
An efficient algorithm to find a maximum
weakly stable matching for SPA-ST problem

Nguyen Thi Uyen1(B) and Tran Xuan Sang2

1 School of Engineering and Technology, Vinh University, Vietnam
uyennt@vinhuni.edu.vn

2 Cyber School, Vinh University, Vietnam
sangtx@vinhuni.edu.vn

Abstract. This paper presents a heuristic algorithm to seek a maximum
weakly stable matching for the Student-Project Allocation with lecturer
preferences over Students containing Ties (SPA-ST) problem. We ex-
tend Gale-Shapley’s idea to find a stable matching and propose two new
heuristic search strategies to improve the found stable matching in terms
of maximum size. The experimental results show that our algorithm is
more effective than AP in terms of solution quality and execution time
for solving the MAX-SPA-ST problem of large sizes.

Keywords: SPA · Heuristic Search · Weakly Stable Matching · MAX-
SPA-ST · Undominated Blocking Pairs.

1 Introduction

The Student-Project Allocation problem with lecturer preferences over Students
containing Ties (SPA-ST) is an extension of the Student-Project Allocation
problem (SPA) [7,18,17,6,20,9]. This extension makes the original SPA problem
more practical because lecturers have preference lists over students, and students
also have preference lists over projects with allowing ties in order. The goal of
SPA-ST is to seek a stable matching like SPA, which includes pairs of students
and projects based on their preference lists. Note that each student is eligible
for only one project, and the capacity constraints of both projects and lecturers
meet requirements and satisfactions. According to ties given in the SPA-ST
problem, there are three stability criteria of matching consists of weakly stable,
strongly stable, and super-stable matching [22,21].

Recently, several researchers have focused on solving the SPA-ST problem
because of its applications to large-scale matching schemes in university depart-
ments around the world, such as Glasgow University [14], Southern Denmark
University [20], York University [15], and elsewhere [10,4,3,2,8]. Several algo-
rithms have been proposed to solve the SPA-ST problem. Cooper et al. [6]
presented a 3/2- approximation algorithm, called AP, to find a weakly stable
matching based on Király’s idea for the HRT problem [16,13]. Besides, they
also modeled the SPA-ST problem as an Integer Programming (IP) problem.
Olaosebikan et al. [21] described the polynomial-time algorithm to find a strongly

2 Nguyen Thi Uyen et al.

stable matching, and they proved that it might not exist for SPA-ST problem.
Their algorithm runs in O(m2) time, where m is the total length of the students’
preference lists. In addition, Olaosebikan et al. [22] proposed an approximation
algorithm for solving SPA-ST problem in terms of finding a super-stable match-
ing.

Practically, the problem of finding weakly stable matching is the most suitable
for real-life applications. Irving et al. [11] showed that weakly stable matchings
always exist and have different sizes [19]. This research aims to find a weakly
stable matching with maximum size, called a MAX-SPA-ST problem, mean-
ing that as many students as possible are assigned to projects. However, the
MAX-SPA-ST problem is known as NP-hard, and therefore, finding an effi-
cient algorithm to solve the MAX-SPA-ST of large sizes is a challenge for the
research community.

Our contribution. This paper presents an effective heuristic algorithm to
solve the MAX-SPA-ST problem of large sizes. Our main idea is to start from
a stable matching, then define two heuristic strategies promoting unmatched
students and under-subscribed lecturers to improve the matching size by break-
ing stable pairs. Our algorithm terminates when it finds a perfect matching or
reaches a maximum number of iterations. The experimental results show that
our proposed algorithm is more efficient than the AP algorithm [6] in terms of
solution quality and execution time.

The rest of this paper is organized as follows: Section 2 presents preliminaries
of SPA-ST, Section 3 describes our proposed algorithm, Section 4 discusses our
experimental results, and Section 5 concludes our work.

2 Preliminaries

An SPA-ST instance consists of a set of students, denoted by S = {s1, s2, · · · , sn},
a set of projects, denoted by P = {p1, p2, · · · , pq}, and a set of lecturers, denoted
by L = {l1, l2, · · · , lm}. Each lecturer lk offers a set of projects and ranks a set
of students in her/his preference list. Each student si ranks a set of projects in
her/his preference list. Both lecturers’ and students’ preference lists allow ties in
order. Each lecturer has a capacity dk ∈ Z+ indicating the maximum number of
students that can be matched to lk. Each project is offered by one lecturer and
has a capacity cj ∈ Z+ indicating the maximum number of students that can be
matched to pj . For any pair (si, pj) ∈ S×P where pj is offered by lk, we consider
(si, pj) as an acceptable pair if si and pj both find each other acceptable, i.e.
pj is ranked by a student si and si is ranked by a lecturer lk who offers pj . We
denote the rank of pj in si’s preference list by Rsi(pj) and the rank of si in lk’s
preference list by Rlk(si). Note that we will use the term rank list instead of the
preference list in the implementation process.

A matching M of a SPA-ST instance is a set of acceptable pairs (si, pj)
or (si,∅) such that |M(si)| ≤ 1 for all si ∈ S, |M(pj)| ≤ cj for all pj ∈ P,
and |M(lk)| ≤ dk for all lk ∈ L. A project pj is under-subscribed, full or over-
subscribed according as |M(pj)| < cj , |M(pj)| = cj , or |M(pj)| > cj , respectively.

An efficient algorithm for the MAX-SPA-ST problem of large sizes 3

Similarly, lecturer lk is under-subscribed, full or over-subscribed according as
|M(lk)| < dk, |M(lk)| = dk, or |M(lk)| > dk, respectively. If (si, pj) ∈ M , then
si is matched to pj , denoted by M(si) = pj . If M(si) = ∅, then si is unmatched
in M .

Let (si, pj) ∈ (S × P) \M be a blocking pair for a weakly stable matching
M if the following conditions are satisfied:

1. si and pj find accept each other;
2. si prefers pj to M(si) or M(si) = ∅;
3. either (a), (b) or (c) holds as follows:

(a) |M(pj)| < cj and |M(lk)| < dk;
(b) |M(pj)| < cj , |M(lk)| = dk and;

i. either si ∈ M(lk) or;
ii. lk prefers si to the worst student in M(lk);

(c) |M(pj)| = cj and lk prefers si to the worst student in M(pj).

Suppose that we have two blocking pairs (si, pj) and (si, pk), we say that
(si, pj) dominates (si, pk) from the student’s point of view if si prefers pj to pk.
A pair (si, pj) is undominated if there are no blocking pairs that dominate it
from the student’s point of view.

A matchingM is called weakly stable if it admits no blocking pair, otherwise it
is called unstable. In this paper, we consider a weakly stable matching as a stable
matching. The size of a stable matching M , denoted by |M |, is the number of
matched students in M . If |M | = n, then M is a perfect matching, otherwise,
M is a non-perfect matching.

3 Proposed algorithm

3.1 HA algorithm

This section describes our heuristic algorithm for the MAX-SPA-ST problem,
called HA, in Algorithm 1. Our main idea is to start stable matching, which is
adapted from Gale-Shapely’s idea [7]. Then, if a stable matching is non-perfect,
we improve its size by proposing two heuristic search strategies with two tasks
as follows:

Task 1: Algorithm 1 selects a random unmatched student si from a stable
matching M . Then, the algorithm considers one by one project pj ∈ P in order
of si’s rank list in which pj is offered by lk. The algorithm finds a student st
which is the same ties with si in lk’s rank list, i.e. Rlk(st) = Rlk(si). Then,
the algorithm satisfies either condition in case (1) or (2) as follows: Case (1):
pj is under-subscribed and v(si) ≥ v(st). Case (2): pj is full, st ∈ M(pj) and
v(si) ≥ v(st), then the algorithm replaces (st, pz) where pz = M(st) by (si, pj)
in M and increases the value of v(si). It should be noted that the condition
v(si) ≥ v(st) means that the number of replacements of si is higher than st,
meaning that si is prioritized to match with pj . If pz is removed and became
under-subscribed, we call the function Repair(pz, lk) to break blocking pairs for
M .

4 Nguyen Thi Uyen et al.

Algorithm 1: HA Algorithm for MAX-SPA-ST problem

Input: - An SPA-ST instance I.
- max iter is the maximum number of iterations.

Output: A maximum stable matching M .
1. function HA(I)
2. M := EGS(I); ▷ generate a stable matching

3. v(si) := 0, (1 ≤ i ≤ n); ▷ mark the replacing time of si
4. v(pi) := 0, (1 ≤ i ≤ q); ▷ mark the replacing time of pi
5. iter := 0;
6. while (iter ≤ max iter) do
7. iter := iter + 1;
8. if |M | = n then break ;
9. si := a random unmatched student in M ; ▷ Task 1

10. R′
si := si’s ranks list;

11. while R′
si is non-empty do

12. pj := argmin(R′
si > 0), ∀pj ∈ P;

13. lk := a lecturer who offers pj ;
14. for (each st ∈ M(lk)| Rlk(st) = Rlk(si)) do
15. if (|M(pj)| < cj) or (st ∈ M(pj) and |M(pj)| = cj) then
16. if v(si) ≥ v(st) or a small probability then
17. M := M \ {(st, pz)} ∪ {(si, pj)}| pz = M(st);
18. v(si) := v(si) + 1;
19. Repair(pz, lk);
20. M := Break Student(M , st);
21. break;

22. if M(si) ̸= ∅ then break;
23. else R′

si(pj) := 0 ;

24. pi := a random under-subscribed project in M ; ▷ Task 2

25. lk := a lecturer who offers pi;
26. for each sj ∈ S|Rsj (pt) = Rsj (pi)|pt = M(sj) do
27. if (|M(lk)| < dk) or (|M(lk)| = dk and sj ∈ M(lk)) then
28. if (v(pi) ≥ v(pt) or a small probability then
29. M := M \ {(sj , pt)} ∪ {(sj , pi)};
30. v(pi) := v(pi) + 1;
31. M := Break Lecturer(M , pt);
32. break;

33. return M ;

34. end function

To avoid a local minimum with a small probability, we prioritize si without
considering the value of v(si). As a result, st is now unmatched, thus the algo-

An efficient algorithm for the MAX-SPA-ST problem of large sizes 5

Algorithm 2: Breaking blocking pair from the student of M

Input: A matching M .
Output: A stable matching M .

1. function Break Student(M , st)
2. while (there exists blocking pairs) do
3. (st, pu) := an undominated blocking pair from st;
4. lk := a lecturer who offers pu;
5. M := M ∪ {(st, pu)};
6. if pu is over-subscribed then
7. sw := a worst student of pu;
8. M := M \ {(sw, pu)};
9. st := sw;

10. else if lk is over-subscribed then
11. sr := a worst student of lk;
12. M := M \ {(sr, pz)}, where pz = M(sr);
13. Repair(pz, lk); ▷ repair blocking pair of type (3bi)

14. st := sr;

15. return M ;

16. end function

rithm calls the Algorithm 2 to break blocking pairs for M . Finally, Algorithm 1
returns a stable matching that is equal to or greater in size than the current
matching M .

Task 2: Algorithm 1 selects a random under-subscribed project pi from a
stable matching M . Then, the algorithm finds a student sj which ranks pi at
the same rank asM(sj) in sj ’s rank list, i.e. Rsj (pi) = Rsj (pt) whereM(sj) = pt.
Then, the algorithm satisfies either condition in case (1) or (2) as follows: Case
(1): lk is under-subscribed and v(pi) ≥ v(pt). Case (2): lk is full, sj ∈ M(lk),
and v(pi) ≥ v(pt), then the algorithm replaces (sj , pt) by (sj , pi) in M and
increases the value of v(pi). Note that v(pi) ≥ v(pt) means that the number
of replacements of pi is higher than pt, i.e. pi is prioritized to match with sj .
To avoid a local minimum, with a small probability, we always prioritize pi
without considering the value of v(pi). As a result, pt and lw who offers pt are
under-subscribed, thus the algorithm calls the Algorithm 3 to break blocking
pairs for M . Finally, the Algorithm 1 returns a stable matching that is equal to
or greater in size than the current matching M . Our HA algorithm stops if a
perfect matching is found or it is reached to the maximum number of iterations.

We use Algorithm 2 to break blocking pairs when a student st is removed and
becomes an unmatched student. The algorithm finds an undominated blocking
pair (st, pu) from st’s point of view. If there exists, then we add (st, pu) into
M , where pu is offered by lk. This process repeats until there are no existing
blocking pairs for only unmatched students who have just been removed.

6 Nguyen Thi Uyen et al.

Algorithm 3: Breaking blocking pair from the lecturer of M

Input: A matching M .
Output: A stable matching M .

1. function Break Lecturer(M , pt)
2. while (there exists blocking pairs) do
3. lw := a lecturer who offers pt;
4. if pt is under-subscribed then
5. Repair(pt, lw); ▷ repair blocking pair of type (3bi)

6. (sz, pu) := an undominated blocking pair from lw;
7. if there exists pair (sz, pu) then
8. M := M \ {(sz, ph)} ∪ {(sz, pu)}, where ph = M(sz);
9. if pu is over-subscribed then

10. sw := a worst student of pu;
11. M := M \ {(sw, pu)};
12. M := Break Student(M , sw);

13. else if lw is over-subscribed then
14. sr := a worst student of lw;
15. M := M \ {(sr, pz)}, where pz = M(sr);
16. Repair(pz, lw);
17. M := Break Student(M , sr);

18. pt := ph;

19. else
20. break;

21. return M ;

22. end function

We use Algorithm 3 to break blocking pairs when a project pt is replaced
and becomes under-subscribed. The algorithm uses the function Repair(pt, lw) to
remove blocking pairs type of (3bi), then we find an undominated blocking pair
(sz, pu) from lw’s point of view. If there exists, then we remove (sz, ph) where
ph = M(sz) and add (sz, pu) into M . This process repeats until there are no
existing blocking pairs for only ph which have just been removed.

3.2 Example

This section presents an example execution of our HA algorithm for the SPA-
ST instance consisting of seven students, eight projects, and three lecturers in
Table 1. Starting from a stable matchingM = {(s1, p1), (s2,∅), (s3, p4), (s4, p2),
(s5,∅), (s6, p5), (s7, p3)} of size |M | = 5, HA runs as follows: HA algorithm
takes a random unmatched student s2 and finds s6 such that Rl2(s2) = Rl2(s6)
from l2’s rank list. Then, HA removes (s6, p5) and adds (s2, p5) into M , thus
s6 becomes unmatched. Next, the algorithm calls Alg. 2 to break blocking pairs.

An efficient algorithm for the MAX-SPA-ST problem of large sizes 7

The algorithm finds an undominated blocking pair (s6, p8) from s6’s point of
view and adds (s6, p8) into M to generate a new stable matching M = {(s1, p1),
(s2, p5), (s3, p4), (s4, p2), (s5,∅), (s6, p8), (s7, p3)} of size |M | = 6. Next, HA
considers a random under-subscribed project p7 and seeks a project p1 which has
Rs1(p7) = Rs1(p1) from s1’s rank list. Then, the algorithm removes (s1, p1) and
adds (s1, p7) into M . Next, the algorithm calls the Alg. 3 to break blocking pairs
for M . Finally, HA returns a perfect matching M = {(s1, p7), (s2, p5), (s3, p1),
(s4, p2), (s5, p4), (s6, p8), (s7, p3)} of size |M | = 7.

Table 1. An instance of SPA-ST

Student’s preferences Lecturer’s preferences
s1: (p1 p7) l1: (s7 s4) s1 s3 (s2 s5) s6 l1 offers p1, p2, p3
s2: p1 p2 (p3 p4) p5 p6 l2: s3 (s2 s6) s7 s5 l2 offers p4, p5, p6
s3: (p2 p1) p4 l3: (s1 s7) l3 offers p7, p8
s4: p2
s5: (p1 p2) p3 p4
s6: (p2 p3) p4 p5 p6 Project capacities c1 = 2, ci = 1, (2 ≤ i ≤ 8)
s7: (p5 p3) p8 Lecturer capacities d1 = 3, d2 = 2, d3 = 2

4 Experimental Results

In this section, we compared the solution quality and execution time of HA
with those of AP which is an approximation algorithm [6] for the MAX-SPA-
ST problem. We implemented these algorithms by Matlab R2019a software on
a Xeon-R Gold 6130 CPU 2.1 GHz computer with 16 GB RAM. To perform the
experiments, we generated randomly SPA-ST instances with five parameters
(n,m, q, p1, p2), where n is the number of students, m is the number of lecturers,
q is the number of projects, p1 is the probability of incompleteness, and p2 is
the probability of ties. By this setting, on average, each student ranks about
q × (1 − p1) projects. In our experiments, we set the total capacity of projects
and lecturers as C = 1.2n and D = 1.1n, respectively.

4.1 Comparison of solution quality

This section presents two experiments to compare the solution quality found by
HA with that found by AP [6].

Experiment 1. Firstly, we randomly generated 100 instances of SPA-ST
for parameters (n,m, q, p1, p2) with n ∈ {100, 200}, m = 0.05n, q = 0.1n, p1 ∈
[0.1, 0.8] with step 0.1, and p2 ∈ [0.0, 1.0] with step 0.1. Then, we ran HA and
AP, averaged results, and compared the percentage of perfect matchings and
the average number of unmatched students found by these two algorithms. Our
experimental results show that when p1 ∈ [0.1, 0.6] with every the value of p2,

8 Nguyen Thi Uyen et al.

both our HA and AP obtain approximately 100% of perfect matchings, so we do
not show the experiment results here. Figures 1(a) and 1(c) show the percentage
of perfect matchings found by HA and AP. When p1 = 0.7 or p1 = 0.8, HA
finds a much higher percentage of perfect matchings than AP does. Figures 1(b)
and 1(d) show the average number of unmatched students found by HA and AP.
When p1 = 0.7 or p1 = 0.8, HA finds a fewer number of unmatched students in
stable matchings than AP does.

HA p
1
 = 0.6

AP p
1
 = 0.6

HA p
1
 = 0.7

AP p
1
 = 0.7

HA p
1
 = 0.8

AP p
1
 = 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
p
e
rf

e
c
t
m

a
tc

h
in

g
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
u
n
m

a
tc

h
e
d
 s

tu
d
e
n
ts

(a) – Solution quality for n = 100, m = 5, q = 10 – (b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
p
e
rf

e
c
t
m

a
tc

h
in

g
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
u
n
m

a
tc

h
e
d
 s

tu
d
e
n
ts

(c) – Solution quality for n = 200, m = 10, q = 20 – (d)

Fig. 1. Percentage of perfect matching and average number of unmatched students

Experiment 2. As we saw in Experiment 1, when p1 increases, both HA and
AP are hard to find perfect matchings since the number of projects ranked in stu-
dents’ preference lists decreases. In this experiment, we changed n ∈ {300, 400},
p1 ∈ {0.82, 0.84, 0.86} and kept the values of m, q, and p2 as in Experiment 1.
Figure 2 shows the percentage of perfect matchings found byHA andAP. Again,
we see that HA finds a much higher percentage of perfect matchings than AP
does.

An efficient algorithm for the MAX-SPA-ST problem of large sizes 9

HA p
1
 = 0.6

AP p
1
 = 0.6

HA p
1
 = 0.7

AP p
1
 = 0.7

HA p
1
 = 0.8

AP p
1
 = 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

10

20

30

40

50

60

70

80

90

100
P

e
rc

e
n
ta

g
e
 o

f
p
e
rf

e
c
t
m

a
tc

h
in

g
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

1.5

3

4.5

6

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
u
n
m

a
tc

h
e
d
 s

tu
d
e
n
ts

(a) – Solution quality for n = 300, m = 15, q = 30 – (b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
p
e
rf

e
c
t
m

a
tc

h
in

g
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
u
n
m

a
tc

h
e
d
 s

tu
d
e
n
ts

(c) – Solution quality for n = 400, m = 20, q = 40 – (d)

Fig. 2. Percentage of perfect matching and average number of unmatched students

4.2 Comparison of execution time

In the above experiments, n is small, and therefore, the execution time of HA
and AP is almost the same. This section presents two experiments to compare
the execution time of HA and AP for SPA-ST instances of large sizes.

Experiment 3. We randomly generated 100 instances of SPA-ST for param-
eters (n,m, q, p1, p2) with n ∈ {1000, 2000}, m = 0.05n, q = 0.4n, p1 ∈ [0.1, 0.8]
with step 0.1, and p2 ∈ [0.0, 1.0] with step 0.1. Figures 3 (a) and 3(b) show
the average execution time over p1 of HA and AP. When p2 increases from 0.0
to 1.0, the execution time of AP almost remains unchanged, while HA slightly
decreases, except for p2 = 1.0, the execution time of HA significantly increases.
When n = 1000, HA runs about 9 times faster than AP. When n = 2000, HA
runs about 12.5 times faster than AP.

Experiment 4. Finally, we kept the values of n, m, q, and p2 as in Exper-
iment 3, increased the values of p1 ∈ [0.81, 0.89] with step 0.01, and randomly
generated 100 instances of SPA-ST for each combination of values (p1, p2). By
increasing the values of p1, we aim to reduce the number of projects ranked by
each student compared to Experiment 3. Figures 3(c) and 3(d) show the aver-
age execution time over p1 of HA and AP. As in Experiment 3, we saw that
when p2 increases from 0.0 to 1.0, the execution time of AP almost remains
unchanged, while HA slightly decreases, except for p2 = 1.0, the execution time

10 Nguyen Thi Uyen et al.

HA AP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

-1.2

-0.8

-0.4

0
A

v
e
ra

g
e
 r

u
n
-t

im
e
 (

lo
g

1
0
s
e
c
.)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

-0.5

0

0.5

1

A
v
e
ra

g
e
 r

u
n
-t

im
e
 (

lo
g

1
0
s
e
c
.)

(a) n = 1000, p1 ∈ [0.1, 0.8] (b) n = 2000, p1 ∈ [0.1, 0.8]

HA AP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

-1

-0.5

0

0.5

A
v
e
ra

g
e
 r

u
n
-t

im
e
 (

lo
g

1
0
s
e
c
.)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
2

-0.5

0

0.5

1

A
v
e
ra

g
e
 r

u
n
-t

im
e
 (

lo
g

1
0
s
e
c
.)

(c) n = 1000, p1 ∈ [0.81, 0.89] (d) n = 2000, p1 ∈ [0.81, 0.89]

Fig. 3. Average of execution time for n = 1000, 2000

of HA increases. When n = 1000, HA ran faster about 5 times than AP. When
n = 2000, HA runs faster about 12.5 times than AP.

5 Conclusions

In this study, we presented a heuristic algorithm for solving the MAX-SPA-
ST problem. We started with a stable matching and improved the matching
size by defining two heuristic strategies to pair the unmatched students and
under-subscribed projects. The experimental results showed that our proposed
algorithm is efficient in terms of solution quality and execution time for the
MAX-SPA-ST problem of large sizes. In the future, we will extend this proposed
approach to solve the other variants of the SPA problem [1,5,20,12].

References

1. Abraham, D., Irving, R., Manlove, D.: Two algorithms for the student-project
allocation problem. Journal of Discrete Algorithms 5(1), 73–90 (2007)

2. Aderant, F., Amosa, R., Oluwatobiloba, A.: Development of student project al-
location system using matching algorithm. In: ICONSEET. vol. 1, pp. 153–160
(2016)

An efficient algorithm for the MAX-SPA-ST problem of large sizes 11

3. Binong, J.: Solving student project allocation with preference through weights. In:
COMSYS. pp. 423–430 (2021)

4. Calvo-Serrano, R., Guillén-Gosálbez, C., Simon, K., Andrew, M.: Mathematical
programming approach for optimally allocating students’ projects to academics in
large cohorts. Education for Chemical Engineers 20, 11–21 (2017)

5. El-Atta, A.A., Ibrahim, M.M.: Student project allocation with preference lists over
(student, project) pairs. In: ICCEE. vol. 1, pp. 375–379 (2009)

6. Frances, C., Manlove, D.: A 3/2-approximation algorithm for the student-
project allocation problem. In: SEA. vol. 103, pp. 8:1–8:13 (2018).
https://doi.org/10.4230/LIPIcs.SEA.2018.8

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 9(1), 9–15 (1962)

8. Gani, M., AHamid, R., et al.: Optimum allocation of graduation projects: Survey
and proposed solution. Journal of Al-Qadisiyah for Computer Science and Math-
ematics 13(1), 58–66 (2021)

9. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals-residents problem with lower
quotas. Algorithmica 74(1), 440–465 (2016)

10. Harper, R., Senna, V., Vieira, I., Shahani, A.: A genetic algorithm for the project
assignment problem. Computers & Operations Research 32(5), 1255–1265 (2005)

11. Irving, R., Manlove, D., Sandy, S.: The hospitals/residents problem with ties. In:
SWAT. pp. 259–271. Bergen, Norway (Jul 2000)

12. Ismaili, A., Yahiro, K., Yamaguchi, T., Yokoo, M.: Student-project-resource
matching-allocation problems: two-sided matching meets resource allocation. In:
AAMAS. pp. 2033–2035 (2019)

13. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for
the student-project allocation problem with preferences over projects. Journal of
Discrete Algorithms 13, 59–66 (2012)

14. K.Augustine, Irving, R., Manlove, D., S.Colin: Profile-based optimal matchings in
the student/project allocation problem. In: IWOCA. pp. 213–225 (2014)

15. Kazakov, D.: Co-ordination of student-project allocation. Manuscript (2002)
16. Király, Z.: Linear time local approximation algorithm for maximum stable mar-

riage. Algorithms 6(1), 471–484 (2013)
17. Kwanashie, K., Manlove, D.: An integer programming approach to the hospi-

tals/residents problem with ties. In: GOR. pp. 263–269 (2013)
18. Manlove, D., Gregg, O.: Student-project allocation with preferences over projects.

Journal of Discrete Algorithms 6(4), 553–560 (2008)
19. Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hardvariants of stable

marriage. Theoretical Computer Science 276(1), 261–279 (2002)
20. Marco, C., Rolf, F., Stefano, G.: Handling preferences in student-project allocation.

Annals of Operations Research 275(1), 39–78 (2019)
21. Olaosebikan, S., Manlove, D.: An algorithm for strong stability in the student-

project allocation problem with ties. In: CALDAM. pp. 384–399 (2020)
22. Olaosebikan, S., Manlove, D.: Super-stability in the student-project allocation

problem with ties. Journal of Combinatorial Optimization pp. 1–37 (2020)

https://doi.org/10.4230/LIPIcs.SEA.2018.8

	An efficient algorithm to find a maximum weakly stable matching for SPA-ST problem

