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ABSTRACT
We formulate query–subquery nets and use them to create the first
framework for developing algorithms for evaluating queries to Horn
knowledge bases with the properties that: the approach is goal-
directed; each subquery is processed only once and each supplement
tuple, if desired, is transferred only once; operations are done set-at-a-
time; and any control strategy can be used. Our intention is to
increase efficiency of query processing by eliminating redundant
computation, increasing adjustability (i.e. easiness in adopting
advanced control strategies) and reducing the number of accesses to
the secondary storage. For this purpose, we transform a logic program
into an equivalent net structure and use it to determine which set of
tuples or subqueries should be evaluated at each step, in an efficient
way. The framework forms a generic evaluation method called QSQN,
which is sound and complete and has polynomial time data
complexity when the term-depth bound is fixed. The experimental
results confirm the efficiency and usefulness of this method.
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1. Introduction

Query processing is an important research area in computer science and information tech-
nology. Huang, Green, and Loo (2011) wrote we are witnessing an exciting revival of interest
in recursive Datalog queries in a variety of emerging application domains such as data inte-
gration, information extraction, networking, program analysis, security, and cloud computing.
During the last decade, rule-based query languages, including languages related to
Datalog, were also intensively studied for the Semantic Web (e.g. in Cao, Nguyen, &
Szalas, 2014; Eiter, Ianni, Lukasiewicz, & Schindlauer, 2011; Ruckhaus, Ruiz, & Vidal,
2008). In general, since deductive databases and knowledge bases are widely used in prac-
tical applications, improvements for processing recursive queries are always desirable. Due
to the importance of the topic, it is worth doing further research on the topic.

Horn knowledge bases are extensions of Datalog deductive databases without the range-
restrictedness and function-free conditions. As argued by Madalińska-Bugaj and Nguyen
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(2012), the Horn fragment of first-order logic plays an important role in knowledge represen-
tation and reasoning. A Horn knowledge base consists of a positive logic program for defin-
ing intensional predicates and an instance of extensional predicates. When the knowledge
base is too big, not all of the extensional and intensional relations can be totally kept in the
computer memory and query evaluation cannot be totally done in the computer memory. In
such cases, the system usually has to load (resp. unload) relations from (resp. to) the second-
ary storage. Thus, in contrast to logic programming, for Horn knowledge bases efficient
access to the secondary storage is a very important aspect.

This work studies query processing for Horn knowledge bases, which is a topic that has
not been well studied as query processing for Datalog-like deductive databases or the
theory and techniques of logic programming. The survey by Ramakrishnan and Ullman
(1995) provides a good overview of deductive database systems, with a focus on
implementation techniques. The book by Abiteboul, Hull, and Vianu (1995) is also a
good source for references. We refer the reader to Madalińska-Bugaj and Nguyen (2012)
for a discussion on query processing for Horn knowledge bases.

The most well-known methods for evaluating queries to Datalog deductive databases or
Horn knowledge bases are QSQR (Madalińska-Bugaj & Nguyen, 2012; Vieille, 1989) and
Magic-Sets (Bancilhon, Maier, Sagiv, & Ullman, 1986; Beeri & Ramakrishnan, 1991; Rohmer, Les-
couer, & Kerisit, 1986). By Magic-Sets we mean the evaluation method that combines the
magic-set transformation with the improved semi-naive bottom-up evaluation method.
Both of these methods are goal-directed. As observed by Vieille (1989), the QSQR approach
is like iterative deepening search. It allows redundant recomputations (Madalińska-Bugaj &
Nguyen, 2012, Remark 3.2). On the other hand, the Magic-Sets method applies breadth-first
search. The following example shows that the breadth-first approach is not always efficient.

Example 1.1 The order of program clauses and the order of atoms in the bodies of
program clauses may be essential, for example, when the positive logic program that
defines intensional predicates is specified using the Prolog programming style. In such
cases, the top-down depth-first approach may be much more efficient than the breadth-
first approach. Here is such an example, in which p, q1 and q2 are intensional predicates,
r1 and r2 are extensional predicates, x, y and z are variables, ai and bi,j are constant symbols:

. the positive logic program:
p � q1(a0, am)
p � q2(a0, am)

q1(x, y) � r1(x, y)
q1(x, y) � r1(x, z), q1(z, y)

q2(x, y) � r2(x, y)
q2(x, y) � r2(x, z), q2(z, y),

. the extensional instance (illustrated in Figure 1):

I(r1) = {(ai, ai+1) | 0 ≤ i , m}
I(r2) = {(a0, b1,j) | 1 ≤ j ≤ n}
< {(bi,j, bi+1,j) | 1 ≤ i , m− 1 and 1 ≤ j ≤ n}
< {(bm−1,j, am) | 1 ≤ j ≤ n},

. the query: p.
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Notice that the depth-first approach needs only Q(m) steps for evaluating the query,
while the breadth-first approach performs Q(m · n) steps. When n is comparable to m,
the difference is too big. The magic-sets transformation does not help for this case.

Our postulate is that the breadth-first approach (including the Magic-Sets evaluation
method) is inflexible and not always efficient. Of course, depth-first search is not always
good either. The aim of this work is to develop an evaluation method for Horn knowledge
bases that is more efficient than the QSQR evaluation method and more adjustable than
the Magic-Sets evaluation method. In particular, a good method should be not only set-
oriented and goal-directed but should also reduce computational redundancy as much
as possible and allow various control strategies.

This paper is a revised and extended version of our conference paper (Nguyen & Cao,
2012) and forms a chapter of the Ph.D. dissertation (Cao, 2016). In this work, we formulate
query–subquery nets and use them to develop the first framework for developing algor-
ithms for evaluating queries to Horn knowledge bases with the following properties:

. the approach is goal-directed,

. each subquery is processed only once,

. each supplement tuple, if desired, is transferred only once,

. operations are done set-at-a-time,

. any control strategy can be used.

The intention of our framework is to increase efficiency of query processing by eliminat-
ing redundant computation, increasing adjustability1 and reducing the number of

Figure 1. An illustration for the extensional instance given in Example 1.1.
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accesses to the secondary storage. The framework forms a generic evaluation method
called QSQN. As a supplement, the Ph.D. dissertation (Cao, 2016) also contains:

. proofs of soundness and completeness of the QSQN method,

. data complexity analysis for the QSQN method,

. a control strategy called the Improved Depth-First Control Strategy (IDFS), which
together with QSQN forms the QSQN-IDFS method,

. experiments for comparing the QSQN-IDFS, Magic-Sets and QSQR methods w.r.t.
. the number of read/write operations on relations,
. the maximum number of tuples/subqueries kept in the computer memory,
. the number of accesses to the secondary storage when the memory is limited.

To deal with function symbols, we use a term-depth bound for atoms and substitutions
occurring in the computation and propose to use iterative deepening search which itera-
tively increases the term-depth bound. Similar to the work by Madalińska-Bugaj and
Nguyen (2012) but in contrast to the QSQ framework for Datalog queries (Abiteboul
et al., 1995), our framework for Horn knowledge bases does not use adornments and anno-
tations, but uses substitutions instead. This is natural for the case with function symbols
and without the range-restrictedness condition.

Our experiments show that the QSQN-IDFS evaluation method is more efficient than
the QSQR evaluation method and as competitive as the Magic-Sets evaluation method.
In the case when the order of program clauses and the order of atoms in the bodies of
program clauses are essential as in Prolog programming, the QSQN-IDFS evaluation
method usually outperforms the Magic-Sets method. As QSQN-IDFS is just an instance
of the generic QSQN evaluation method, we claim that this generic method is useful.

The rest of this paper is structured as follows. Section 2 recalls the most important nota-
tion and definitions of first-order logic, logic programming and Horn knowledge bases.
Section 3 presents our QSQN evaluation method for Horn knowledge bases. The prelimi-
nary experiments are discussed in Section 4. Conclusions are given in Section 5.

2. Preliminaries

First-order logic is considered in this work and we assume that the reader is familiar with it.
We recall only the most important definitions for our work and refer the reader to Lloyd
(1987) and Madalińska-Bugaj and Nguyen (2012) for further reading.

A signature for first-order logic consists of constant symbols, function symbols, variable
symbols and predicate symbols. Terms, atoms and formulas are defined in the usual way.
An expression is either a term, a tuple of terms, a formula without quantifiers or a list of
formulas without quantifiers. A simple expression is either a term or an atom.

A substitution is a finite set of the form u = {x1/t1, . . . , xk/tk}, where x1, . . . , xk are pair-
wise distinct variables, t1, . . . , tk are terms, and ti = xi for all 1 ≤ i ≤ k. We denote ɛ the
empty substitution.

The domain of a substitution θ is the set dom(u) = {x1, . . . , xk}, and the range of θ is the
set range(u) = {t1, . . . , tk}. The restriction of a substitution θ to a set X of variables is the
substitution u|X = {(x/t) [ u | x [ X}.
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Let u = {x1/t1, . . . , xk/tk} be a substitution and E be an expression. Then Eu, the
instance of E by θ, is the expression obtained from E by simultaneously replacing all occur-
rences of the variable xi in E by the term ti , for 1 ≤ i ≤ k.

Let u = {x1/t1, . . . , xk/tk} and d = {y1/s1, . . . , yh/sh} be substitutions (where x1, . . . , xk
are pairwise distinct variables, and y1, . . . , yh are also pairwise distinct variables). Then the
composition ud of θ and δ is the substitution obtained from the sequence
{x1/(t1d), . . . , xk/(tkd), y1/s1, . . . , yh/sh} by deleting any binding xi/(tid) for which
xi = (tid) and deleting any binding yj/sj for which yj [ {x1, . . . , xk}.

A substitution θ is idempotent if uu = u. We have that u = {x1/t1, . . . , xk/tk} is idempo-
tent if none of x1, . . . , xk occurs in any t1, . . . , tk .

If θ and δ are substitutions such that ud = du = 1, then we call them renaming substi-
tutions. We say that an expression E is a variant of an expression E′ if there exist substi-
tutions θ and γ such that E = E′u and E′ = Eg.

A substitution θ ismore general than a substitution δ if there exists a substitution γ such
that d = ug. Let Γ be a set of simple expressions. A substitution θ is called a unifier for Γ if
Gu is a singleton. If Gu = {w} then we say that θ unifies Γ (into φ). A unifier θ for Γ is called a
most general unifier (mgu) for Γ if θ is more general than every unifier of Γ.

The term-depth of an expression (resp. a substitution) is the maximal nesting depth of
function symbols occurring in that expression (resp. substitution). If E is an expression or a
substitution then by Vars(E) we denote the set of variables occurring in E. If φ is a formula
then by ∀(w)we denote the universal closure of φ, which is the formula obtained by adding
a universal quantifier for every variable having a free occurrence in φ.

A (positive or definite) program clause is a formula of the form ∀(A _ ¬B1 _ . . . _ ¬Bk)
with k ≥ 0, written as A � B1, . . . , Bk , where A, B1, . . . , Bk are atoms (i.e. atomic formulas).
A is called the head, and (B1, . . . , Bk) the body of the program clause. If p is the predicate of
A then the program clause is called a program clause defining p.

A positive (or definite) logic program is a finite set of program clauses.
A goal (also called a negative clause) is a formula of the form ∀(¬B1 _ . . . _ ¬Bk), written

as � B1, . . . , Bk , where B1, . . . , Bk are atoms. If k=1 then the goal is called a unary goal. If
k=0 then the goal stands for falsity and is called the empty goal (or the empty clause) and
denoted by □.

A fresh variant of a formula φ, where φ can be an atom, a goal� A or a program clause
A � B1, . . . , Bk (written without quantifiers), is a formula wu, where θ is a renaming sub-
stitution such that dom(u) = Vars(w) and range(u) consists of variables that were not used
in the computation.

Similarly as for deductive databases, we classify each predicate either as intensional or as
extensional. A generalized tuple is a tuple of terms, which may contain function symbols and
variables. A generalized relation is a set of generalized tuples of the same arity. A Horn
knowledge base is defined to be a pair consisting of a positive logic program for defining inten-
sional predicates and a generalized extensional instance, which is a function mapping each
extensional n-ary predicate to an n-ary generalized relation. Note that intensional predicates
are defined by a positive logic program which may contain function symbols and not be
range-restricted. From now on, we use the term ‘relation’ to mean a generalized relation,
and the term ‘extensional instance’ to mean a generalized extensional instance.

Given a Horn knowledge base specified by a positive logic program P and an extensional
instance I, a query to the knowledge base is a positive formula w(�x) without quantifiers,
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where �x is a tuple of all the variables of φ. A (correct) answer for the query is a tuple�t of terms
of the same length as �x such that P< I o ∀(w(�t)). When measuring data complexity, we
assume that P and φ are fixed, while I varies. Thus, the pair (P,w(�x)) is treated as a query
to the extensional instance I. We will use the term ‘query’ in this meaning.

It can be shown that, every query (P,w(�x)) can be transformed in polynomial time to an
equivalent query of the form (P′, q(�x)) over a signature extended with new intensional
predicates, including q. The equivalence means that, for every extensional instance I
and every tuple �t of terms of the same length as �x, P< I o ∀(w(�t)) iff P′ < I o ∀(q(�t)).
The transformation is based on introducing new predicates for defining complex
subformulas occurring in the query. For example, if w = p(x) ^ r(x, y), then
P′ = P< {q(x, y) � p(x), r(x, y)}, where q is a new intensional predicate.

Without loss of generality, we will consider only queries of the form (P, q(�x)), where q is
an intensional predicate. Answering such a query on an extensional instance I is to find
(correct) answers for P< I< {� q(�x)}.

3. The query–subquery net evaluation method

In this section, we generalize the QSQ approach for Horn knowledge bases. Given a posi-
tive logic program, we make a query–subquery net structure and use it as a flow control
network to determine which subqueries in which nodes should be processed next. We
show how the data are transferred through edges of the net. We also propose an algor-
ithm together with related procedures and functions for this framework. The algorithm
repeatedly selects an active edge and fires the operation for the edge to transfer unpro-
cessed data. Such a selection is decided by the adopted control strategy, which can be
arbitrary. In addition, the processing is divided into smaller steps which can be delayed
to maximize adjustability and allow various control strategies. The intention is to increase
efficiency of query processing by eliminating redundant computation, increasing adjust-
ability and reducing the number of accesses to the secondary storage.

In what follows, P is a positive logic program and w1, . . . ,wm are all the program clauses
of P, with wi = (Ai � Bi,1, . . . , Bi,ni ), for 1 ≤ i ≤ m and ni ≥ 0. The following definition
shows how to make a QSQ-net structure from the given logic program P.

Definition 3.1 (Query–Subquery Net Structure): A query–subquery net structure (QSQ-
net structure for short) of P is a tuple (V, E, T) such that:

. V is a set of nodes that consists of:
. input p and ans p, for each intensional predicate p of P,
. pre filteri , filteri,1,…, filteri,ni , post filteri , for each 1 ≤ i ≤ m.

. E is a set of edges that consists of:
. ( filteri,1, filteri,2),…, ( filteri,ni−1, filteri,ni ), for each 1 ≤ i ≤ m,
. ( pre filteri, filteri,1) and ( filteri,ni , post filteri), for each 1 ≤ i ≤ m with ni ≥ 1,
. ( pre filteri, post filteri), for each 1 ≤ i ≤ m with ni = 0,
. (input p, pre filteri) and ( post filteri, ans p), for each 1 ≤ i ≤ m, where p is the predi-

cate of Ai ,
. ( filteri,j, input p) and (ans p, filteri,j), for each intensional predicate p and each

1 ≤ i ≤ m and 1 ≤ j ≤ ni such that Bi,j is an atom of p.

84 S. T. CAO AND L. A. NGUYEN



. T is a function, called the memorizing type of the net structure, mapping each node
filteri,j [ V such that the predicate of Bi,j is extensional to true or false. If
T( filteri,j) = false (and the predicate of Bi,j is extensional) then subqueries for filteri,j
are always processed immediately, without being accumulated at filteri,j .

If (v,w) [ E then we call w a successor of v, and v a predecessor of w. Note that V and E
are uniquely specified by P. We call the pair (V, E) the QSQ topological structure of P.

Example 3.2 Consider the following (recursive) positive logic program, where x, y and z
are variables, p is an intensional predicate, and q is an extensional predicate:

p(x, y) � q(x, y)
p(x, y) � q(x, z), p(z, y).

Its QSQ topological structure is illustrated in Figure 2.

Example 3.3 Consider the following positive logic program, where x, y and z are
variables, p and r are intensional predicates, q, s and t are extensional predicates:

p(x, y) � q(x, z), r(z, y)
r(x, y) � s(x, y)
r(x, y) � t(x, y).

This program is a modified version of an example from Zhou and Sato (2003). Figure 3
illustrates the QSQ topological structure of this program.

Definition 3.4 (Query–Subquery Net): A query–subquery net (QSQ-net for short) of P is a
tuple N = (V, E, T, C) such that (V, E, T) is a QSQ-net structure of P, C is a mapping that
associates each node v [ V with a structure called the contents of v, and the following
conditions are satisfied:

. C(v), where v = input p or v = ans p for an intensional predicate p of P, consists of:
. tuples(v): a set of generalized tuples of the same arity as p,
. unprocessed(v,w) for each (v,w) [ E: a subset of tuples(v).

. C(v), where v = pre filteri , consists of:
. atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni )).

Figure 2. The QSQ topological structure of the program given in Example 3.2.
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. C(v), where v = post filteri , is empty, but we assume pre vars(v) = ∅.

. C(v), where v = filteri,j and p is the predicate of Bi,j , consists of:
. kind(v) = extensional if p is extensional, and kind(v) = intensional otherwise,
. pred(v) = p and atom(v) = Bi,j ,
. pre vars(v) = Vars((Bi,j, . . . , Bi,ni )) and post vars(v) = Vars((Bi,j+1, . . . , Bi,ni )),
. subqueries(v): a set of pairs of the form (�t, d), where �t is a generalized tuple of the

same arity as the predicate of Ai and δ is an idempotent substitution such that
dom(d) # pre vars(v) and dom(d)> Vars(�t) = ∅,

. unprocessed subqueries(v) # subqueries(v),

. in the case p is intensional:
• unprocessed subqueries2(v) # subqueries(v),
• unprocessed tuples(v): a set of generalized tuples of the same arity as p.

. If v = filteri,j , kind(v) = extensional and T(v) = false then subqueries(v) = ∅.

Figure 4 illustrates a QSQ-net of the positive logic program given in Example 3.2.
By a subquerywemean a pair of the form (�t, d), where�t is a generalized tuple and δ is an

idempotent substitution such that dom(d)> Vars(�t) = ∅.
For v = filteri,j and p being the predicate of Ai , the meaning of a subquery

(�t, d) [ subqueries(v) is that: for processing a goal � p(�s) with �s [ tuples(input p) using
the program clause wi = (Ai � Bi,1, . . . , Bi,ni ), unification of p(�s) and Ai as well as processing
of the subgoals Bi,1, . . . , Bi,j−1 were done, amongst others, by using a sequence of mgu’s
g0, . . . , g j−1 with the property that �t = �sg0 . . .g j−1 and d = (g0 . . .g j−1)|Vars((Bi,j,...,Bi,ni )).

An empty QSQ-net of P is a QSQ-net of P such that all the sets of the form tuples(v),
unprocessed(v,w), subqueries(v), unprocessed subqueries(v), unprocessed subqueries2(v) or
unprocessed tuples(v) are empty.

In a QSQ-net, if v = pre filteri or v = post filteri or (v = filteri,j and
kind(v) = extensional) then v has exactly one successor, which we denote by succ(v).

If v is filteri,j with kind(v) = intensional and pred(v) = p then v has exactly two succes-
sors. In that case, let

succ(v) = filteri,j+1 if ni . j,
post filteri otherwise,

{

Figure 3. The QSQ topological structure of the program given in Example 3.3.
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Figure 4. The QSQ-net of the program given in Example 3.2.
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and succ2(v) = input p. The set unprocessed subqueries(v) is used for (i.e. corresponds to)
the edge (v, succ(v)), while unprocessed subqueries2(v) is used for the edge (v, succ2(v)).

Note that if succ(v) = w then post vars(v) = pre vars(w). In particular,
post vars( filteri,ni ) = pre vars( post filteri) = ∅.

The formats of data transferred through edges of a QSQ-net are specified as follows:

. data transferred through an edge of the form (input p, v), (v, input p), (v, ans p) or
(ans p, v) is a finite set of generalized tuples of the same arity as p,

. data transferred through an edge (u, v) with v = filteri,j and u not being of the form
ans p is a finite set of subqueries that can be added to subqueries(v),

. data transferred through an edge (v, post filteri) is a set of subqueries (�t, 1) such that�t is
a generalized tuple of the same arity as the predicate of Ai .

If (�t, d) and (�t′, d′) are subqueries that can be transferred through an edge to v then we
say that (�t, d) is more general than (�t′, d′) w.r.t. v, and that (�t′, d′) is less general than (�t, d)
w.r.t. v, if there exists a substitution γ such that �tg = �t′ and (dg)| pre vars(v) = d′.

Informally, a subquery (�t, d) transferred through an edge to v is processed as follows:

. if v = filteri,j , kind(v) = extensional and pred(v) = p then, for each �t′ [ I( p), if
atom(v)d = Bi,jd is unifiable with a fresh variant of p(�t′) by an mgu γ then transfer
the subquery (�tg, (dg)| post vars(v)) through (v, succ(v)),

. if v = filteri,j , kind(v) = intensional and pred(v) = p then
. transfer the tuple �t′ such that p(�t′) = atom(v)d = Bi,jd through (v, input p) to add a

fresh variant of it to tuples(input p),
. for each currently existing �t′ [ tuples(ans p), if atom(v)d = Bi,jd is unifiable with a

fresh variant of p(�t′) by an mgu γ then transfer the subquery (�tg, (dg)| post vars(v))
through (v, succ(v)),

. store the subquery (�t, d) in subqueries(v), and later, for each new �t′ added to
tuples(ans p), if atom(v)d = Bi,jd is unifiable with a fresh variant of p(�t′) by an mgu
γ then transfer the subquery (�tg, (dg)| post vars(v)) through (v, succ(v)),

. if v = post filteri and p is the predicate of Ai then transfer the tuple �t through
( post filteri, ans p) to add it to tuples(ans p).

Formally, the processing of a subquery is designed more sophisticatedly so that:

. every subquery or input/answer tuple that is subsumed by another one or has a term-
depth greater than a fixed bound l is ignored,

. the processing is divided into smaller steps which can be delayed at each node to maxi-
mize adjustability and allow various control strategies,

. the processing is done set-at-a-time (e.g. for all the unprocessed subqueries accumu-
lated in a given node).

The procedure transfer(D, u, v) specifies the effects of transferring data D through an
edge (u, v) of a QSQ-net. If v is of the form pre filteri or post filteri or (v = filteri,j and
kind(v) = extensional and T(v) = false) then the input D for v is processed immediately
and an appropriate data Γ is produced and transferred through (v, succ(v)). Otherwise,
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the input D for v is not processed immediately, but accumulated into the structure of v in
an appropriate way.

The function active-edge(u, v) returns true for an edge (u, v) if data accumulated in u
can be processed to produce some data to transfer through (u, v), and returns false other-
wise. If active-edge(u, v) is true then the procedure fire(u, v) processes the data accumu-
lated in u that has not been processed before to transfer appropriate data through the
edge (u, v). This procedure uses the procedure transfer(D, u, v). Both procedures
fire(u, v) and transfer(D, u, v) use a parameter l as a term-depth bound for tuples and
substitutions.

Algorithm 1 presents our QSQN evaluation method for Horn knowledge bases. It
repeatedly selects an active edge and fires the operation for the edge. Such a selection
is decided by the adopted control strategy, which can be arbitrary.

Example 3.5 This example illustrates Algorithm 1 step by step. Consider the following
Horn knowledge base (P, I) and the query s(x), where p and s are intensional predicates,
q is an extensional predicate, x, y, z are variables, and a – o, u are constant symbols:

. the positive logic program P:
p(x, y) � q(x, y)

p(x, y) � q(x, z), p(z, y)
s(x) � p(b, x),

. the extensional instance I (illustrated in Figure 5):

I(q) = {(a, b), (b, c), (c, d), (d, e), (b, f ), ( f , g), (b, h), (h, g), (i, j), ( j, k), (k, l), (m, n),
(n, u), (n, o)},

. the query: s(x).

Figure 5. A graph used for Example 3.5.
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The QSQ topological structure of P is presented in Figure 6. We give below a trace of a
run of Algorithm 1 that evaluates the query (P, s(x)) on the extensional instance I, using
term-depth bound l=0 and the memorizing type T that maps each node v such that
kind(v) = extensional (i.e. filter1,1 and filter2,1) to false. For convenience, we denote the
edges of the net with names E1 – E17 as shown in Figure 6.

Algorithm 1 starts with an empty QSQ-net. It then adds a fresh variant (x1) of (x) to the
empty sets tuples(input s) and unprocessed(E14). Next, it repeatedly selects an active edge
and fires the edge. Assume that the selection is done as follows.

(1) E14 − E15
After processing unprocessed(E14), the algorithm empties this set and transfers {(x1)}
through the edge E14. This produces {((x1), {x/x1})}, which is then transferred
through the edge E15 and added to the empty sets subqueries( filter3,1),
unprocessed subqueries( filter3,1) and unprocessed subqueries2( filter3,1).

(2) E13
After processing unprocessed subqueries2( filter3,1), the algorithm empties this set and

Figure 6. The QSQ topological structure of the program given in Example 3.5.

Table 1. A summary of the steps at which the data (i.e. tuples) were added to input–s, ans–s, input–p,
ans–p, respectively.
input s ans s input p ans p

x1 (0) c (15) (b, x2) (2) (b, c) (9)
f (c, x3) (4) (b, f )
h ( f , x4) (b, h)
d (h, x5) (c, d)
g (d, x6) (6) ( f , g)
e (g, x7) (h, g)

(e, x8) (8) (d, e)
(b, d) (11)
(b, g)
(c, e)
(b, e) (13)
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transfers {(b, x1)} through E13. This adds a fresh variant (b, x2) of the tuple (b, x1) to
the empty sets tuples(input p), unprocessed(E1) and unprocessed(E7).

(3) E7 − E8 − E9
After processing unprocessed(E7), the algorithm empties this set and transfers
{(b, x2)} through the edge E7. This produces {((b, x2), {x/b, y/x2})}, which is then
transferred through the edge E8, producing {((b, x2), {y/x2, z/c}),
((b, x2), {y/x2, z/f }), ((b, x2), {y/x2, z/h})}, which in turn is then transferred through
the edge E9 and added to the empty sets subqueries( filter2,2),
unprocessed subqueries( filter2,2) and unprocessed subqueries2( filter2,2).

(4) E6
After processing unprocessed subqueries2( filter2,2), the algorithm empties this set and
transfers {(c, x2), ( f , x2), (h, x2)} through the edge E6. This adds fresh variants of
these tuples, namely (c, x3), ( f , x4) and (h, x5), to the sets tuples(input p),
unprocessed(E1) and unprocessed(E7). After these steps, we have:

. unprocessed(E1) = tuples(input p) = {(b, x2), (c, x3), ( f , x4), (h, x5)},

. unprocessed(E7) = {(c, x3), ( f , x4), (h, x5)}.

(5) E7 − E8 − E9
After processing unprocessed(E7), the algorithm empties this set and transfers
{(c, x3), ( f , x4), (h, x5)} through the edge E7. This produces {((c, x3), {x/c, y/x3}),
(( f , x4), {x/f , y/x4}), ((h, x5), {x/h, y/x5})}, which is then transferred through the
edge E8, producing {((c, x3), {y/x3, z/d}), (( f , x4), {y/x4, z/g}), ((h, x5), {y/x5, z/g})},
which in turn is then transferred through the edge E9 and added to the sets
subqueries( filter2,2), unprocessed subqueries( filter2,2) and unprocessed subqueries2
( filter2,2). After these steps, we have:

. unprocessed subqueries( filter2,2) = subqueries( filter2,2) = {((b, x2), {y/x2, z/c}),
((b, x2),{y/x2, z/f }), ((b, x2), {y/x2, z/h}), ((c, x3), {y/x3, z/d}), (( f , x4), {y/x4, z/g}),
((h, x5), {y/x5, z/g})},

. unprocessed subqueries2( filter2,2) = {((c, x3), {y/x3, z/d}), (( f , x4), {y/x4, z/g}),
((h, x5), {y/x5, z/g})}.

(6) E6
After processing unprocessed subqueries2( filter2,2), the algorithm empties this set and
transfers {(d, x3), (g, x4)} through the edge E6. This adds fresh variants of these
tuples, namely (d, x6) and (g, x7), to the sets tuples(input p), unprocessed(E1) and
unprocessed(E7). After these steps, we have:

. unprocessed(E1) = tuples(input p) = {(b, x2),(c, x3), ( f , x4), (h, x5), (d, x6), (g, x7)},

. unprocessed(E7) = {(d, x6), (g, x7)}.
(7) E7 − E8 − E9

After processing unprocessed(E7), the algorithm empties this set and transfers
{(d, x6), (g, x7)} through the edge E7. This produces {((d, x6), {x/d, y/x6}),
((g, x7), {x/g, y/x7})}, which is then transferred through the edge E8, producing
{((d, x6), {y/x6, z/e})}, which in turn is then transferred through the edge E9 and
added to the sets subqueries( filter2,2), unprocessed subqueries( filter2,2) and
unprocessed subqueries2( filter2,2). After these steps, we have:
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. unprocessed subqueries( filter2,2) = subqueries( filter2,2) = {((b, x2), {y/x2, z/c}),
((b, x2),{y/x2, z/f }), ((b, x2), {y/x2, z/h}), ((c, x3), {y/x3, z/d}), (( f , x4), {y/x4, z/g}),
((h, x5), {y/x5, z/g}), ((d, x6), {y/x6, z/e})},

. unprocessed subqueries2( filter2,2) = {((d, x6), {y/x6, z/e})}.

(8) E6
After processing unprocessed subqueries2( filter2,2), the algorithm empties this set and
transfers {(e, x6)} through the edge E6. This adds a fresh variant (e, x8) of the tuple
{(e, x6)} to the sets tuples(input p), unprocessed(E1) and unprocessed(E7). After
these steps, we have:

. unprocessed(E1) = tuples(input p) = {(b, x2), (c, x3), ( f , x4), (h, x5), (d, x6), (g, x7),
(e, x8)},

. unprocessed(E7) = {(e, x8)}.

(9) E1 − E2 − E3 − E4
After processing unprocessed(E1), the algorithm empties this set and transfers {(b, x2),
(c, x3), ( f , x4), (h, x5), (d, x6), (g, x7), (e, x8)} through the edge E1. This produces
{((b, x2), {x/b, y/x2}), ((c, x3), {x/c, y/x3}), (( f , x4), {x/f , y/x4}), ((h, x5), {x/h, y/x5}),
((d, x6), {x/d, y/x6}), ((g, x7), {x/g, y/x7}), ((e, x8), {x/e, y/x8})}, which is then trans-
ferred through the edge E2, producing {((b, c), 1), ((b, f ), 1), ((b, h), 1), ((c, d), 1),
(( f , g), 1), ((h, g), 1), ((d, e), 1)}, which in turn is then transferred through the edge
E3, producing {(b, c), (b, f ), (b, h), (c, d), ( f , g), (h, g), (d, e)}, which in turn is then
transferred through the edge E4 and added to the empty sets tuples(ans p),
unprocessed(E5) and unprocessed(E12).

(10) E5
After processing unprocessed(E5), the algorithm empties this set and transfers {(b, c),
(b, f ), (b, h), (c, d), ( f , g), (h, g), (d, e)} through the edge E5 and adds these tuples to
the empty set unprocessed tuples( filter2,2).

(11) E10 − E11
After processing unprocessed tuples( filter2,2) and unprocessed subqueries( filter2,2), the
algorithm empties these sets and transfers {((b, d), 1), ((b, g), 1), ((c, e), 1)} through
the edge E10. This produces {(b, d), (b, g), (c, e)}, which is then transferred through
the edge E11 and added to the sets tuples(ans p), unprocessed(E5) and
unprocessed(E12). After these steps, we have:

. unprocessed(E12) = tuples(ans p) = {(b, c), (b, f ), (b, h), (c, d), ( f , g), (h, g), (d, e),
(b, d), (b, g), (c, e)},

. unprocessed(E5) = {(b, d), (b, g), (c, e)}.

(12) E5
After processing unprocessed(E5), the algorithm empties this set and transfers {(b, d),
(b, g), (c, e)} through the edge E5 and adds these tuples to the empty set
unprocessed tuples( filter2,2).

(13) E10 − E11
After processing unprocessed tuples( filter2,2), the algorithm empties this set and
transfers {((b, e), 1)} through the edge E10. This produces {(b, e)}, which is then
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transferred through the edge E11 and added to the sets tuples(ans p), unprocessed(E5)
and unprocessed(E12). After these steps, we have:

. unprocessed(E12) = tuples(ans p) = {(b, c), (b, f ), (b, h), (c, d), ( f , g), (h, g), (d, e),
(b, d), (b, g), (c, e), (b, e)},

. unprocessed(E5) = {(b, e)}.

(14) E12
After processing unprocessed(E12), the algorithm empties this set and transfers {(b, c),
(b, f ), (b, h), (c, d), ( f , g), (h, g), (d, e), (b, d), (b, g), (c, e), (b, e)} through the edge E12
and adds these tuples to the empty set unprocessed tuples( filter3,1).

(15) E16 − E17
After processing unprocessed tuples( filter3,1) and unprocessed subqueries( filter3,1), the
algorithm empties these sets and transfers {((c), 1), (( f ), 1), ((h), 1), ((d), 1), ((g), 1),
((e), 1)} through the edge E16. This produces {(c), ( f ), (h), (d), (g), (e)}, which is then
transferred through the edge E17 and added to the empty set tuples(ans s).

(16) E5, E7, E10
The edges E5 and E7 are still active, with unprocessed(E5) = {(b, e)} and
unprocessed(E7) = {(e, x8)}. Firing the edge E5 causes the edge E10 to become
active, but after that, firing the edges E7 and E10 does not create data to be
transferred.

At this point, no edges are active (in particular, all the attributes unprocessed,
unprocessed subqueries, unprocessed subqueries2 and unprocessed tuples of the nodes in
the net are empty sets). The algorithm terminates and returns the set
tuples(ans s) = {(c), ( f ), (h), (d), (g), (e)}.

Table 1 summarizes the effects of the steps of this trace. The numbers in bold font indi-
cate the corresponding steps of the trace, which are listed in Example 3.5.

We present below properties of Algorithm 1. Due to the lack of the space, we refer the
reader to Cao (2016) for their proofs.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 93



Soundness: After a run of Algorithm 1 on a query (P, q(�x)) and an extensional instance I, for
every intensional predicate p of P, every tuple �t [ tuples(ans p) is a correct answer in
the sense that P< I o ∀( p(�t)).

Completeness: After a run of Algorithm 1 (using parameter l ) on a query (P, q(�x)) and an
extensional instance I, for every SLD-refutation of P< I< {� q(�x)} that uses the left-
most selection function, does not contain any goal with term-depth greater than l and
has a computed answer θ with term-depth not greater than l, there exists
�s [ tuples(ans q) such that �xu is an instance of a variant of �s.
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Together with the completeness of SLD-resolution (Clark, 1979), this property makes a
relationship between correct answers for P< I< {� q(�x)} and the answers computed by
Algorithm 1 for the query (P, q(�x)) on the extensional instance I.

For queries and extensional instances without function symbols, we take term-depth
bound l=0 and obtain the following completeness result, which immediately follows
from the above property:

After a run of Algorithm 1 using l=0 on a query (P, q(�x)) and an extensional instance I that do
not contain function symbols, for every computed answer θ of an SLD-refutation of
P< I< {� q(�x)} that uses the leftmost selection function, there exists �t [ tuples(ans q)
such that �xu is an instance of a variant of �t.

Data complexity: For a fixed query and a fixed bound l on term-depth, Algorithm 1 runs in
polynomial time in the size of the extensional instance.

4. Preliminary experiments

In Cao (2016), we presented three control strategies DAR (Disk Access Reduction), DFS
(Depth-First Strategy), IDFS (Improved Depth-First Strategy) and implemented QSQN
together with these strategies to obtain the corresponding evaluation methods QSQN-
DAR, QSQN-DFS and QSQN-IDFS. The intention of DAR is to reduce the number of accesses
to the secondary storage. Because our current implementation of the DAR control strategy
is not advanced enough and the implemented QSQN-DAR method is not more efficient
than the implemented QSQN-IDFS method, for comparison with the Magic-Sets and
QSQR methods we used QSQN-IDFS. We compared the QSQN-IDFS, Magic-Sets and
QSQR evaluation methods with respect to:

. the number of read/write operations on relations,

. the maximum number of tuples/subqueries kept in the computer memory,

. the number of accesses to the secondary storage when the memory is limited.

Our experiments consider different kinds of logic programs, including non-recursive,
tail recursive, non-tail recursive as well as logic programs with or without function
symbols. We used typical examples from well-known articles related to deductive data-
bases. We also provided new examples. Due to the lack of the space, we refer the
reader to Cao (2016) for more details on control strategies, experimental settings, test
cases and experimental results. We report below only one test.

For the Datalog database and the query given in Example 1.1 withm=n=100, the QSQN-
IDFS method reads data from relations 361 times, writes data to relations 154 times and
keeps maximally in the memory 204 tuples, while the corresponding numbers of the
Magic-Sets method are 721, 301 and 10,105, respectively, and the corresponding
numbers of the QSQR method are 410, 358 and 356, respectively. When the number of
tuples kept in the memory is restricted to 5052 (about 50% of the mentioned number
10,105), the Magic-Sets method needs to write relations to the secondary storage 29
times and read them from the secondary storage 60 times (using a certain unloading
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strategy), while the QSQN-IDFS method reads data from the secondary storage only once
and does not need to write data to the secondary storage. When the number of tuples
kept in the memory is restricted to 2021 (i.e. 20% of the mentioned number 10,105),
the Magic-Sets method fails to evaluate the query, while the QSQN-IDFS method does
not. This test shows that, when the positive logic program defining intensional predicates
is specified using the Prolog programming style, the QSQN-IDFS and QSQR methods
(which use depth-first search) are usually more efficient than the Magic-Sets method
(which uses the breadth-first search).

As can be seen in Cao (2016, Tables 6.1-6.3), the QSQR method is often worse than the
QSQN-IDFS and Magic-Sets methods w.r.t. the number of accesses to the secondary
storage. As discussed by Madalińska-Bugaj and Nguyen (2012), QSQR uses iterative dee-
pening search and clears input relations at the beginning of each iteration of the main
loop, thus it allows redundant recomputations. In addition, the formulation of QSQR in
Madalińska-Bugaj and Nguyen (2012) is at a logical level and uses the same relation for
the whole sequence of supplements. This requires more relation loading/unloading
when the recursive depth is high and no more memory is available.

5. Conclusions

We have provided the first framework for developing algorithms for evaluating queries to
Horn knowledge bases with the properties that: the approach is goal-directed; each sub-
query is processed only once and each supplement tuple, if desired,2 is transferred only
once; operations are done set-at-a-time; and any control strategy can be used.

Our framework is an adaptation and a generalization of the QSQ approach of Datalog
for Horn knowledge bases. One of the key differences is that we do not use adornments
and annotations, but use substitutions instead. This is natural for the case with function
symbols and without the range-restrictedness condition. When restricting to Datalog
queries, it groups operations on the same relation together regardless of adornments
and allows to reduce the number of accesses to the secondary storage although ‘joins’
would be more complicated.

Our framework forms a generic evaluation method called QSQN. This method is
designed so that the query processing is divided into appropriate steps which can be
delayed to maximize adjustability and allow various control strategies. In comparison
with the most well-known evaluation methods, the generic QSQN evaluation method
does not do redundant recomputations as the QSQR evaluation method and is more adjus-
table and thus has essential advantages over theMagic-Sets evaluationmethod. The QSQN
method is sound and complete, and has polynomial time data complexity when the term-
depth bound is fixed. Notice the significance of this: it states that one can develop and use
any control strategy for QSQN and the resulting evaluationmethod is always guaranteed to
be sound and complete. Our proofs (Cao, 2016) are important in the context that, without
proofs, themethods proposed in Vieille (1986), Abiteboul et al. (1995) andMadalińska-Bugaj
and Nguyen (2008) were wrongly claimed to be complete.

Our experiments presented in Cao (2016) show that the QSQN-IDFS evaluation method
is more efficient than the QSQR evaluation method and as competitive as the Magic-Sets
evaluation method. In the case when the order of program clauses and the order of atoms
in the bodies of program clauses are essential as in Prolog programming, the QSQN-IDFS
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evaluation method usually outperforms the Magic-Sets method. As QSQN-IDFS is just an
instance of the generic QSQN evaluation method, we conclude that this generic
method is useful.

QSQ-nets are a more intuitive representation than the description of the QSQ approach
of Datalog given in Abiteboul et al. (1995). Our notion of QSQ-net makes a connection to
flow networks and is intuitive for developing efficient evaluation algorithms. For example,
we have incorporated tail-recursion elimination into QSQ-nets (Cao, 2016; Cao & Nguyen,
2015) to obtain the QSQN-TRE method, as well as stratified negation into QSQ-nets (Cao,
2016) to obtain the QSQN-STR method for evaluating queries to stratified knowledge
bases.

Notes

1. By ‘adjustability’ we mean easiness in adopting advanced control strategies.
2. when T(v) = false for all nodes v of the form filteri,j with kind(v) = extensional
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