
Improved Streaming Algorithm for Minimum
Cost Submodular Cover Problem

Tan D. Tran1, Canh V. Pham2, Dung P. Trung2, and Uyen T. Nguyen3

1 Faculty of Information Technology, VNU University of Engineering and
Technology, Hanoi, Vietnam

22027005@vnu.edu.vn
2 ORLab, Faculty of Computer Science, Phenikaa University, Hanoi, Vietnam

{canh.phamvan,dung.phamtrung}@phenikaa-uni.edu.vn
3 Institute of Engineering and Technology, Vinh University, Nghean, VietNam

uyennt@vinhuni.edu.vn

Abstract. This paper introduces an efficient streaming algorithm for a
well-known problem named Minimum cost Submodular Cover (MSC).
Our algorithm makes O(logn) passes over the ground set and takes
O(n logn) query complexity and returns a (1/ϵ, 1− ϵ)-bicriteria approx-
imation solution with the ground set of size n and the precise parameter
ϵ > 0. Therefore, it is better than the existing streaming algorithms in
terms of solution guarantees and query complexity. Besides the theoret-
ical performance, the experiment results on two applications, Revenue
Threshold, and Coverage Threshold, further show the superiority of our
algorithm with the state-of-the-art ones.

Keywords: Submodular Cover, Approximation Algorithm, Streaming Algo-
rithm

1 Introduction

This paper considers the Minimum cost Submodular Cover problem (MSC). We
have a finite ground set V sized n and a monotone submodular set function
f : 2V → R+, an additive cost function c : 2V → R+, and a positive threshold
T ≤ f(V), the goal is to find a subset S ⊆ V with the minimum cost such that
f(S) ≥ T , where the cost of S is c(S) =

∑
v∈S c(v).

The problem has a wide range of applications in the areas of artificial in-
telligence, data mining, and combination optimization such as recommending
systems [6], data summarization [18,12], social influence [10,16] and revenue
maximization in social networks [9], maximum coverage [15,9], revenue thresh-
old, coverage threshold, etc. The primary objective of revenue and coverage
threshold differs from typical maximization goals. Rather than solely seeking
to maximize the solution, revenue and coverage threshold optimization focuses
on identifying a solution in which the object value surpasses a specified thresh-
old while minimizing costs. Although there has been a lot of work focused on

2 Tan D. Tran et al.

designing efficient algorithms for the MSC problem [20,19,13,4], the exponen-
tial growth of input data requires more efficient algorithms for both running
time and memory usage. In this context, the streaming algorithm is an effective
method to solve the above issues because it goes through the entire stream only
once or a few times and uses a small amount of memory to get the solution with
a theoretical bound.

Unfortunately, the proposed streaming algorithms for this problem still have
weaknesses. The first one of Norouzi-Fard et al.[14] only focused on a special
problem with uniform cost. Therefore, it could not be applied to the generalMSC.
The authors in [3] introduced the state-of-the-art with a non-monotone utility
function. It returned a (O(1/ϵ2), (1−ϵ)/2)-bicriteria approximation solution but
ran in O(n log opt)/cmin) query complexity, where opt was the cost of optimal
solution and cmin was the smallest cost of an element. Note that the query of
this algorithm was not a polynomial since 1/cmin was not a constant, and it
might become arbitrarily large.

Motivated by the above phenomena, in this paper, we propose an improved
streaming algorithm that provides better approximation guarantees and query
complexity. Our contributions are as following:

– We propose a streaming algorithm for the MSC problem (StrMSC) that pro-
vides a (1ϵ , 1 − ϵ) bicriteria approximation solution that takes O(1ϵ log

n
ϵ)

passes over the ground set, O(n) memories and O(nϵ log
n
ϵ) query complexity,

where ϵ > 0 is a pre-defined accuracy parameter. Therefore, our algorithm
is the first multi-pass and near-linear query complexity for MSC.

– We assess the practical performance of the StrMSC algorithm through an
extensive experiment in two applications: Revenue Threshold and Coverage
Threshold. Our comparison includes the algorithms, MULTI and SINGLE,
developed by Crawford et al. [3], as well as the GREEDY algorithm by
Goyal et al. [7]. Our algorithm consistently outperforms these benchmarked
algorithms across various evaluation criteria, encompassing objective value,
the number of queries, and memory utilization.

The core idea of our algorithm includes two components. The first component
adapts the technique of splitting the ground set by [17] to find a major set within
one pass over the ground set. The second one finds a good solution over the major
set. For each pass, it establishes a threshold and limits the cost to select: (1)
a new element to the partial solution if density gain is at least the threshold,
and (2) a good singleton without violating the limited cost. Each pass returns
the best candidate solution between the above candidates, and the algorithm
terminates after at most O(log n) passes or the value of the utility function is at
least (1− ϵ)T .

Organization. The rest of the paper is structured as follows. Section 2
provides the literature review on MSC problem. Section 3 presents notations
and proprieties of studied problem. Section 4 introduces the proposed algorithm
and theoretical analysis. Experimental computation is provided in Section 5.
Finally, we conclude this work in Section 6.

Improved Streaming Algorithm for MSC 3

2 Related Works

The MSC problem is an NP-hard problem [8]. One common approach to solving
the problem is using greedy, which sequentially selects elements with maximal
marginal gain into the partial solution and takes advantage of the submodular to
derive the approximation bound. Wolsey et al. [20] first introduced a greedy ver-
sion that had an approximation ratio of 1+ ln(α/β), where α was the maximum
value of the objective over all the singletons, and β was the smallest non-zero
marginal gain of the greedy algorithm. Then, Wan et al. [19] showed the greedy
algorithm could return an approximation ratio of 1 + ln(α/β) for a special case
of MSC problem. Another work of [7] proposed a greedy algorithm with a dif-
ferent stopping condition. It returned a (log(Tϵ), 1− ϵ)-bicriteria approximation
solution. Recently, Crawford et al. [4] proved that a greedy algorithm could pro-
vide another bound under noise models when one could only estimate the value
of the utility function within a bias error. In general, greedy algorithms have
O(n2) query complexity and make O(n)-passes through the data. Thus, they
may be infeasible for some applications with large data. Besides, several works
have focused on developing evolutionary algorithm [5] or parallel algorithm [17]
for MSC. However, they needed expensive query complexity and required a poly-
nomial number of passes through the data.

Streaming algorithms are effective for submodular optimization problems,
especially in big data. Norouzi-Fard et al. [14] showed that a single pass stream-
ing algorithm for MSC with an approximation ratio better than n/2 must use at
least O(n) memory. In the seminal work, they proposed an efficient algorithm for
the Submodular Cover problem, a special case of MSC with uni-cost. Their algo-
rithm made a single-pass, used M memories and provided (2 ln(1/ϵ), 1− 1

ln(1/ϵ))-

bicriteria approximation solution, where M was the required memory. More re-
cently, Crawford et al.[3] proposed two bicriteria algorithms for solving MSC
for the non-monotone case. The first one, called MULTI, returned ((1 + ϵ)(1 +
4
ϵ2),

1−ϵ
2) bicriteria approximation ratio, made O(log(opt)/cmin) passes, wasted

O(nϵ log(opt/cmin)) query complexity, and used O(opt/ϵ2) space complexity. The
query complexity of MULTI depended on 1/cmin that was not a constant and
might be arbitrarily large. Their second one, SINGLE, made a single pass and
returned the same approximation bound but had a larger query complexity of
Ω(n2/cmin).

3 Preliminaries

Given a ground set V = {e1, . . . , en} of size n, the submodular set function
f : 2V 7→ R+ measures the quality of a subset S ⊆ V . It is assumed that
there exists an oracle query, which, when queried with the set S, returns the
value f(S). We assume f normalized, i.e., f(∅) = 0. The marginal gain of an
element e to a set S ⊆ V is defined f(e|S) = f(S ∪ {e})− f(S). We also define
f(S|X) = f(S ∪X)− f(X) for any set X ⊆ V . We simplify f({e}) to f(e).

The function f is monotone if for A ⊆ B ⊆ V , we have f(A) ≤ f(B). f is
submodular if for any A ⊆ B ⊆ V , e ∈ V \B, f(e|A) ≥ f(e|B).

4 Tan D. Tran et al.

An instance of the problem MSC is presented by a tuple (V, f, T). Given an
instance of MSC with cost function c additive, i.e., c(S) =

∑
e∈S c(e), we define

cmin = mine∈V c(e), cmax = maxe∈V c(e), and O is the optimal solution and the
optimal cost opt = c(O).

We call an algorithm is a (x, y)-bicriteria approximation forMSC problem
if it returns a solution S satisfying f(S) ≥ y ·T and c(S) ≤ x·opt, where x, y > 0.

Streaming algorithm. A streaming algorithm is an approximation algo-
rithm that processes the data stream in which the input is presented as a se-
quence of elements and can be examined in only one or a few passes. These
algorithms are designed to operate with limited memory, generally logarithmic
in the size of the stream or in the maximum value in the stream.

4 Proposed Algorithm

This section introduces our streaming version StrMSC that provides a (1− ϵ, 1
ϵ)-

bicriteria approximation solution forMSC within O(log n) passes over the ground
set V .

Algorithm description. StrMSC consists of two phases. The first phase (lines
2-9) adapts a strategy of dividing the set V into reasonable subsets by [17],
within one pass over the ground set V , to ensure the algorithm takes at most
near-linear query complexity. Accordingly, it first sorts V = {u1, u2, . . . , un} in
non-decreasing order and then finds the smallest j so that f(u1, u2, . . . , uj) ≥ T .
The algorithm divides V into three subsets: the first subset V0 contains elements
with the cost less than c′min ← ϵc(uj)/n, the second one V1 contains elements
with the cost greater than c′max ← jc(uj), and the last one V ′ contains the rest.
We call the set V ′ as the major set, and one may find the near-optimal solution
of the problem over the ground V ′ instead of V . By the above division strategy,

one can bound the ratio of
maxe∈V ′ c(e)

mine∈V ′ c(e)
= O(n3) that helps the algorithm finds

the solution in near-linear query complexity.
The second phase (lines 9-21) takes at most O(log1+ϵ n) passes over the major

set V ′. In each pass, the algorithm finds a candidate solution Sv by adding a
new element e with the density gain, i.e., the ratio between f ′(e|Sv) and the cost
c(e), satisfies the condition in the line 13, where f(·) = f(·|V0). The algorithm
then updates the element ev with the highest utility value with the cost is at
most (1 + ϵ)v+1. At the end of each pass, it finds the best solution among Sv

and {ev} and terminates this phase if f ′(S′
v) ≥ αT ′

2 .
Finally, the algorithm returns which set has a lower cost between candidate

ones S′
v ∪ V0 and S0.

Theoretical Analysis. In the following, we show the theoretical guarantees of
StrMSC in Theorem 1.

Theorem 1. Algorithm 1 is multi-pass streaming algorithm that

– Returns a solution S with f(S) ≥ (1− ϵ)T and c(S) ≤ 1
ϵ opt.

Improved Streaming Algorithm for MSC 5

Algorithm 1: Algorithm

Input: An instance (V, f, T), parametter ϵ > 0
Output: A solution S
// Phase 1: Pre-processing

1: Within one passe over ground set V do:
2: Sort V = {u1, u2, . . . , u|V |} in non-decreasing cost order
3: Find j ← min{i : f({u1, u2, . . . , ui}) ≥ T}, S0 ← {u1, . . . , uj}
4: c′min ← ϵc(uj)/n, c

′
max ← jc(uj)

5: V0 ← {u ∈ V : c(u) < c′min}
6: V1 ← {u ∈ V : c(u) > c′max}
7: V ′ ← V \ (V0 ∪ V1), T

′ ← T − f(V0), f
′(·)← f(·|V0)

8: c0 ← mine∈V ′ c(e), U = {v ∈ [n] : c0 ≤ (1 + ϵ)v ≤ c(V ′)}
9: α = 2(1− ϵ), β = (1+ϵ)α

2−α

// Phase 2: Main Streams

10: foreach v ∈ U do
11: Sv ← ∅, ev ← ∅
12: foreach e ∈ V ′ do

13: if f ′(e|Sv)
c(e)

≥ αT ′

β(1+ϵ)v
and c(Sv ∪ {e}) ≤ β(1 + ϵ)v then

14: Sv ← Sv ∪ {e}
15: if c(ev) ≤ (1 + ϵ)v+1 then
16: ev ← argmaxx∈{e,ev} f

′(x)

17: S′
v ← argmaxX∈{Sv,ev} f

′(X)

18: if f ′(S′
v) ≥ αT ′

2
then

19: break
20: else
21: Delete S′

v, ev

22: return argminX∈{S′
v∪V0,S0} c(X).

– Takes O(n) memories and makes at most O(1ϵ log(
n
ϵ))-pass through V .

– Takes O(nϵ log(
n
ϵ)) query complexity.

Proof. For ease of following, we first recap the proof of showing the bound c′min

and c′max in [17]. Supposing that j is an integer number the algorithm finds
in line 2 and vt = maxe∈O c(e). If c(vt) < c(vj), then O = {v1, v2, . . . , vt}.
By the monotoncity of f , we have f(O) ≥ T = f({v1, v2, . . . , vt}) which con-
tracts to the definition of j. Thus, c(vj) ≤ c(vt) ≤ c(O). On the other hand,
since the set {v1, v2, . . . , vj} is a feasible solution of (V, f, T), we have c(O) ≤
c({v1, v2, . . . , vj}) ≤ jc(vj).

Prove approximation guarantees. By the selection of V0, we have c(V0) ≤
|V0|c′min ≤ ϵc(vj) ≤ ϵopt. Denote by O′ an optimal solution of the instance
(V ′, f ′, T ′) and opt′ = c(O′), where f ′(·) = f(·|V0) and T ′ = T − f(V0). It is
easy to see that f ′(·) is a monotone and submodular function. Since f ′(O) =
f(O∪V0)− f(V0) ≥ T − f(V0), O is a feasible solution of the problem under the

6 Tan D. Tran et al.

instance (V ′, f ′, T ′) and thus opt′ ≤ opt. On the other hand, since c′min ≤ c0 ≤
(1 + ϵ)v ≤ c(V ′), there exists an integer v so that opt′

1+ϵ < u = (1 + ϵ)v ≤ opt.

We provide the theoretical bound of S′
v and use it to obtain the proof. We

consider two following cases:
Case 1. There exists an element o ∈ O′ \Sv so that c(Sv)+c(o) > β(1+ ϵ)v and
f ′(o|Sv)

c(o) ≥ T ′

β(1+ϵ)v . By the selection of Sv, we have f ′(Sv) ≥ c(Sv)αT
′

βu . Therefore

f ′(Sv ∪ {o}) ≥ f ′(Sv) +
αc(o)T ′

βu
≥ c(Sv)αT

′

βu
+

αc(o)T ′

βu
(1)

= (c(S) + c(o))
αT ′

βv
> αT ′. (2)

By the selection rule of ev, we have c(ev) ≤ (1 + ϵ)u > opt′, so f(ev) ≥
maxo∈O′ f ′(o). Combine this with the submodularity of f ′, we have

f ′(S′
v) ≥ max{f ′(Sv), f(ev)} ≥ max{f ′(Sv), f

′(o)} ≥ f ′(Sv ∪ {o})
2

>
αT ′

2
(3)

and c(S′
v) ≤ max{c(S′

v), c(ev)} = max{βu, (1 + ϵ)u} ≤ βu ≤ βopt′.
Case 2. There is no such element o ∈ O′ \ Sv, i.e., c(Sv) + c(o) ≤ β(1 + ϵ)v and
f ′(o|Sv)

c(o) ≥ T ′

β(1+ϵ)v for all o ∈ O′ \Sv. In this case, we also have c(S′
v) ≤ βopt′. By

the monotoncity and submodularity of f ′ with a note that u = (1 + ϵ)v > opt′

1+ϵ
we have:

f(O′)− f(Sv) ≤ f(O′ ∪ Sv)− f(Sv) (4)

≤
∑

o∈O′\Sv

f(o|Sv) (5)

≤
∑

o∈O′\Su

c(o)
αT ′

β(1 + ϵ)v
≤ opt′

αT ′

βu
(6)

<
α(1 + ϵ)T ′

β
(7)

which implies that

f(Sv) ≥ f(O′)− α(1 + ϵ)T ′

β
≥ T ′ − α(1 + ϵ)T ′

β
= (1− (1 + ϵ)α

β
)T ′. (8)

Combine two case with choosing α, β in the algorithm, we have f ′(S′
v) ≥ (1−ϵ)T ′

and c(S′
v) ≤ 1−ϵ2

ϵ opt′. Therefore, the algorithm must meet the condition in
line 13 and return the final solution after at most v iterations. If the algorithm
returns S′

v, recap that c(V0) ≤ ϵopt and opt′ ≤ opt, we have:

c(S ∪ V0) ≤ (β + ϵ)opt ≤ opt

ϵ
. (9)

Improved Streaming Algorithm for MSC 7

On the other hand,

f(S′
v ∪ V0) = f(S′

v ∪ V0)− f(V0) + f(V0) (10)

= f ′(S′
v) + f(V0) ≥ (1− ϵ)(T − f(V0)) + f(V0) (11)

= (1− ϵ)T + ϵf(V0) ≥ (1− ϵ)T. (12)

If the algorithm meets the condition in line 13 at the iteration k < v, we have
f(S′

k) ≥ (1 − ϵ)T ′ and thus f(S′
k ∪ V0) ≥ T . Besides, c(S′

k) ≤ β(1 + ϵ)k <
β(1 + ϵ)v = βopt′, the approximation guarantees holds.

Prove complexities. The algorithm makes one pass to finish the first phase
and needs n memories to find S0. For the second phase, the number of passes
through V ′ is at most

log1+ϵ(
c(V ′)

c0
) < log1+ϵ(

nc′max

c′min

) ≤ log1+ϵ(
n3

ϵ
) (13)

=
log(n

3

ϵ)

log(1 + ϵ)
≤ 1

ϵ
log(

n3

ϵ
) = O(

1

ϵ
log(

n

ϵ
)), (14)

in which each pass takes at most n queries. Therefore the memories needed,
the total number of passes and the query complexity are O(n), O(1ϵ log(

n
ϵ)) and

O(nϵ log(
n
ϵ)), respectively. ⊓⊔

5 Experimental Evaluation

In this section, we provide a comparative analysis of our algorithm alongside
MULTI, SINGLE [3] and GREEDY [7] for the MSC problem. We evaluate
their performance on two specific applications: Revenue Threshold and Coverage
Threshold. Our assessment primarily centers around four essential metrics: the
oracle value of the objective function, the number of queries, cost value, and
memory usage.

5.1 Applications and Datasets

Revenue Threshold. Given a social network represented by a graph G =
(V,E), where V denotes the set of users and E represents the set of user
connections. Each edge (u, v) is assigned a weight w(u,v) that is non-negative.
We follow [12] to define the advertising revenue of any node set S ⊆ V as
f(S) =

∑
u∈V Ru(S). For this evaluation, we choose Ru(S) =

(∑
v∈S wuv

)αu
,

where αu is chosen independently for each u uniformly in (0, 1). The revenue
objective f(.) is monotone and submodular [9]. Different from the Revenue Max-
imization application defined by Kuhnle [9], the goal of Revenue Threshold is a
solution S such that f(S) exceeds a given threshold T such that the cost c(S) is
minimized. In this application, we utilized the ego Facebook dataset from [11].
This dataset consists of over 4K nodes and over 88K edges.

8 Tan D. Tran et al.

Coverage Threshold. Based on the Maximum Coverage described in [9], the
Coverage Threshold can be described as follows: Considering a graph G = (V,E),
for any given subset S ⊆ V , we define SI as the set comprising all vertices that
share an incident edge with any vertex in S. Subsequently, we define the function
f(S) as the cardinality of SI . It is worth noting that this objective function
exhibits the properties of monotonicity and submodularity, as demonstrated in
the work by Kuhnle [9]. The Coverage Threshold aims to find a solution S such
that f(S) exceeds a given threshold T such that the cost c(S) is minimized. In
our practical application, we employed datasets that consisted of an Erdős-Rényi
(ER) random graph with 5000 nodes and an edge probability of 0.2. Additionally,
the cost associated with each node, denoted as c(u), was selected randomly and
uniformly from the range between 0 and 1, following the methodology outlined
in the study by Amanatidis et al.[1].

Experiment settings. We compare our algorithms with the applicable state-of-
the-art algorithms listed below:

– MULTI: The streaming algorithm, as presented in [3], boasts a bicriteria
approximation guarantee of ((1 + ϵ)(1 + 4

ϵ2),
1−ϵ
2). This algorithm conducts

O(log(opt)/cmin) passes through the universe V , simultaneously retains el-
ements with a total cost of O (opt), and makes O(nϵ log(opt/cmin)) queries
to the function f when leveraging a linear-time algorithm for Unconstrained
Submodular Maximization (USM) as a subroutine.

– SINGLE: The streaming algorithm, as introduced in [3], conducts a single
pass through the universe V in an arbitrary order and provides an identical
bicriteria approximation guarantee as MULTI. Nonetheless, it is worth not-
ing that SINGLE requires a total number of queries to the function f that
is within the order of Ω(n2/cmin).

– GREEDY: The greedy algorithm, as outlined in [7], achieves a bicriteria
approximation guarantee of (log(Tϵ), 1− ϵ) for the minimum target set selec-
tion problem (MINTSS).

In each experiment, our analysis begins with the execution of the double greedy
algorithm, as developed by [2] and denoted as USM, to establish an initial bench-
mark for comparison. We use the following symbols to represent the character-
istics of the USM algorithm: c0 for cost, f0 for the f -value, q0 for the number
of queries, and m0 for memory usage. In all the generated plots, the y-axis is
dedicated to normalized f -values relative to the threshold T , while cost values
are normalized with respect to c0, memory usage is normalized with respect to
m0, and the threshold T is normalized in the relation to f0. Within our experi-
mental framework, we systematically vary the threshold within the range of 0.1
to 0.5, relative to the reference value f0, following the configuration specified in
[3]. Additionally, we maintain a consistent setting of ϵ = 0.1 for all algorithms
used in these experiments.

Improved Streaming Algorithm for MSC 9

 0.2

 0.6

 1

 0.1 0.2 0.3 0.4 0.5

O
bj

ec
tiv

e
va

lu
e/

T

T

StrMSC
MULTI

SINGLE
GREEDY

Facebook (n=4039)

 0

 200

 400

 600

 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 q

ue
rie

s

T

StrMSC
MULTI

SINGLE
GREEDY

Facebook (n=4039)

(a) (b)

 0.02
 0.04
 0.06
 0.08

 0.1 0.2 0.3 0.4 0.5

C
os

t

T

StrMSC
MULTI

SINGLE
GREEDY

Facebook (n=4039)

 1

 2

 3

 0.1 0.2 0.3 0.4 0.5
M

em
or

y
T

StrMSC
MULTI

SINGLE
GREEDY

Facebook (n=4039)

(c) (d)

Fig. 1. Performance of algorithms for MSC on Revenue Threshold: (a) The objective
values, (b) The number of queries (c) The cost values (d) The allocated memory

5.2 Experiment Results

The experimental results are depicted in Figures 1 and 2. Specifically, Figure
1 illustrates the results for the Revenue Threshold application, while Figure 2
presents the results for Coverage Threshold.

Firstly, our algorithm surpasses SINGLE and MULTI algorithms in terms of
the objective value in Revenue Threshold (Figure 1.a) and Coverage Threshold
(Figure 2.a) applications. This accomplishment is significant as our objective
value closely approaches the asymptotic objective value of the GREEDY and
converges in proximity to the threshold T . In stark contrast, the objective values
of the SINGLE and MULTI algorithms are confined to a mere one-third of the
threshold T .

Secondly, our algorithm demonstrates exceptional query efficiency (Figure
1.b, Figure 2.b), with the number of queries consistently ranking among the low-
est compared to other algorithms. A notable attribute is its capacity to maintain
a stable number of queries even as the threshold T increases, while other algo-
rithms tend to experience significant increases in the number of queries under
similar conditions.

Thirdly, with regard to the cost value analysis (Figure 1.c, Figure 2.c), our
algorithm exhibits a higher cost value than the SINGLE and MULTI algorithms,
yet it remains lower than that of the GREEDY. This cost disparity can be at-
tributed to our algorithm’s superior capacity to achieve a higher objective value.

10 Tan D. Tran et al.

 0.2

 0.6

 1

 0.1 0.2 0.3 0.4 0.5

O
bj

ec
tiv

e
va

lu
e/

T

T

StrMSC
MULTI

SINGLE
GREEDY

ER (n=5000)

 10

 20

 30

 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 q

ue
rie

s

T

StrMSC
MULTI

SINGLE
GREEDY

ER (n=5000)

(a) (b)

 0.01

 0.03

 0.1 0.2 0.3 0.4 0.5

C
os

t

T

StrMSC
MULTI

SINGLE
GREEDY

ER (n=5000)

 1

 2

 3

 0.1 0.2 0.3 0.4 0.5
M

em
or

y
T

StrMSC
MULTI

SINGLE
GREEDY

ER (n=5000)

(c) (d)

Fig. 2. Performance of algorithms for MSC on Coverage Threshold: (a) The objective
values, (b) The number of queries (c) The cost values (d) The allocated memory

Nevertheless, it is crucial to emphasize that the assurance of a valid solution
justifies this increased cost.

Lastly, concerning memory utilization (Figure 1.d, Figure 2.d), our StrMSC
algorithm, along with the GREEDY and MULTI algorithms, exhibits similar
memory usage patterns, closely aligning with the memory consumption of the
USM algorithm. On the contrary, the SINGLE algorithm stands out due to its
notably larger memory footprint, approximately three times that of the other
algorithms.

In summary, our StrMSC algorithm excels in various evaluation criteria com-
pared to the benchmarked algorithms. These criteria include objective value,
number of queries, and memory utilization, all evaluated in the contexts of both
Revenue Threshold and Coverage Threshold applications. While the cost value
surpasses that of SINGLE and MULTI algorithms, it remains lower than that
of GREEDY algorithm, which aligns with the observed differences in objective
values.

6 Conclusion

In conclusion, this paper introduces a novel streaming algorithm designed to
address the MSC problem. This algorithm yields a (1 − ϵ, 1

ϵ)-bicriteria approx-
imation solution for MSC while maintaining computational efficiency with only

Improved Streaming Algorithm for MSC 11

O(log n) passes over the ground set V in the monotone case. To evaluate our al-
gorithmic solutions, we conducted comprehensive experiments encompassing two
diverse applications: Revenue Threshold and Coverage Threshold. The experi-
mental outcomes unequivocally demonstrate the superior performance of our
algorithms across various evaluation metrics when compared to MULTI, SIN-
GLE, and GREEDY algorithms. Nevertheless, several open questions persist,
igniting the spark for future research endeavors. Prominent among these ques-
tions is the pursuit of strategies to further minimize the solution’s associated
cost.

In summary, the algorithms proposed in this paper offer both efficiency and
effectiveness in addressing the MSC problem. Our forthcoming research efforts
will be dedicated to refining these algorithms and undertaking the formidable
challenges that lie ahead in this domain.

References

1. Amanatidis, G., Fusco, F., Lazos, P., Leonardi, S., Reiffenhäuser, R.: Fast adap-
tive non-monotone submodular maximization subject to a knapsack constraint. In:
Annual Conference on Neural Information Processing Systems (2020)

2. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on
Computing 44(5), 1384–1402 (2015)

3. Crawford, V.: Scalable bicriteria algorithms for non-monotone submodular cover.
In: International Conference on Artificial Intelligence and Statistics. pp. 9517–9537.
PMLR (2023)

4. Crawford, V., Kuhnle, A., Thai, M.: Submodular cost submodular cover with an
approximate oracle. In: International Conference on Machine Learning. pp. 1426–
1435. PMLR (2019)

5. Crawford, V.G.: Faster guarantees of evolutionary algorithms for maximization
of monotone submodular functions. In: Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021. pp. 1661–1667. ijcai.org (2021)

6. El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific
literature. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011.
pp. 439–447 (2011)

7. Goyal, A., Bonchi, F., Lakshmanan, L.V.S., Venkatasubramanian, S.: On minimiz-
ing budget and time in influence propagation over social networks. Social Netw.
Analys. Mining 3(2), 179–192 (2013)

8. Iwata, S.: Submodular function minimization. Mathematical Programming 112,
45–64 (2008)

9. Kuhnle, A.: Quick streaming algorithms for maximization of monotone submodular
functions in linear time. In: International Conference on Artificial Intelligence and
Statistics. pp. 1360–1368. PMLR (2021)

10. Kuhnle, A., Crawford, V.G., Thai, M.T.: Scalable and adaptive algorithms for the
triangle interdiction problem on billion-scale networks. In: 2017 IEEE International
Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21,
2017. pp. 237–246 (2017)

12 Tan D. Tran et al.

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.M., Glance,
N.S.: Cost-effective outbreak detection in networks. In: Proc. of the 13th ACM
SIGKDD Conf., 2007. pp. 420–429 (2007)

12. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular
maximization: Personalized data summarization. In: International Conference on
Machine Learning. JMLR Workshop and Conf. Proc., vol. 48, pp. 1358–1367 (2016)

13. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization
at scale: A two-stage submodular approach. In: ICML. p. 3593–3602 (2016)

14. Norouzi-Fard, A., Bazzi, A., Bogunovic, I., El Halabi, M., Hsieh, Y.P., Cevher, V.:
An efficient streaming algorithm for the submodular cover problem. Advances in
Neural Information Processing Systems 29 (2016)

15. Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-approximation for submodular maximization on massive data
streams. In: Proc. of the International Conference on Machine Learning. vol. 80,
pp. 3826–3835 (2018)

16. Pham, C.V., Pham, D.V., Bui, B.Q., Nguyen, A.V.: Minimum budget for misinfor-
mation detection in online social networks with provable guarantees. Optimization
Letters pp. 1–30 (2021)

17. Ran, Y., Zhang, Z., Tang, S.: Improved parallel algorithm for minimum cost sub-
modular cover problem. In: Loh, P., Raginsky, M. (eds.) Conference on Learning
Theory, 2-5 July 2022, London, UK. Proceedings of Machine Learning Research,
vol. 178, pp. 3490–3502. PMLR (2022), https://proceedings.mlr.press/v178/
ran22a.html

18. Tschiatschek, S., Iyer, R.K., Wei, H., Bilmes, J.A.: Learning mixtures of submodu-
lar functions for image collection summarization. In: Advances in Neural Informa-
tion Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. pp. 1413–1421
(2014)

19. Wan, P.J., Du, D.Z., Pardalos, P., Wu, W.: Greedy approximations for minimum
submodular cover with submodular cost. Computational Optimization and Appli-
cations 45(2), 463–474 (2010)

20. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

https://proceedings.mlr.press/v178/ran22a.html
https://proceedings.mlr.press/v178/ran22a.html

	Improved Streaming Algorithm for Minimum Cost Submodular Cover Problem

