RESEARCH ARTICLE

Dau Xuan Duc ${ }^{1,{ }^{\text {, }}}$
${ }^{l}$ Department of Chemistry, Institute of Natural Sciences Education, Vinh University, Vinh City, Vietnam

ARTICLE HISTORY

Received: September 01, 2020
Revised: November 23, 2020
Accepted: November 30, 2020
DOI:
10.2174/1570178618666210120110111

CrossMark

Abstract

This study describes the synthesis of the pyrido[1,2-a]azepine alkaloids. The bicyclic compound $\mathbf{1}$ containing the A-B core ring structure was synthesized in 17 steps in 1.7% overall yield starting from 4-pentyn-1-ol. The key steps involve an oxidation of 1,4 diol to lactone and an ene-yne ring closing metathesis reaction.

Keywords: Pyrido[1,2-a]azepine, Stemona alkaloids, bromolactonization, aminolysis reaction, ene-yne lactam, vinyl iodide.

1. INTRODUCTION

The pyrido[1,2-a]azepine alkaloids, whose core structure is drawn in Fig. (1), is one of the eight groups of Stemona alkaloids classified by Pilli et al. [1]. These Stemona alkaloids have been exclusively isolated from the monocotyledonous family Stemonaceae, mainly distributed in South East Asia, Northern Australia, China, Japan, and Northern America [2] and have a wide range of bioactivities [3]. The dried roots from S. tuberosa, known as 'Bai Bu' in Chinese traditional medicine, 'Bach Bo' in Vietnam and 'Non Tai Yak' or 'Pong Mot Ngam' in Thailand, are used to treat coughing, and are claimed to have antituberculosis, antibacterial, antifungal and antihelmintic properties [4, 5]. The isolation and bioactivity of the pyrido[1,2-a]azepine alkaloids have received considerable attention of chemists and many reports on the isolation and bioactivity of these compounds have been found in the literature. In 2003, Greger et al., isolated five new pyrido $[1,2-a$ azepines alkaloids stemokerrin, meth-oxystemokerrin- N -oxide, oxystemokerrin, oxystemokerrinN -oxide, and pyridostemin and tested them for insecticidal activity. Among these five compounds, oxystemokerrin was the most potent with the LC50 $=5.9 \mathrm{ppm}$ [6]. Pyridostemine was also isolated by the Pyne group under another name, stemocurtisine and tested for larvicidal activity [7]. Later, this group reported the isolation and structure determination of stemocurtisinol [8]. In 2007, Ye group isolated four new [1,2- a]azepine alkaloids, namely cochinchistemonine, cochinchistemoninone, stemokerrin- N -oxide and oxystemokerrilactone from S. cochinchinensis and S. saxorum grown in Vietnam (Fig. 2) [9, 10].

[^0]The interesting structure and diverse biological activities of Stemona alkaloids have attracted intensive research and numerous studies on the total synthesis of these alkaloids have been reported in the literature [2]. However, these studies focused on the construction of pyrrolo[1,2-a]azepine alkaloids. None of them involves the synthesis of a member of the pyrido $[1,2-a]$ azepine alkaloids, although their biosynthesis has been documented [11]. Actually, studies on the synthesis of these alkaloids have been very limited. In 2015, Bach et al., reported the synthesis of the tricyclic precursor of pyrido[1,2-a]azepine alkaloids starting from 2,6pyridinedicarboxylic acid in 17 synthetic steps [12]. Previously, I reported the construction of an A-B bicyclic ring system of stemocurtisine starting from glutamic acid [13]. Herein, the study reports on the synthesis of pyrido[1,2a]azepine alkaloids by constructing the A-B ring core structure 1, following the retrosynthesis outlined in Scheme 1.

Fig. (1). Core structure of pyrido[1,2-a]azepine alkaloids.

In principle, the bicyclic compound $\mathbf{1}$ could be obtained from the ene-yne lactam 2 by a sequence of ene-yne ringclosing metathesis (RCM)/1,4-hydride reduction. Compound 2 could be synthesized from compound 3 in four synthetic steps. Compound 3 could be prepared from the epoxide 4 in six steps. This epoxide could be achieved from the cis-vinyl iodide 5 via a sequence of TBDPS (tert-butyldiphenylsillyl) protection, Sonogashira coupling and epoxidation. The vinyl

stemokerrin

methoxystemokerrin- N -oxide

Fig. (2). Some isolated pyrido[1,2-a]azepine alkaloids.

Scheme 1. Retrosynthetic analysis of the bicyclic compound 1.
iodide 5 could be obtained from the commercially available 4-pentyn-1-ol 6.

2. RESULTS AND DISCUSSION

The synthesis of cis iodine 5 was started from commercially available 4-pentyn-1-ol 6 following a procedure described by Denmark et al. [14]. Treatment of this alcohol with $\mathrm{I}_{2} / \mathrm{KOH}$ in methanol (MeOH) led to the iodide 7 , which underwent syn-reduction of the alkyne by diimide ($\mathrm{NH}=\mathrm{NH}$), prepared in situ from potassium azodicarboxylate and acetic acid (AcOH), to give the known (Z)-vinyl iodide 5 in 58\% yield (Scheme 2). The Sonogashira coupling reaction be-
tween iodide 5 and the alkyne $\mathbf{8}$, which was prepared from 4methoxybenzyl chloride (PMBCl) and propargyl alcohol in two steps in high yields, worked smoothly with a favourable yield (80%) to provide the ene-yne 9 . Under TBDPS protection condition, compound $\mathbf{1 0}$ was provided in 87% yields from 9 (Scheme 2).

Epoxidation of 10 using m - chloroperbenzoic acid (m CPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the racemic epoxide 4 in 64% yield. From here, all products were obtained as racemic mixtures, however, only one enantiomer was displayed for convenience. The aminolysis reaction of 4 with pent-4-en-1-amine (3.0 equiv) and LiOTf (1.0 equiv) under microwave (MW)

Scheme 2. Synthesis of alkyne 10.

Scheme 3. Synthesis of amino alcohol 11.
heating at $120^{\circ} \mathrm{C}$ for 1.5 h afforded the racemic amine 11 in 72% yield (Scheme 3).

Removal of the TBDPS group of $\mathbf{1 1}$ by treatment with tetrabutylamoniumfluoride (TBAF) in tetrahedrofuran (THF) provided the diol $\mathbf{1 2}$ in 91\% yield. Unfortunately, oxidation of 12 by various oxidation systems (TEMPO(2,2,6, 6-tetramethylpiperidin-1-yl)-oxyl)/BAIB (Bis(acetoxy) iodobenzene), TPAP (Tetrapropylammonium perruthenate)/NMO (N-methyl morpholine oxide)) gave a complex mixture of products instead of the desired lactone 15. Thus, the diol 12 was converted into the Fmoc (fluorenylmethoxycarbonyl) derivative 13 in excellent yield (96%) by treatment with FmocCl in THF-sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $0^{\circ} \mathrm{C}$ for 4 h . Oxidation of the 1,4-diol $\mathbf{1 3}$ with TEMPO/BAIB in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the corresponding δ-lactone 14 in good yield (86%). Finally, the Fmoc group of $\mathbf{1 4}$ was easily removed by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in 89% yield, and the resulting lactone $\mathbf{1 5}$ was converted into the expected lactam 3 by heating with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH at reflux temperature in 86% yield (Scheme 4).

The lactam $\mathbf{3}$ was converted into the ester $\mathbf{2}$ in four steps. Benzylation of the lactam 3 with benzyl bromide (BnBr), $\mathrm{Ag}_{2} \mathrm{O}$ in $\mathrm{Et}_{2} \mathrm{O}$ gave the corresponding benzyl ether 16 in very poor yield (29\%). However, a great improvement was achieved (65% yield and 19% starting material recovered) under William's type conditions for benzylation [15]. Removal of PMB group in compound $\mathbf{1 6}$ was performed using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ at rt for 18 h to afford the desired product $\mathbf{1 7}$ in 78% yield. The primary alcohol group of 17 was converted
into the ester 2 in 65% yield by a sequence of Jones' oxidation and esterification using $\mathrm{MeI} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N dimethylformamide (DMF) (Scheme 5).

The bicyclic compound $\mathbf{1 8}$ was furnished in 80% yield via an ene-yne RCM reaction by treatment of the compound 2 with Grubbs' $1^{\text {st }}$ generation Ru catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 8 h under a N_{2} atmosphere (Scheme 3) 14. This compound was further reduced to the inseparable mixture of two diastereomers in 77% ($\mathrm{dr}=4: 1$, determined by 1 H NMR) by treatment with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ via a 1,4-"hydride" reduction reaction by Mori's procedure [16].

My next goal was to synthesize a mixture of the tricyclic 19 (Fig. 3) from the bicyclic compound 1 (Seheme 6). Mori, in his total synthesis of stemoamide [16], hydrolysed the ester 20, which was synthesized from (-)-pyroglutamic acid in 12 steps, using $\mathrm{NaOH} / \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ for 7 h to furnish the corresponding acid. Then bromolactonization of this acid by treatment with CuBr_{2} on alumina proceeded smoothly via a 5-endo-trig cyclization, and two products 21 and 22 were obtained in 25% and 31% yields, respectively. Treatment of the bromide 21 with $\mathrm{Et}_{3} \mathrm{~N}$ in EtOAc converted it into compound 22 (total yield of $22=51 \%$) (Scheme 7). However, this bromolactonization reaction did not work with my compound 1 . The desired compound 19 did not form, and only the mixture of acid 23 was obtained (Scheme 7).

Swamy prepared the tricyclic lactone 25 from 24, which was synthesized from L- malic acid in 10 steps, via a dihydroxylation process using $\mathrm{K}_{2} \mathrm{OsO}_{4} / \mathrm{NMO}$ [17]. Lactone 25

3 86\%
Scheme 4. Synthesis of the lactam 3.

Scheme 5. Synthesis of the compound 3.

$177 \%, \mathrm{dr}=4: 1$
Scheme 6. Synthesis of the bicyclic compound 1.

Fig. (3). Structure of compound 19.

Scheme 7. Attempted bromolactonization of compounds 1 under Mori's procedure.
was obtained in moderate yield (56\%) and relatively high diastereoselectivity ($\mathrm{dr}=5: 1$) (Scheme 8). Attempts at the dihydroxylation reactions of compounds $\mathbf{1}$ under Swamy's conditions were failed to form the desired product 19. Our next attempt to dihydroxylate this compound using AD-mixα and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ using a co-solvent system of $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ was also unsuccessful. Only the starting materials were recovered (Scheme $\mathbf{8}$). I am not sure why compound $\mathbf{1}$ was so unreactive towards these bromolactonization and dihydroxylation reaction conditions, when compared to the pyrrolidine analogues 20 and 24.

3. EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova NMR Spectrometer (${ }^{1} \mathrm{H}$ NMR running at 500 MHz and ${ }^{13} \mathrm{C}$ NMR running at 125 MHz) instrument. CDCl_{3} was used as the NMR solvent. ${ }^{1} \mathrm{H}$ NMR chemical shifts are quoted in δ values in ppm and are referenced relative to the chemical shift of CDCl_{3} (7.26 ppm). Low-resolution mass spectra were obtained on a Shimadzu GC spectrometer (EI) or Water LCZ single quadrupole (ESI). High resolution spectra were obtained on a VG Autospec mass spectrometer (EI) or Waters QTOF (ESI). Infrared spectra were obtained as neat samples on a Smart Omni-Sampler Avator ESP NicoletBrand. Optical rotations were measured using a 1 cm cell in a Jasco DIP-370 digital polarimeter. Specific rotations were calculated by using the average value of 10 optical rotation measurements.

3.1. General Procedure for Preparation of all Compounds and their Spectroscopic Data

3.1.1. 5-Iodo-4-pentyn-1-ol (7)

A solution of $\mathrm{KOH}\left(8.40 \mathrm{~g}, 150 \mathrm{mmol}, 2.5\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ $(12 \mathrm{~mL})$ was added to a solution of 4-pentyn-1-ol $(5.04 \mathrm{~g}, 60$ $\mathrm{mmol})$. Then $\mathrm{I}_{2}(16.76 \mathrm{~g}, 66 \mathrm{mmol}, 1.1$ equiv) was added portion-wise to the resulting solution over a period of 30 min . After being stirred 3 h at rt , a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(60 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were concentrated by rotary evaporation to give a brown residue. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, which was washed with brine (50 mL) and then was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation to give the crude product which was purified by column chromatography to afford the iodide $7(9.69 \mathrm{~g}, 75 \%$ yield) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 94.2,61.8,31.4,17.7,-5.9$. NMR spectroscopic data matched with the published data [14].

3.1.2. (Z)-5-Iodo-4-penten-1-ol (5)

To a solution of alkyne $7(9.69 \mathrm{~g}, 46 \mathrm{mmol})$ in MeOH $(80 \mathrm{~mL})$, pyridine ($21,1 \mathrm{~mL}, 276 \mathrm{mmol}, 6.0$ equiv) and potassium azodicarboxylate were added $(5.37 \mathrm{~g}, 27.7 \mathrm{mmol}$, 0.6 equiv) sequentially at rt. Acetic acid ($16.7 \mathrm{~mL}, 292$ mmol, 6.3 equiv) was then added slowly via a syringe pump

24

25
$d r=5: 1 \quad 56 \%$ yield

Scheme 8. Attempted bromolactonization of compounds 1 under Swamy's procedure.
over 10 h at rt . During the addition of acetic acid, additional potassium azodicarboxylate (0.6 equiv) was added at $2 \mathrm{~h}, 4$ $\mathrm{h}, 6 \mathrm{~h}$, and 8 h , respectively. After the complete addition of the acetic acid, the mixture was poured into a 1-L beaker together with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and aqueous HCl solution 1 M $(300 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 150 mL) and the combined organic layers were concentrated by rotary evaporation to give a pale yellow residue. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, which was washed with aqueous 1 M HCl solution ($2 \times 75 \mathrm{~mL}$), saturated aqueous NaHCO_{3} solution $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, then was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removal of the solvent, the residue was treated with $n-\mathrm{BuNH}_{2}(8 \mathrm{~mL})$ and the solution was stirred at rt for 10 h to remove the over-reduced product. The mixture was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, which was washed with aqueous 1 M HCl solution ($2 \times 100 \mathrm{~mL}$), saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ solution, and brine $(100 \mathrm{~mL})$, then was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removal of the solvent, the residue was purified by column chromatography to give the (Z)-vinyl iodide 5 ($6.15 \mathrm{~g}, 58 \%$ yield) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.25-6.17 (m, 2H), $3.68(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,83.4,62.4,31.5,31.1$. NMR spectroscopic data matched with the published data [14].

3.1.3. 1-(4-Methoxybenzyloxy)-2-propyne (8)

To a solution of propargyl alcohol ($1.50 \mathrm{~mL}, 25.8 \mathrm{mmol}$) in anhydrous THF (70 mL), $\mathrm{NaH}(1.86 \mathrm{~g}, 60 \mathrm{wt} \%$ in oil, 46.4 $\mathrm{mmol}, 1.8$ equiv) was added portionwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . Then p-methoxybenzyl chloride ($5.20 \mathrm{~mL}, 38.7 \mathrm{mmol}, 1.5$ equiv) and TBAI ($1.24 \mathrm{~g}, 3.35$ $\mathrm{mmol}, 0.13$ equiv) were added at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 16 h . Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) was added. The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined organic layers were
washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resulting residue was purified by column chromatography to give the alkyne 8 ($3.33 \mathrm{~g}, 74 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$, $4.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, J=2.5 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,130.1,129$, $114.2,80.1,74.8,71.5,57.0,55.6$. NMR spectroscopic data matched with the published data [18].

3.1.4. (Z)-8-(4-Methoxybenzyloxy)oct-4-en-6-yn-1-ol (9)

To a solution of the vinyl iodide $5(1.484 \mathrm{~g}, 7 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(112 \mathrm{mg}, 0.154 \mathrm{mmol}, 0.02$ equiv) and CuI ($267 \mathrm{mg}, 1.54 \mathrm{mmol}, 0.2$ equiv) were added under a nitrogen atmosphere.The mixture was stirred for 15 min then a solution of alkyne $\mathbf{8}(1.48 \mathrm{~g}, 8.4 \mathrm{mmol}, 1.2$ equiv) in THF (25 mL) was added dropwise over period of 30 min . After being stirred for 14 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 x 50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the ene-yne $9\left(1.456 \mathrm{~g}, 80 \%\right.$ yield) as a colourless oil. IR (neat, $v_{\max } / \mathrm{cm}^{-}$ ${ }^{1}$): $3412,2937,1713,1608,1512,1246,1173,1029,818 .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{dt}, J=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159., 143.9, 130.1, $129.8,114.2,109.7,90.0,83.4,71.5,62.4,57.9,55.6,31.9$, 26.9. ESIMS $\mathrm{m} / \mathrm{z} 283$ [(M+Na) ${ }^{+} 100 \%$]. HRESIMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na},(\mathrm{M}+\mathrm{Na})^{+}$283.1316, found 283.1316 .

3.1.5. (Z)-tert-Butyl(8-(4-methoxybenzyloxy)oct-4-en-6-ynyloxy)diphenylsilane (10)

Imidazole ($0.957 \mathrm{~g}, 13.95 \mathrm{mmol}, 2.5$ equiv) and TBDP$\mathrm{SCl}(1.75 \mathrm{~mL}, 6.69 \mathrm{mmol}, 1.2$ equiv) were added to a solution of alcohol $9(1.456 \mathrm{~g}, 5.58 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ at rt
under a N_{2} atmosphere and the mixture was stirred under the same conditions for 6 h . The reaction mixture then was poured into a beaker containing water $(60 \mathrm{~mL})$ and then extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic extracts were combined, washed with water (2 x 100 mL), dried over MgSO_{4} and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the TBS ether $\mathbf{1 0}(2.422 \mathrm{~g}, 87 \%$ yield $)$ as a colourless oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 2931, 2856, 1513, 1426, 1248, 1107, 821, 739. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.69-7.63$ (m, 4H), $7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.92$ (dt, $J=10.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 159.7, 144.4, 135.9, $134.3,130.2,130.1,130.0,129.9,128.0,127.9,109.1,89.8$, 83.5, 71.4, 63.7, 57.9, 55.6, 32.2, 27.3, 27.2, 19.6. ESIMS $m / z \quad 521 \quad\left[(\mathrm{M}+\mathrm{Na})^{+} \quad 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa},(\mathrm{M}+\mathrm{Na})^{+} 521.2488$, found 521.2478 .

3.1.6. tert-Butyl(3-($2 R^{*}, 3 S^{*}$)-3-(3-(4-methoxybenzyloxy) prop-1-ynyl)oxiran-2-yl)propoxy)diphenylsilane (4)

Purified m-chloroperbenzoic acid $(1.080 \mathrm{~g}, 6.26 \mathrm{mmol}$, 1.3 equiv) was added to solution of the alkene $\mathbf{1 0}(2.4 \mathrm{~g}, 4.82$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the mixture was stirred at rt for 14 h . The reaction was quenched with saturated NaHCO_{3} $(60 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 100 mL). The organic extracts were combined, dried over MgSO_{4} and filtered through a short column loaded with $\mathrm{Al}_{2} \mathrm{O}_{3}$. The solvent was removed in vacuo and the residue was purified by column chromatography to give the epoxide $4(2.055 \mathrm{~g}, 64 \%$ yield $)$ as a colourless oil and the starting alkene ($576 \mathrm{mg}, 24 \%$ yield). IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3282 , 2957, 2308, 1428, 1107, 818, 668. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 4 \mathrm{H})$, $1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,135.9$, 135.1, 134.2, 130.1, 130.0, 129.9, 129.6, 128.1, 128.0, 114.2, 82.0, 81.8, 71.6, 63.8, 58.3, 57.3, 55.6, 45.6, 29.3, 27.2, 26.9, 19.6. ESIMS $m / z 537\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa},(\mathrm{M}+\mathrm{Na})^{+} 537.2439$, found: 537.2437 .

3.1.7. (4R,5R)-1-((tert-butyldiphenylsilyl)oxy)-8-((4-methoxy-benzyl)oxy)-5-(pent-4-en-1-ylamino)oct-6-yn-4-ol (11)

Lithium triflate ($0.63 \mathrm{~g}, 3.89 \mathrm{mmol}, 1$ equiv) and pent-4-en-1-amine ($0.661 \mathrm{~g}, 7.78 \mathrm{mmol}, 2$ equiv) were added to solution of the epoxide $4(2.0 \mathrm{~g}, 3.89 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2$ mL) in a microwave reactor vial. The mixture was heated in a microwave reactor at $110^{\circ} \mathrm{C}, 200 \mathrm{~W}$ for 1.5 h . The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the amine $\mathbf{1 1}(1.723 \mathrm{mg}$, 74% yield) as a pale yellow oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3346, 2928, 1623, 1518, 1256, 1113, 1013, 847, 709. ${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $6 \mathrm{H}), 7.25$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (ddt, $J=17 ; 10.0 ; 6.5, \mathrm{~Hz} 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.44(\mathrm{td}, J=8.5 ; 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.96-2.87 (m, 1H), 2.67-2.60 (m, 1H), $2.13(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{qd}, J=12.0 ; 6.0 \mathrm{~Hz}, 1 \mathrm{H})$
$1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{dq}, J=13.5 ; 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-$ $146(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.7, 138.5, 135.8, 135.7, 134.2, 130.0, 129.8, 127.8, 115.1, $111.1,85.5,81.3,72.8,71.5,64.2,57.4,56.2,55.5,46.9$, 31.7, 30.3, 29.5, 28.9, 27.1, 19.4. ESIMS $m / z 572\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$ 100\%]. HRESIMS calcd, for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{NSiNa},(\mathrm{M}+\mathrm{Na})^{+}$ 572.3224, found: 572.3196.

3.1.8. (4R*,5R*)-8-(4-Methoxybenzyloxy)-5-(pent-4-enylamino) oct-6-yne-1,4-diol (12)

1 M tetrabutylamonium fluoride solution in THF (3.8 mL , $3.8 \mathrm{mmol}, 1.5$ equiv) was added dropwise to a solution of the TBS ether $11(1.19 \mathrm{~g}, 2.5 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was warmed to rt and stirred for 4 h . Saturated NaHCO_{3} solution (50 mL) was added and the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic extracts were combined, dried over MgSO_{4} and filtered. The solvent was removed in vacuo and the residue was purified by column chromatography to give the diol 12 ($890 \mathrm{mg}, 91 \%$ yield) as a colourless oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3310,2944 , 1779, 1696, 1450, 1410, 1247, 1066, 1030, 740. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (ddt, $J=17.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (d, J $=17.0,1 \mathrm{H}), 4.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H})$, $3.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dt, $J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.58-$ $1.48(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,138.5$, $130.1,129.7,115.3,114.2,85.2,81.7,73.0,71.6,63.2$ (C1), 57.4 (C8), 56.0 (C5), 55.6 (OMe), 46.9 ($\left.\mathrm{Cl}^{\prime}\right), 31.7$ (C3'), 31.1 (C3), 29.7 (C2), 29.6 (C2'). ESIMS m/z $362\left[(\mathrm{M}+\mathrm{H})^{+}\right.$ 100%]. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N},(\mathrm{M}+\mathrm{H})^{+} 362.2321$, found: 362.2331 .
3.1.9. (9H)-Fluoren-9-yl)methyl ($\left.4 R^{*}, 5 R *\right)$-5,8-dihydroxy-1-(4-methoxybenzyloxy)oct-2-yn-4-yl(pent-4-enyl) carbamate (13)

To a solution of the amine $\mathbf{1 2}(975 \mathrm{mg}, 2.7 \mathrm{mmol})$ in THF (40 mL), a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ was added and the mixture was allowed to cool to $0^{\circ} \mathrm{C} . \mathrm{FmocCl}$ ($768 \mathrm{mg} .2 .97 \mathrm{mmol}, 1.1$ equiv) was added portionwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 4 h . The organic phase was removed in vacuo and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The organic extracts were combined, dried over MgSO_{4} and filtered. The solvent was removed in vacuo and the residue was purified by column chromatography to give the Fmoc-diol 13 (1.511 g, 96% yield) as a waxy solid. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3436, 2927 , 1687, 1611, 1458, 1248, 1066, 1032, 739. ${ }^{1}$ H NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.72-5.62(\mathrm{bm}, 1 \mathrm{H})$, 5.01-4.90 (bm, 2H), 4.77-4.72 (bm, 1H), 4.67-4.57 (bm, 2H), $4.47(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.0 \mathrm{~Hz} .1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.67-3.58(\mathrm{bm}, 3 \mathrm{H}), 3.12-2.97(\mathrm{bm}, 2 \mathrm{H}), 1.90-1.80(\mathrm{bm}$, $2 \mathrm{H}), 1.75-1.65(\mathrm{bm}, 2 \mathrm{H}), 1.55-1.40(\mathrm{bm}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,144.1,141.6,138.0,129.9,129.5$, $127.9,127.3,124.9,120.2,115.2,114.1,82.5,82.2,73.0$, $71.5,67.2,63.0,57.2,55.5,54.9,47.7,45.6,31.4,31.2,29.4$, 28.8. ESIMS $m / z 606\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{NNa},(\mathrm{M}+\mathrm{Na})^{+} 606.2832$, found: 606.2822 .

3.1.10. $\quad\left(R^{*}\right)$-5-(R^{*})-4-(4-Methoxybenzyloxy)-1-(pent-4-enylamino)but-2-ynyl)dihydrofuran-2(3H)-one (15)

Triethylamine (5 mL) was added to a solution of the Fmoc-lactone $14(1.080 \mathrm{~g}, 4.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at rt and the mixture was allowed to stir at rt for 14 h . The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the lactone $\mathbf{1 5}(0.597 \mathrm{~g}$, 89% yield) as a pale yellow oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3343, 2935, 2841, 1773, 1611, 1512, 1247, 1067, 1029, 816. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.82 (ddt, $J=17.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=$ $7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.17$ (s, 2H), 3.81 (s, 3 H), 3.59 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$,), $2.92(\mathrm{dt}, J=11.5,7.0 \mathrm{~Hz}), 2.67-2.59$ $(\mathrm{m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}$, $1 \mathrm{H}), 2.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.1,159.7,138.5,130.0,129.6$, $115.1,114.2,83.7,81.7,81.4,71.6,57.3,55.6,54.7,47.6$, 31.7, 29.4, 28.7, 24.5. ESIMS m/z $380\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{NSiNa},(\mathrm{M}+\mathrm{Na})^{+} 380.1838$, found: 380.1842 .

3.1.11. (5R*,6R*)-5-Hydroxy-6-(3-(4-methoxybenzyloxy)prop-1-ynyl)-1-(pent-4-enyl)piperidin-2-one (3)

To solution of the amino-lactone $15(580 \mathrm{~g}, 1.62 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL})$ was added and the mixture was stirred at reflux temperature for 3 days. The solvent was evaporated in vacuo and the residue was purified by column chromatography to afford the lactam 3 ($503 \mathrm{mg}, 86 \%$ yield) as a pale yellow oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 3361, 2930, 1614, 1513, 1438, 1413, 1247, 1067, 1031, 817. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 2H), 5.79 (ddt, $J=17.0,10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, $J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.32$ (s, $1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.81-$ $3.71(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz} \mathrm{1H}), 2.59-2.53(\mathrm{~m}$, $1 \mathrm{H}), 2.38(\mathrm{dt}, J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 3 \mathrm{H})$, 1.95-1.88 (m, 1H), $1.76-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,159.8,138.0,130.2,129.3,115.4$, $114.2,83.2,81.8,71.9,66.8,57.3,55.6,55.2,46.2,31.4$, 29.8, 29.5, 26.7. ESIMS $m / z \quad 380 \quad\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{NSiNa},(\mathrm{M}+\mathrm{Na})^{+}$380.1838, found: 380.1839 .

3.1.12. ($5 R^{*}, 6 R$ *)-5-(Benzyloxy)-6-(3-(4-methoxybenzyloxy) prop-1-ynyl)-1-(pent-4-enyl)piperidin-2-one (16)

Sodium hydride in mineral oil ($60 \%, 60 \mathrm{mg}, 1.5 \mathrm{mmol}$, 1.5 equiv), $\mathrm{BnBr}\left(300 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 2.5\right.$ equiv) and $\mathrm{Bu}_{4} \mathrm{NI}$ ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.1$ equiv) were added to a solution of the alcohol $3(358 \mathrm{mg}, 1 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resultant mixture was warmed to rt and stirred for 19 h . The reaction mixture was diluted with EtOAc $(15 \mathrm{~mL})$, quenched with water $(5 \mathrm{~mL})$ and the aqueous layer extracted with EtOAc ($2 \times 25 \mathrm{~mL}$). The combined organic extracts were washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure to give the crude product. This was purified by column chromatography to give the benzyl ether $16(291 \mathrm{mg}, 65 \%)$ as a colourless oil and the starting alcohol 3 ($100 \mathrm{mg}, 28 \%$). IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 2947, 2317, 1639, 1513, 1249, 1168, 1098, $1070,1028,698 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28$
(m, 5H), $7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.80 (ddt, $J=17.1,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=14.8,5.4 \mathrm{~Hz}$, $2 H), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,159.6,142.0$, $137.8,130.5,129.6,129.1,128.5,128.1,115.5,114.1,85.2$, $79.0,73.5,73.4,71.5,57.1,55.7,51.7,46.2,31.4,29.5,26.7$, 23.7. ESIMS $m / z 470\left[(\mathrm{M}+\mathrm{H})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NNa},(\mathrm{M}+\mathrm{Na})^{+} 470.2034$, found 470.2032 .

3.1.13. (5R*,6R*)-5-(Benzyloxy)-6-(3-hydroxyprop-1-ynyl)-1-(pent-4-enyl)piperidin-2-one (17)

To a mixture of the PMB ether $16(270 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water (1 Ml ,) DDQ ($246 \mathrm{mg}, 1.08$ $\mathrm{mmol}, 1.8$ equiv) was added portionwise at $0^{\circ} \mathrm{C}$ and the mixture was allowed to stirr at rt for 18 h . Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and washed with water (2 x 4 mL). The organic layer was dried over MgSO_{4} and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the primary alcohol 17 ($166 \mathrm{mg}, 83 \%$ yield) as a pale yellow oil. IR (neat, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 3320,2926,2313,1697,1620,1453,1411,1270$, 1163, 1095, 1070, 914, 740. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.42-7.26$ (m, 5H), 5.78 (ddt, $J=17.0,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.02 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H})$, $4.27(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.61-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, \mathrm{H}), 2.06-$ $1.99(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 169.8,138.0,137.6,128.9$, $128.4,128.1,115.4,84.8,80.7,73.5,71.5,52.5,51.1,46.5$, 31.3, 29.5, 26.6, 23.9. ESIMS m/z $350\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NNa},(\mathrm{M}+\mathrm{Na})^{+}$350.1732, found: 350.1718 .

3.1.14. Methyl 3-((2R*,3R*)-3-(benzyloxy)-6-oxo-1-(pent-4-enyl)piperidin-2-yl)propiolate (2)

To a solution of the primary alcohol $17(152 \mathrm{mg}, 0.46$ mmol) in acetone (3 mL), Jones' reagent $(480 \mu \mathrm{~L})$ was added dropwise at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{OH}$ $(0.1 \mathrm{~mL})$ was added at the same temperature and the reaction mixture was stirred for additional 10 min . Water (10 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x}$ 20 mL). The organic extracts were combined, dried over MgSO_{4} and filtered. The solvent was evaporated in vacuo to give the crude acid ($152 \mathrm{mg}, 91 \%$ yield) as a yellow solid which was used in the next step without further purification. This acid was dissolved into anhydrous DMF (2 mL). Then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($123 \mathrm{mg}, 0.90 \mathrm{mmol}, 2$ equiv) was added at rt and the mixture was stirred for 15 min under a N_{2} atmosphere. MeI ($160 \mu \mathrm{~L}, 2.56 \mathrm{mmol}, 6$ equiv) was then added and the mixture was stirred at rt for 14 h . Water (10 mL) was added and the mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic extracts were combined, dried over MgSO_{4} and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the methyl ester 2 ($110 \mathrm{mg}, 71 \%$ yield) as a pale yellow oil. IR (neat, $\left.v_{\max } / \mathrm{cm}^{-1}\right): 2916,2376,2313,1718,1620,1272,1099,698$. H NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.72$ (ddt,
$J=17.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (s, 3H), 3.73-3.63 (m, 2H), 3.03 (dt, $J=13.5,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 3 \mathrm{H})$, 1.61-1.54 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,153.7,138.0,137.6,129,128.9$, $128.1,115.5,83.3,77.2,73.4,71.7,53.2,52.8,46.6,31.3$, 29.7, 26.7, 24.5. ESIMS $m / z 378\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NNa},(\mathrm{M}+\mathrm{Na})^{+}$, 378.1681, found; 378.1674.
3.1.15. Methyl 2-((1R*,10aR*)-1-(benzyloxy)-4-oxo-1,2,3,4, 6,7,8,10a-octahydropyrido[1,2-a]azepin-10-yl)acrylate (18)

To a solution of the ene-yne $2(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, Grubb's $1^{\text {st }}$ generation Ru catalyst ($23,2 \mathrm{mg}, 0.028 \mathrm{mmol}, 0.1$ equiv) was added under a N_{2} atmosphere and the mixture was stirred at rt for 8 h . The reaction mixture then was exposed to open air for 30 min . The solvent was evaporated in vacuo and the residue was purified by column chromatography to give the bicyclic compound 18 ($79 \mathrm{mg}, 80 \%$ yield) as a pale yellow oil. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): 2937, 1740, 1635, 1623, 1451, 1250, 1171, $1050,726 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.24$ (m, $5 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.24(\mathrm{dd}, J=12.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H})$, $3.20(\mathrm{td}, J=12.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.39-$ $2.33(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H})$, 1.77-1.69 (m, 1H), $1.63-1.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,167.3,142.1,138.6,136.4,132.2$, 128.6, 128.4, 127.6, 127.3, 71.9, 70.9, 66.7, 52.5, 42.7, 27.2, 24.0, 23.5, 21.8. ESIMS $m / z \quad 378\left[(\mathrm{M}+\mathrm{Na})^{+} 100 \%\right]$. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NNa},(\mathrm{M}+\mathrm{Na})^{+}$, 378.1697, found; 378.1681 .

3.1.16. Methyl 2-((1R*,10aR*)-1-(benzyloxy)-4-oxo-1,2,3, 4,6,7,8,10a-octahydropyrido[1,2-a]azepin-10-yl)propanoate (1)

Sodiumborohydride ($68 \mathrm{mg}, 1.8 \mathrm{mmol}, 9$ equiv) was added portionwise to a solution of the enone $8(72 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . Saturated aqueous NaHCO_{3} solution (10 mL) was added at $0^{\circ} \mathrm{C}$ and the mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic extracts were combined, dried over MgSO_{4} and filtered. The solvent was evaporated in vacuo and the residue was purified by column chromatography to give 1 ($56 \mathrm{mg}, 77 \%$ yield) as a pale yellow oil as an inseparable mixture of diastereomers. IR (neat, $v_{\max } / \mathrm{cm}^{-1}$): $2940,1730,1626,1454,1276,1246$, 1173, 1108, 1098, 736, 717. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major diastereomer $\delta 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20$ (dd, $J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.99$ (s, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=$ $17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) major diastereomer δ $174.8,169.6,138.8,136.8,128.6,127.7,127.6,127 ., 72.4$, $71.2,69.2,52.3,44.3,43.0,27.2,24.0,23.9,21.2,19.1 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) minor diastereomer $\delta 7.34-7.24$
$(\mathrm{m}, 5 \mathrm{H}), 5.88(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H})$, 2.86-2.76 (m, 1H), 2.74-2.64 (m, 1H), 2.64-2.56 (m, 1H), 2.37 (dd, $J=17.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09$ $(\mathrm{m}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) minor diastereomer $\delta 175.3,169.5,138.4,134.4,128.6,127.9,127.7$, $127.2,72.4,71.0,69.1,52.4,44.3,42.8,27.2,24.0,23.9$, 21.3, 16.5. ESIMS $m / z 358\left[(\mathrm{M}+\mathrm{H})^{+}\right.$100\%]. HRESIMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}$, $(\mathrm{M}+\mathrm{H})^{+} 358.2018$, found: 358.2001 .

CONCLUSION

This study demonstrated the synthesis of pyrido[1,2a]azepine alkaloids by constructing the bicyclic structure 1 . This compound was synthesized in 17 steps from the commercially available 4-pentyn-1-ol in 1.7% overall yield. The key steps involve oxidation of 1,4 diol to lactone and an eneyne ring-closing metathesis reaction. Unfortunately, all attempts to prepare the tricyclic compound 19 from the bicyclic 1 were unsuccessful. In the future, other methods for halolactonization of 1 will be examined. Another direction will be the preparation of all products from compound 4 as single enantiomers by using asymmetric epoxidation. Compared to the previous study [11], this synthetic route required more steps and a lower overall yield. However, if the synthesis of the tricyclic compound 19 was successful, the synthesis of pyrido [1,2-a]azepine alkaloids such as stemocurtisine could be accomplished in several synthetic steps.

CONSENT FOR PUBLICATION

Not applicable

AVAILABILITY OF DATA AND MATERIALS

All data generated or analysed during this study are included in this published article [and its supplementary information files].

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The author thank Vinh University for financial support.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publisher's website along with the published article.

REFERENCES

Pilli, R.A.; Rosso, G.B. The Alkaloids; Cordell, G.A., Ed.; Elsevier: Amsterdam, 2005, Vol. 62,
[2] Pilli, R.A.; Rosso, G.B. Nat. Prod. Rep., 2000, 17, 117-127.
http://dx.doi.org/10.1039/a902437i PMID: 10714902
[3] Pilli, R.A.; Rosso, G.B. Nat. Prod. Rep., 2010, 27, 1908-1937. http://dx.doi.org/10.1039/c005018k PMID: 21042634
[4] Chung, H-S.; Hon, P-M.; Lin, G.; But, P.P-H.; Dong, H. Planta Med., 2003, $69(10), 914-920$.
http://dx.doi.org/10.1055/s-2003-45100 PMID: 14648394
[5] Greger, H. Planta Med., 2006, 72(2), 99-113.
http://dx.doi.org/10.1055/s-2005-916258 PMID: 16491444
[6] Kaltenegger, E.; Brem, B.; Mereiter, K.; Kalchhauser, H.; Kahlig, H. Phytochemistry, 2003, 63, 803-816.
http://dx.doi.org/10.1016/S0031-9422(03)00332-7 PMID: 12877922
[7] Mungkornasawakul, P.; Pyne, S.G.; Jatisatienr, A.; Supyen, D.; Lie, W.; Ung, A.T.; Skelton, B.W.; White, A.H. J. Nat. Prod., 2003, 66(7), 980-982.
http://dx.doi.org/10.1021/np020612s PMID: 12880318
[8] Mungkornasawakul, P.; Pyne, S.G.; Jatisatienr, A.; Supyen, D.; Jatisatienr, C.; Lie, W.; Ung, A.T.; Skelton, B.W.; White, A.H. J. Nat. Prod., 2004, 67(4), 675-677.
http://dx.doi.org/10.1021/np034066u PMID: 15104502
[9] Lin, g.; Tang, C.P.; Dien, P.H.; Xu, R.S.; Ye, Y. Tetrahedron Lett., 2007, 48, 1559-1561.
http://dx.doi.org/10.1016/j.tetlet.2007.01.013
[10] Wang, Y.Z.; Tang, C.P.; Dien, P.H.; Ye, Y. J. Nat. Prod., 2007, 70(8), 1356-1359.
http://dx.doi.org/10.1021/np070099o PMID: 17636953
[11] Pyne, S.G.; Ung, A.T. Sci. Tech. (Paris), 2007, 01, 157-165.
[12] Mayer, C.; Romek, A.; Bach, T. Synthesis, 2015, 26, 1505-1509.
[13] Duc, D.X. Lett. Org. Chem., 2021, 18, 58-65.
http://dx.doi.org/10.2174/1570178617666200207105649
[14] Denmark, S.E.; Yang, S-M. J. Am. Chem. Soc., 2002, 124(10), 2102-2103.
http://dx.doi.org/10.1021/ja0178158 PMID: 11878949
[15] Quach, T.; Tsegay, S.; Thompson, A.J.; Kukushkin, N.V.; Alonzi, D.S.; Butters, T.D.; Davies, G.J.; Williams, S.J. Tetrahedron, 2012, 23, 992-997.
http://dx.doi.org/10.1016/j.tetasy.2012.06.011
[16] Kinoshita, A.; Mori, M. J. Org. Chem., 1996, 61, 8356-8357. http://dx.doi.org/10.1021/jo9616872
[17] Swamy, N.K.; Pyne, S.G. Heterocycles, 2011, 81, 473-492.
[18] Takemura, A.; Fujiwara, K.; Shimawaki, K.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron, 2005, 61, 7392-7419.
http://dx.doi.org/10.1016/j.tet.2005.05.073

[^0]: *Address correspondence to this author at the Department of Chemistry, Institute of Natural Sciences Education, Vinh University, Vinh City, Vietnam; Tel/Fax: (0238)3855452; E-mail: xuanduc80@gmail.com

