t. v, and
(k0, �t0, δ0) is less general than (k, �t, δ) w.r.t. v, if k ¼ k0 and there exists a
substitution θ such that �tθ ¼�t0 and (δθ)|pre_vars(v) ¼ δ0.

A QSQN-WF is said to be stable at level k if it does not contain any pair
(k, �t) in any set of the form unprocessed(v, w) or unprocessed_tuples(v), and
any tuple (k, �t, δ) in any set of the form unprocessed_subqueries(v) or
unprocessed_subqueries2(v).

Algorithm 1 presents our method for evaluating a Datalog¬ query under the
well-founded semantics. It is based on SLS-resolution (Przymusinski 1989) and

Figure 3. The QSQN-WF of the program given in Example 1.

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 259

the alternating fixpoint characterization (Gelder 1993). During each iteration of
the main loop, which is used to reach the alternating fixpoint, the algorithm selects
an active edge and fires the operation for the edge. The function active-edge(u, v)
in the appendix returns true if some data accumulated in u can be processed to
produce data to transfer through the edge (u, v). If the function active-edge(u,
v) returns true then the procedure fire(u, v) in the appendix processes the data
accumulated in u that has not been processed before and transfers appropriate
data through the edge (u, v). The procedure fire uses the procedures add-tuple,
add-subquery and transfer in the appendix. The procedure transfer(D, u, v)
specifies the effects of transferring data D through the edge (u, v) of a QSQN-WF.

Due to the lack of space, a trace of running Algorithm 1 step by step on an exam-
ple query together with an intuitive presentation is provided online (Cao 2016b).

Data Complexity, Soundness, and Completeness

The data complexity of an algorithm that evaluates a query q(�x) to a deductive
database (P, I) is measured in the size of the extensional instance I, while
assuming that the used predicates, the program P and the query q(�x), are fixed.

Lemma 1. Algorithm 1 terminates and has PTIME data complexity.

Proof. (Sketch). Let m be the size of I. Observe that |BP,I| � f(m) for some
polynomial f. During the run of Algorithm 1, all_answers(h) ⊆ BP,I and thus
|all_answers(h)| � f(m). As relations tuples(input_p) keep only fresh variants
of the most general pairs, we also have that |all_inputs(h)| � g(m) for some
polynomial g. Each iteration except the last one of the “repeat” loop extends
either all_answers(h) or all_inputs(h), where all_answers(h) is accumulative
when h increases. Hence, the loop repeats no more than f(m) × g(m) times.
Observe that each iteration of that loop is executed in polynomial time in
m. Therefore, Algorithm 1 terminates and has PTIME data complexity.

Lemma 2. Let (P, I) be a Datalog¬ database. During the run of Algorithm 1
for (P, I) and a query, for every intensional predicate p of P, every tuples �t, �t0
and every natural number k:
1. if p(�t) ∈ all_answers(k), then p(�t) ∈ conseqk(P, I),
2. if p(�t) ∈ all_inputs(k), the net N is stable at the level k, p(�t0) ∈ conseqk(P, I)

and �t0 is an instance of �t, then p(�t0) ∈ all_answers(k).

The first assertion of the above lemma states soundness of Algorithm 1,
while the second one states conditional completeness of Algorithm 1. This
lemma can be proved in a similar way as done for Lemma 5.1 in (Cao 2016a).

Lemma 3. Let h0 and n0 be the values of h and n, respectively, when
Algorithm 1 terminates. Then:

260 S. T. CAO ET AL.

1. 0 � h0 � n0 − 2, all_answers(h0) ¼ all_answers(n0), all_answers(h0), and
all_inputs(h0) were not changed during the last iteration of the “repeat” loop,

2. for every intensional predicate p, every �t ∈ tuples(input_p, h0) is an instance
of a tuple from tuples(input_p, h0 þ 2).

Proof. The first assertion clearly holds. Consider the second assertion. Sup-
pose that �t ∈ tuples(input_p, h0) and (h0, �t) was added to tuples(input_p) due
to the processing of a pair (k, �x0) in tuples(input_q) with an even k ≥ h0. Since
all_inputs(h0) was not changed during the last iteration of the “repeat” loop,
k � n0−2. There exists (k þ 2, �x00) ∈ tuples(input_q), where �x00 is a tuple of
pairwise distinct variables. The processing of (k þ 2, �x00) in tuples(input_q)
was similar to the processing of (k, �x0) in tuples(input_q) and caused addition
of (h0 þ 2, �t0) to tuples(input_p) for some tuple �t0 more general than �t. The
reason is that at any moment after the hth

0 iteration of the “repeat” loop, for
any even number l between h0 and n0 − 2, all_answers(l) ¼ all_answers(h0)
and conseqP,I(all_answers(l) ∪ I) ¼ conseqP,I(all_answers(h0) ∪ I).

Lemma 4. If the “repeat” loop of Algorithm 1 is allowed to run forever by
deleting the steps 14 and 15, then no further pair (k, �t) with an even k will
be added to any relation of the form tuples(ans_p).

Proof. (Sketch). Let h0 and n0 be the values of h and n, respectively, when
Algorithm 1 terminates. We have that h0 þ 2 � n0. Now, assume that the loop
is allowed to run forever by deleting the steps 14 and 15. We first show that:

for any pair ðk;�tÞ in any relation tuples input pð Þ with an even
k > h0 þ 2; there exists ðh0 þ 2; �t0Þ 2 tuples input pð Þ such that
�t is an instance of �t0 and ðh0 þ 2; �t0Þ was added to tuples input pð Þ

no later than the nth
0 iteration of the ‘‘repeat’’ loop:

ð2Þ

We prove this by induction on the moment when (k, �t) is added to tuples
(input_p). The case when that addition occurs at the step 7 of Algorithm 1 is
clear. Consider the case when that addition occurs at the step 16 of the
procedure transfer. It must originate from the processing of a pair (k þ 2, �s)
from tuples(input_p). By the inductive assumption of (2), there exists a pair (h0
þ 2, �s0) ∈ tuples(input_p) such that �s is an instance of �s0 and (h0 þ 2, �s0) was added
to tuples(input_p) no later than the nth

0 iteration of the “repeat” loop. The
processing of (h0 þ 2, �s0) in tuples(input_p) must have added a pair (h0, �t00) to
tuples(input_p) for some �t00 more general than �t. The reason is that
all_answers(h0) ¼ all_answers(k) and conseqP,I(all_answers(h0) ∪ I) ¼
conseqP,I(all_answers(k) ∪ I). By the second assertion of Lemma 3, at the
end of the nth

0 iteration of the “repeat” loop, there exists (h0 þ 2, �t0) ∈
tuples(input_p) such that �t00 is an instance of �t0. Clearly, �t is an instance of �t0.

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 261

Since Algorithm 1 keeps in relations tuples(input_p) only the most general
pairs, as a consequence of (2), we have that:

for any k � h0 þ 2; all inputs kð Þ and all answers kð Þ

do not change after the nth
0 iteration of the ‘‘repeat’’ loop:

ð3Þ

Now, let us consider the assertion of the lemma. By (2), the processing of any
pair (k0, �t0) in tuples(input_p) with an even k0 > h0 þ 2 is subsumed by the pro-
cessing of a pair (h0 þ 2, �t00) in tuples(input_p) with �t00 being more general than
�t0. Any candidate pair (k, �t) that would be added to tuples(ans_p) by the former
has earlier been added to tuples(ans_p) by the latter. Once again, the reason is
that all_answers(h0) ¼ all_answers(k0 − 2) and conseqP,I(all_answers(h0) ∪ I) ¼
conseqP,I(all_answers(k0 − 2) ∪ I). By the first assertion of Lemma 3, subqueries
of the form (h0 þ 2, �t00) in tuples(input_p) do not cause addition of any pair (k,
�t) with an even k to tuples(ans_p) during the nth

0 iteration of the “repeat” loop.
By (3), it follows that no pair (k, �t) with an even k will be added to any relation
of the form tuples(ans_p) after the nth

0 iteration of the “repeat” loop.

Theorem 1. Algorithm 1 is correct and has PTIME data complexity.

Proof. By Lemma 1, Algorithm 1 has PTIME data complexity. As the sound-
ness, by the assertion 1 of Lemma 2, for every tuple �t returned by Algorithm 1,
q(�t) ∈ WF(P, I). For the completeness, let q(�t) ∈ WF(P, I), i.e., q(�t) ∈ conseqk(P,
I) for some even number k. We show that �t ∈ all_tuples(ans_q, k). By Lemma
4, without loss of generality, we assume that the “repeat” loop is allowed to
run forever by deleting the steps 14 and 15. Then, since (k, �x0) ∈ tuples
(input_q) and the net N is stable at the level k after the kth iteration of that
“repeat” loop and �t is an instance of �x0, by the assertion 2 of Lemma 2, �t ∈
all_tuples(ans_q, k). This completes the proof.

Conclusions

We have developed the QSQN-WF method as the first one for evaluating
queries to Datalog¬ databases under the well-founded semantics that is
set-at-a-time and strictly goal-directed w.r.t. SLS-resolution. These properties
are important for reducing accesses to the secondary storage and redundant
computations. Our method follows SLS-resolution, with Van Gelder’s alternat-
ing fixpoint semantics on the background, but uses a query-subquery net to
implement tabulation and the set-at-a-time technique, reduce redundant com-
putations, and allow any control strategy within each iteration of the main
loop. We have proved that the QSQN-WF method is sound and complete w.
r.t. the well-founded semantics and has PTIME data complexity. As future
work, we intend to develop an appropriate control strategy for QSQN-WF,
implement the method, and compare it empirically with the other ones.

262 S. T. CAO ET AL.

Another area of interest for the application of the proposed method is in work-
ing with large datasets (Tachmazidis, Antoniou, and Faber 2014; Vossen 2014).

Funding

This work was supported by the Polish National Science Centre (NCN) under Grant No. 2011/
02/A/HS1/00395.

References

Abiteboul, S., R. Hull, and V. Vianu. 1995. Foundations of databases. Boston, MA: Addison
Wesley.

Beeri, C., and R. Ramakrishnan. 1991. On the power of magic. Journal of Logic Programming
10:255–99.

Cao, S. T. 2015. Query-subquery nets with stratified negation. Proceedings of ICCSAMA’2015,
Advances in Intelligent Systems and Computing 358:355–66.

Cao, S. T. 2016a. Methods for evaluating queries to Horn knowledge bases in first-order logic.
PhD dissertation. University of Warsaw, Warsaw, Poland. Available at http://mimuw.edu.
pl/~sonct/stc-thesis.pdf

Cao, S. T. 2016b. An illustration of Algorithm 1 on an example. Available at http://mimuw.
edu.pl/~sonct/Alg1.zip

Cao, S. T., and L. A. Nguyen. 2015. An empirical approach to query-subquery nets with tail-
recursion elimination. In New Trends in Database and Information Systems II, selected
papers of ADBIS’2014, Advances in Intelligent Systems and Computing 312:109–20.

Chen, W., T. Swift, and D. S. Warren. 1995. Efficient top-down computation of queries under
the well-founded semantics. Journal of Logic Programming 24 (3):161–99. doi:10.1016/0743-
1066(94)00028-5

Drabent, W. 1995. What is failure? An approach to constructive negation. Acta Informatica
32 (1):27–59. doi:10.1007/bf01185404

Gelder, A. V. 1993. The alternating fixpoint of logic programs with negation. Journal of
Computer and System Sciences 47 (1):185–221. doi:10.1016/0022-0000(93)90024-q

Gelder, A. V., K. A. Ross, and J. S. Schlipf. 1991. The well-founded semantics for general logic
programs. Journal of the ACM 38 (3):619–49. doi:10.1145/116825.116838

Kemp, D. B., D. Srivastava, and P. J. Stuckey. 1995. Bottom-up evaluation and query
optimization of well-founded models. Theoretical Computer Science 146 (1 & 2):145–84.
doi:10.1016/0304-3975(94)00153-a

Lloyd, J. W. 1987. Foundations of logic programming. 2nd ed. Berlin: Springer.
Madalinska-Bugaj, E., and L. A. Nguyen. 2012. A generalized QSQR evaluation method for

horn knowledge bases. ACM Transactions on Computational Logic 13 (4):1–28.
doi:10.1145/2362355.2362360

Morishita, S. 1996. An extension of Van Gelder's alternating fixpoint to magic programs.
Journal of Computer and System Sciences 52 (3):506–21. doi:10.1006/jcss.1996.0038

Nguyen, L. A., and S. T. Cao. 2012. Query-subquery nets. Proceedings of ICCCI’2012, Lecture
Notes in Computer Science 7635:239–48.

Przymusinski, T. C. 1989. Every logic program has a natural stratification and an iterated least
fixed point model. In Proceedings of PODS’1989, 11–21, ACM.

Ramamohanarao, K., and J. Harland. 1994. An introduction to deductive database languages
and systems. The VLDB Journal 3 (2):107–22. doi:10.1007/bf01228878

Ross, K. A. 1992. A procedural semantics for well-founded negation in logic programs. Journal
of Logic Programming 13 (1):1–22. doi:10.1016/0743-1066(92)90019-y

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 263

http://mimuw.edu.pl/~sonct/stc-thesis.pdf
http://mimuw.edu.pl/~sonct/stc-thesis.pdf
http://mimuw.edu.pl/~sonct/Alg1.zip
http://mimuw.edu.pl/~sonct/Alg1.zip
http://dx.doi.org/10.1016/0743-1066(94)00028-5
http://dx.doi.org/10.1016/0743-1066(94)00028-5
http://dx.doi.org/10.1007/bf01185404
http://dx.doi.org/10.1016/0022-0000(93)90024-q
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1016/0304-3975(94)00153-a
http://dx.doi.org/10.1145/2362355.2362360
http://dx.doi.org/10.1006/jcss.1996.0038
http://dx.doi.org/10.1007/bf01228878
http://dx.doi.org/10.1016/0743-1066(92)90019-y

Tachmazidis, I., G. Antoniou, and W. Faber. 2014. Efficient computation of the well-founded
semantics over big data. Theory and Practice of Logic Programming 14:445–59. doi:10.1017/
s1471068414000131

Vieille, L. 1989. Recursive query processing: The power of logic. Theoretical Computer Science
69 (1):1–53. doi:10.1016/0304-3975(89)90088-1

Vossen, G. 2014. Big data as the new enabler in business and other intelligence. Vietnam
Journal of Computer Science 1 (1):3–13. doi:10.1007/s40595-013-0001-6

Appendix A

Functions and Procedures Used for Algorithm 1

This appendix presents a list of all functions and procedures that are used for
Algorithm 1.

264 S. T. CAO ET AL.

http://dx.doi.org/10.1017/s1471068414000131
http://dx.doi.org/10.1017/s1471068414000131
http://dx.doi.org/10.1016/0304-3975(89)90088-1
http://dx.doi.org/10.1007/s40595-013-0001-6

CYBERNETICS AND SYSTEMS: AN INTERNATIONAL JOURNAL 265

266 S. T. CAO ET AL.

	Introduction
	Preliminaries
	Datalog¬
	Definition 1 (Safe Datalog¬ Program)
	Definition 2 (Extensional Instance)
	Definition 3 (Datalog¬ Database)
	Definition 4 (Herbrand Base and Herbrand Interpretation)
	Definition 5 (Immediate Consequence Operator)

	The Well-Founded Semantics of Datalog¬

	Query-Subquery Nets for Datalog¬
	Definition 6 (QSQN-WF Structure)
	Definition 7 (QSQN-WF)

	Data Complexity, Soundness, and Completeness
	Conclusions
	Funding
	References
	Appendix A
	Functions and Procedures Used for Algorithm 1

