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Abstract: Background: Quinoline-containing compounds present in both natural and synthetic products are an 
important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas 
including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as 
antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity. 

Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention 
of chemists to develop effective methods. Many known methods have been expanded and improved. 
Furthermore, various new methods for quinoline synthesis have been established. This review will focus on 
considerable studies on the synthesis of quinolines date which back to 2014. 

Objective: In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some 
classical methods have been modified and improved, while other new methods have been developed. A vast 
variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction 
mechanisms were also displayed. 

Conclusion: Many methods for the synthesis of substituted quinoline rings have been developed recently. Over 
the past five years, the majority of those reported have been based on cycloisomerization and cyclization 
processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the 
near future. The application of known methods to natural product synthesis is probably the next challenge in 
the field. 

Keywords: Quinolines, Friedländer synthesis, bioactivity, microwave, yield, Povarov reaction, one-pot reaction. 

1. INTRODUCTION 
Quinoline-containing compounds present in both natural and 

synthetic products are an important class of heterocyclic 
compounds.  Many of the substituted quinolines have been used in 
various areas including medicine as drugs. Compounds with 
quinoline skeleton possess a wide range of bioactivities such as 
antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, 
anti-inflammatory, and analgesic activity. 

Antimalarial: Quinolines are well-known for their antimalarial 
potential. This bioactive compound isolated from the bark of 
Cinchona trees has been used for the treatment of malaria. Based on 
this structure, many other antimalarial drugs have been synthesized 
such as chloroquine, primaquine, santoquine, pentaquine, 
isopentaquine, amodiaquine and mefloquine (Fig. 1) [1]. 

Analgesic: The synthetic 4-Substituted-7-trifluoromethyl 
quinolines (Fig. 2A) showed good analgesic activity [2]. This 
property has also been found in some quinoline derivatives 
synthesized by Manera et al. (Fig. 2B) [3]. 

Antiprotozoal: Fournet et al. isolated some 2-substituted 
quinolines from the bark of Galipea longiflora and tested their  
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bioactivity. Two of them (Fig. 3A) were effective against the 
parasites (Leishmania sp.), which are the agents of leishmaniasis 
[4]. Fakhfakh et al. synthesized alkenyl and alkynyl quinolines 
(Fig. 3B), which are the potential agents for the treatment of 
cutaneous leishmaniasis, visceral leishmaniasis, African trypano-
somiasis and Chagas’ disease [5].  

Anthelmintic: Four substituted 2,4-dimethoxy arylquinolines 
synthesized by Rossiter et al. (Fig. 4) exhibited good activity 
against the nematode (H. contortus). Notably, these quinoline 
derivatives maintained their activity against some strains of H. 
contortus, which are resistant to levamisole, ivermectin and 
thiabendazole [6]. 

Antibacterial: Some 3-benzyl-6-bromo-2-methoxy quinoline 
derivatives (Fig. 5A), which exhibited antibacterial activity against 
M. tuberculosis H37Rv strain, were synthesized by Upadhayaya  
et al. by molecular modelling techniques [7]. 7-chloro quinoline 
derivatives obtained by De Souza synthesis (Fig. 5B) showed good 
activity against multi-drug resistant tuberculosis [8]. Some 
mefloquine-like quinolines (Fig. 5C) developed by Eswaran et al. 
were found to be active against E. coli, S. aureus, P. aeruginosa 
and K. pneumoniae [9]. 

Antiinflammatory: 2-(Furan-2-yl)-4-phenoxy-quinoline deri-
vatives synthesized by Chen et al. (Fig. 6A) showed good inhibition 
of lysozyme and β-glucuronidase release [10].  Baba et al.  prepared  
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Fig. (4). Quinoline derivatives with anthelmintic activity. 
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Fig. (7). Quinoline derivatives with anticancer activity. 
 
a substituted quinoline (Fig. 6B), which exhibited potent anti-
inflammatory activity in the adjuvant arthritis rat model [11]. 
Gilbert et al. developed some quinolines for the treatment of 
osteoarthritis (Fig. 6C). These compounds are active against 
Aggrecanase-2 [12]. 

Anticancer: Vittorio Caprio et al. synthesized indole fused 
10H-indolo[3,2-b]quinoline bearing bis-dimethylaminoethyl (Fig. 
7A) with anticancer activity acting on telomerase [13]. New 
derivatives of 2-phenyl quinoline having [(2- aminoethyl)amino-
methyl] group (Fig. 7B) were synthesized and evaluated for the 

ability to intercalate into double-stranded DNA by Yuzi Mikata et 
al. [14]. 1-[4-(3H-pyrrolo[3,2-f]quinolin-9-ylamino)-phenyl]-etha-
none hydrochloride (Fig. 7C) with high antiproliferative activity 
and inhibition of DNA topoisomerase II was synthesized by Dalla 
Via et al. [15]. 

Antimicrobial: The synthesis of 1-aryl/heteroaryl-5 methyl-1, 
2, 4-triazolo[4,3-a]quinoline derivatives (Fig. 8A) and evaluation in 
vitro for their antimicrobial activity were reported by Sanada et al. 
and one compound exhibited good activity against salmonella 
typhae. The moderate activity against C. albicans, A. niger, and 
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Salmonella typhae of 4-(4-pyrozolyl)-2-aminopyrimidines (Fig. 8B) 
was reported by Singh et al. [16]. Rao et al. [17] prepared some 
new multi quinolines derivatives (Fig. 8C) by Baylis-Hillman 
reaction and evaluated their activity against some of the Gram-
positive organisms, viz., B. subtilis, B. sphaericus, and S. aureus, 
and three Gram-negative organisms, viz., C. violaceum, K. 
aerogenes, and P. aeruginosa. Most of them exhibited broad- 
spectrum antibacterial activity [18]. 

Anticonvulsant: The synthesis and bioactive evaluation of 5-
alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivative were reported by 
Zhe-Shan Quan et al. [19]. Among these compounds, 5-hexyloxy-
[1,2,4]triazolo[4,3-a] quinoline (Fig. 9) showed the best 
anticonvulsant activity, with a median effective dose of 19.0 mg/kg. 

N

OC6H13

N
N

 

Fig. (9). Quinoline derivative with anticonvulsant activity. 

Cardiovascular: Bekhit et al. synthesized some new 4-
(diphenyl methyl)-α-[(4-quinolinyloxy]methyl]-1-piperazinethanol 
derivati-ves, which exhibited cardiovascular activity on rat and 
guinea pig models. Among them, compound DPI 201-106 (Fig. 
10A) was found to be inotropically effective in rat heart [20]. 3H 
pyrrolo[3,2- f]quinoline (Fig. 10B) showed endothelium-
independent relaxing action in the rat-tail arteries [21]. The 
hypotensive activity of centhaquin (Fig. 10C) was studied by 

Srimal et al. and it helped to reduce the blood pressure as well as 
lowered the heart rate in cat in a dose-dependent manner [22]. 

Antiviral: Anilidoquinolines synthesized by Ghosh et al. (Fig. 
11A) demonstrated a good degree of in vitro activity against 
Japanese encephalitis virus [23]. Chen et al. prepared several 
quinolines (Fig. 11B), which acted as HIV-1 Tat–TAR interaction 
inhibitors. [24] Several quinolines synthesized by Fakhfakh et al. 
(Fig. 11C) showed activity against HIV-1 [5]. 

Due to such a wide range of applicability, the synthesis of 
quinoline derivatives has attracted a lot of attention of chemists to 
develop effective methods. Many known methods have been 
expanded and improved. Furthermore, various new methods for 
quinoline synthesis have been established. This review will focus 
on considerable studies on the synthesis of quinolines which date 
back to 2014. 

2. ESTABLISHED METHODS FOR THE SYNTHESIS OF 
QUINOLINE 
2.1. Friedländer Reaction 

Among methods for the synthesis of quinolines derivatives, the 
Friedländer heteroannulation is still one of the simplest and  
most straightforward methods. The reaction usually starts with  
2-aminoaryl aldehyde or ketone and an aldehyde or ketone 
containing α -methylene group. Many methods based on this 
reaction or its modifications have been reported recently. 

An efficient and straightforward Friedländer synthesis of 
polysubstituted quinoline-3-thiocarboxamides from 3-oxo-N,3-
diarylpropanethioamide and 2 aminoarylketone/2 aminoaryl-
carboxylic acid ester was accomplished by Yadla et al. [25]. The 
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Fig. (8). Quinoline derivatives with antimicrobial activity. 
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Fig. (11). Quinoline derivatives with antiviral activity. 
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two-component solvent-free reaction protocol was performed under 
microwave irradiation and catalyzed by InCl3 giving quinolines in 
excellent yields (Scheme 1). For the synthesis of 4-substituted 3-
aroyl quinolines from o-aminoaryl ketones with enaminones, Luo et 
al. employed ZnCl2 as the catalyst (Scheme 2) [26]. From 2-
bromobenzaldehydes, aryl methyl ketones, and aqueous ammonia, 
quinolines were produced by a copper-catalyzed one-pot cascade 
reaction under mild conditions and simple operation in good to 
excellent yields (Scheme 3) [27]. The inexpensive catalyst 
(Bu4N)2S2O8 was used by Vanajatha and Prabhakar Reddy as the 
catalyst for quinoline synthesis at ambient temperature under 
solvent-free conditions. Good to excellent yields were obtained for 
most products and the synthesis was suitable for many functional 
groups (Scheme 4) [28]. 

Nanomaterials have also been used as catalysts for Friedländer 
quinoline synthesis. A one-pot, efficient, and environmentally 
friendly procedure was designed by Chermahini and Teimouri for 

the preparation of quinolines with the employment of  
Montmorrilonite K-10 or zeolite or nano-crystalline SZ as catalysts 
[29]. The reaction between 2-aminoarylketones and carbonyl 
compounds or β -keto esters was proceeded in mild conditions and 
provided easy work-up and simple product purification (Scheme 5). 
In another report, quinolines were obtained in good to excellent 
yields from 2-aminoarylketones and carbonyl compounds under 
solvent-free conditions using easily prepared and recyclable 
Fe3O4@SiO2 APTES-TFA nanoparticle as the catalyst (Scheme 6) 
[30]. Baghbanian and Farhang described the use of CuFe2O4 
nanoparticles as the catalyst for the synthesis of quinoline 
derivatives. Products were isolated in very good yields and the 
catalyst can be reused successively 5 times without any significant 
decrease in activity (Scheme 7) [31]. 

Borah et al. prepared two acidic ionic liquids 
[Hmim][OOCCCl3] and [Msim][OOCCCl3] and applied them as 
catalysts for the Friedlände quinoline synthesis [32]. The 

R1 N
H

R2

R3
R4

O

NH2

O S
+

InCl3 (10 mol%)

MWI, 80 °C, 10 min

N

R3

R4 S

N
H

R1

R2

19 examples
85-92% yield  

Scheme 1. 

NH2

R2

O

R1 Ar

O

N+
ZnCl2 (3 equiv)

1,4-dioxane, reflux
N

Ar

OR2

R1

19 examples
42-87% yield

N

R2

O

R1

Ar

O

ZnCl2
-NHMe2

H

Cl2Zn

N

Ar

OR2

R1

HO

- H
2O

 
Scheme 2. 

Br

CHO

O

R2+ +  NH3  + H2O

CuBr, Cs2CO3
1,10- Phen

DMF, 80°C

N
R2R1

R1

18  examples
76-93% yield  

Scheme 3. 

NH2

O

R1

O R3

R2
+

(Bu4N)2S2O8
(25 mol%)

solvent-free
rt, 45 min N

R1

R2

R3

15 examples
75-95% yield  

Scheme 4. 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



676    Current Organic Synthesis, 2019, Vol. 16, No. 5 Duc Dau Xuan 

 

advantages of the synthesis include single product formation, easy 
work-up, short reaction time, catalysts recyclability and high yields 
of products (Scheme 8). In the study by Prasad et al., indium triflate 
In(OTf)3 and the recyclable ionic liquid [Bmim]BF4 were employed 
for the synthesis of 2-acetylquinolines from 1,2-diketones and 2-
aminoarylketones [33]. The reaction of unsymmetrical 1,2-
diketones with 2-aminoarylketones provided 2-propanoylquinolines 

over 2-acetyl-3-methylquinolines. Products were produced in 
excellent yields and the ionic liquid could be recovered and 
subsequently run four times more with insignificant loss of activity 
(Scheme 9). 1,3-disulfonic acid imidazolium hydrogen sulfate was 
used by Shirini et al. for the preparation of quinoline derivatives 
[34]. The catalyst was also reused several times without any 
considerable loss of activity (Scheme 10). 
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Many modifications of Friedländer quinoline synthesis have 
been developed by changing the starting materials. A synthesis 
from alcohols and 2-nitroaryketones by a Ru(II)-catalyzed 
annulation was described by Wu et al. At first, using tris(tri-
phenylphosphine)ruthenium(II) dichloride [Ru(PPh3)2Cl2] catalyst, 
2-nitroaryketones and alcohols were concurrently transformed to  
2-aminoaryl ketone the Friedlander reactive reactants through 
hydrogen transfer (Scheme 11) [35]. Similarly, Sanz et al. disclosed 
the synthesis of polysubstituted quinolines catalyzed by dioxomoly-
bdenum(VI)-catalysis from 2-nitroaryketones and glycols (Scheme 
12). All quinolines were produced in good to high yields in short 
reaction times by the microwave irradiation technique [36]. Xiao et 
al. prepared quinolines from 2-nitrobenzyl alcohol and ketones in 
water without using transition-metal catalyst (Scheme 13). The 
reaction was initially proceeded by an intramolecular hydrogen 
transfer process catalyzed by t- BuOK to form 2 amino-
benzaldehyde, which could be isolated from a reaction without 
ketone [37]. An iron-catalyzed redox condensation of alcohols, 
formic acid and 2-nitrobenzyl methylether/2-nitrobenzyl alcohols, 
which resulted in the formation of quinolines was described by Liu 
et al. Carbon dioxide and water are the only side products of the 

synthesis, (Scheme 14). Among the products, 2-phenyl quinoline 
was prepared in good yield at gram- scale (10 mmol) [38]. 

Substrates for Friedländer modification quinoline synthesis can 
be ketones and 2-aminobenzyl alcohol. Cai et al. obtained 2, 3-
substituted quinolines from a metal-free NHC-catalyzed indirect 
Friedländer annulation of ketones with 2-aminobenzyl alcohol 
(Scheme 15). Quinoline derivatives were furnished in good to 
excellent yields through a one-pot, two-step tandem reaction [39]. 
Rangappa et al. reported the synthesis of 2-phenylquinolines 
through a simple, solution-phase T3P®-DMSO mediated method 
with microwave irradiation (Scheme 16). In only five minutes, 
quinolines were obtained in excellent yields [40]. From enones and 
2-aminobenzyl alcohols, Ling et al.  demonstrated the synthesis of 
quinolines through iridium-catalyzed transfer hydrogenative 
reactions (Scheme 17). The synthesis employed [IrCp*Cl2]2/t-
BuOK as the efficient catalyst system allowing reactions to occur at 
mild conditions. The synthesis was supposed to initiate with 
transfer hydrogenation, followed by the Friedländer condensation to 
afford the final quinoline products [41]. 
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2-aminobenzyl alcohols and secondary alcohols have also been 
used as starting materials for Friedländer quinoline synthesis. A 
cross-coupling annulation of 2-aminobenzyl alcohols with 
secondary alcohols was investigated by Li et al. for the preparation 
of quinolines using well-defined copper(I) 4,6-dimethylpyrimidine-
2-thiolate cluster catalyst (Scheme 18). The reaction was supposed 
to undergo a one-pot sequence of dehydrogenation of alcohols, 

condensation of aldehydes and ketones resulting in α,β-unsaturated 
ketones, and intramolecular nucleophilic addition of amine groups 
to ketone group followed by dehydration [42]. Singh reported the 
one-pot synthesis of structurally diverse substituted/annulated 
quinoline derivatives by two-component coupling of 2-aminobenzyl 
alcohol/2-aminobenzophenones with alkyl/aryl alcohols in the 
presence of air (Scheme 19). A metal-free in situ aerial oxidation of 
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alcohols to aldehydes and ketones is supposed to occur at the first 
step. The synthesis has many advantages such as simple operations, 
high yields of the products, easy purification, and economic 
viability [43]. Acceptorless dehydrogenative coupling of o-
aminobenzylalcohols with ketones or secondary alcohols catalyzed 
nickel catalyst [Ni(MeTAA)] was carried out to prepare 2,3 
disubstituted quinolines (Scheme 20) [44]. The preparation of 
quinolines derivatives from allylic alcohols and 2-aminobenzyl 
alcohols catalyzed by [IrCp*Cl2]2/KOH was demonstrated by Cai  
et al. (Scheme 21). The reaction possibly follows a tandem process 
integrating isomerization of allylic alcohols and oxidative 
cyclization of 2-aminobenzyl alcohol [45]. 

From ketones and o-amino benzylamine Yu et al. reported the 
synthesis of disubstituted quinolines. The Friedländer-type reaction 
proceeded via a C-N cleavage of amines followed by condensation 
with ketones under copper catalyst affording quinolines in moderate 
to excellent yields (Scheme 22). The proposed reaction mechanism 
is presented below [46]. In an analogous study, the aerobic C-N 

bond activation reaction was catalyzed by LiCl using oxygen as the 
sole oxidant. The same mechanism was proposed for this 
transformation (Scheme 23) [47]. 

From o-aminobenzaldehyde, 2-methylindole, and ketone, Gu  
et al. synthesized quinoline-fused 1-benzazepine derivatives 
through a Mannich-type reaction (Scheme 24). This is also a 
version of Friedländer reaction. The key intermediate of this 
synthesis is a hitherto-unreported C,N-1,6- bisnucleophile 
generated from o-aminobenzaldehyde and 2-methylindole by an 
indole-to-quinoline transformation. The proposed reaction 
mechanism is outlined below [48]. 

An efficient protocol for the preparation of disubstituted 2-
quinolin-2-yl malonates and β -ketoesters from N-protected o-
aminobenzaldehydes and α,γ-dialkylallenoates was demonstrated 
by Selig and Raven (Scheme 25). The reactions underwent a 
sequence of Michael addition, aldol condensation, and 1,3-N → C 
rearrangement sequence forming products in high yields. Substrates 
with carbamate protection(N-Boc, N-Cbz, N-Alloc) gave 2-
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quinolin-2-yl-malonates, while amide protected substrates (N-Ac, 
N-Bz) furnished 2- quinolin-2-yl-β-ketoesters [49]. 

2.2. The Povarov Reaction 

The Povarov reaction is also one of the most useful methods for 
quinolines synthesis. Besides the original reaction, many 
modifications have been developed and many reports involving the 
Povarov reaction have been found in the literature. 

Barbosa et al. developed a procedure for the 2-(2-pyridyl) 
quinolines synthesis via three-component Povarov reaction of 
aromatic aldehydes, anilines, and ethyl vinyl ether employed 
BF3OMe2 as the catalyst (Scheme 26). The synthesis has many 
advantages such as mild conditions, simple work-up, clean reaction 
profile, a broad range of substrate applicability, and high yields of 
the products [50]. 

Wu et al. described a highly efficient, I2-catalyzed method for 
the synthesis of quinolines from methyl ketones, arylamines, and α-
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ketoesters (Scheme 27). Their approach utilized a catalytic amount 
of HI co-product as a promoter and showed good functional group 
compatibility. In most cases, quinoline derivatives were formed in 
very good yields. Notably, the synthesis of ethyl 2-benzoyl-6-
methylquinoline-4-carboxylate was accomplished on a large scale 
(10 mmol) with good yield (84%) [51]. 

A practical and economical K2S2O8-mediated oxidation cross-
dehydrogenative coupling reaction of a variety of N-aryl glycine 
derivatives with olefins was performed by Liu et al. (Scheme 28). 
The advantages of the reaction include low cost, insignificant 
toxicity, easy handling of K2S2O8, no hazardous byproducts and the 
easy workup [52]. Feng et al. discovered a method for the 
preparation of substituted quinolines from analogous substrates by 
dehydrogenative Povarov/oxidation tandem reaction using gold-
oxazoline complex catalyst (Scheme 29). The reaction was 
performed under mild reaction conditions using O2 as the oxidant 

and displayed a wide range of substrate scope and very good 
functional group tolerance [53]. 

An intramolecular Povarov cyclization reaction for the 
synthesis of quinoline-fused lactones was developed by Zhang et al. 
through visible-light-induced photocatalytic aerobic oxidation 
(Scheme 30) [54]. The reaction was operated under mild reaction 
conditions providing products in moderate to good yield. In a study 
by Jia et al., the cyclization of cinnamylaniline led to the formation 
of 2-arylquinolines via sp3 C-H aerobic oxidation promoted by a 
radical cation salt (Scheme 31) [55]. 

An efficient and practical palladium-catalyzed aerobic oxidative 
approach for the synthesis of quinoline from allylbenzenes and 
anilines was examined by Jiang et al. (Scheme 32). The 
transformation was supposed to proceed through oxidation of 
allylic C–H functionalization to form C–C and C–N bonds in one 
pot [56]. In  an investigation by Shah et al., the reaction between 
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styrenes and anilines resulted in the formation of 2,4-disubstituted 
quinolines (Scheme 33). The reaction proceeded efficiently over a 
wide range of substrate scope and showed broad functional group 
tolerance without using metal/oxidizing agent [57]. From 4-
bromoanilin, styrene and aldehyde, Fernandes et al. disclosed a 
convenient method for the synthesis of quinolines catalyzed by p-
sulfonic acid calix[4]arene. The merits of the synthesis include 
environmentally friendly operation, mild conditions and easy work-
up (Scheme 34).  Twenty-eight quinolines were obtained in good to 
excellent yields under microwave irradiation [58]. 

Jia et al. introduced an efficient method for the synthesis of 
quinolin-4-carboxylate through the reaction between the 2-azadiene 
and dienophile enabled by the dual removable activating groups 
(Scheme 35). The reaction showed good functional group tolerance 
and provided products in good yields in most cases [59]. 

The three components Povarov-type reaction between aniline, 
aldehyde and terminal alkyne has attracted a lot of attention 
recently and been reported a lot in the literature. An efficient and 
economical method for the synthesis of SF5-bearing quinolines 
using FeCl3 catalyst through a sequence of coupling, hydroarylation 
and dehydrogenation of meta/para-pentafluorosulfanyl anilines, 
aldehydes and alkynes was conducted by Xu et al. (Scheme 36). 
The reaction was performed in the presence of air and SF5- bearing 
quinolines were achieved in good yields [60]. In a study by Silva-
Filho, NbCl5 was used as the Lewis acid catalyst and quinolines 
derivatives were formed in 67 to 96% yields in MeCN at reflux 
(Scheme 37) [61]. A mechanism was also suggested for the 
transformation. Chandak employed Zinc(II) triflate catalyst for this 
coupling reaction (Scheme 38). The pseudo three-component 
Povarov reaction was performed with the absence of ligand, co-
catalyst, solvent or inert atmosphere providing products in good 
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yields [62]. In another report, Larsen and Mayet performed this 
reaction with Copper(II) triflate catalyst to prepare quinoline 
derivatives (Scheme 39). The Povarov reaction proceeded well 
without ligand, cocatalyst, solvent, or inert atmosphere forming 
products in good yields [63]. 

The use of nanomaterials as catalyst for this Povarov-type 
reaction has also been well- investigated. Bhalla et al. prepared 
polythiophene-encapsulated bimetallic AuFe3O4 nanohybrid 
materials having a fibrous morphology and used this complex as a 
catalyst for the synthesis of quinolines through C-H activation, 
carbonylation, and subsequent annulation (Scheme 40). The 
synthesis featured many advantages such as aqueous media, room 
temperature, visible-light irradiation, and aerial conditions [64]. 
This group also prepared supramolecule ensemble of 
tetraphenylcyclopentadienone aggregates and HgO nanomaterial as 

the catalyst for Povarov synthesis of quinoline through ortho C-H 
functionalization of anilines. Diverse quinolines were furnished in 
very good yields (Scheme 41). In addition, the nanocatalyst could 
be reused up to three times without a major decrease in the activity 
[65]. Han and Sapkota developed an environmentally friendly 
method for the efficient synthesis of Au-Ag@AgCl NCs and used 
this nanomaterial as the catalyst for the synthesis of 
pharmaceutically important quinoline derivatives in excellent 
yields. The synthesis was supposed to proceed through a three-
component sequence of annulation and aromatization reaction of 
aldehydes, amines, and alkynes (Scheme 42). The catalytic system 
was reused five times without any considerable loss of activity [66]. 
Baltork et al. investigated an efficient microwave-assisted synthesis 
of quinoline derivatives. The use of efficient and reusable catalyst 
Fe3O4-TDSN-Bi(III) produced quinolines in good to excellent 
yields in a regioselective manner (Scheme 43) [67]. 
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Scheme 43. 
 

Jin reported that 4-hydroxalkyl-quinoline derivatives can be 
synthesized following the same Povarov-type reaction. The three-
component cascade reaction was catalyzed by Cu(I)Cl and Au(I)Cl 
giving quinolines in high yields (Scheme 44). The intermediate A 
could be isolated and converted into the final product by changing 
reaction conditions [68]. 

2.3. Pfitzinger Reaction 
Lee et al. reported the Pfitzinger synthesis of pyrrolo[3,4-

c]quinoline-1,3-dione derivatives by microwave-promoted cascade 
reaction between isatins and β -ketoamides in [Bmim]BF4/toluene 

(Scheme 45). The synthesis had many advantages such as short 
reaction time, mild reaction conditions, high yields, simple 
operations, easy product purification, and recyclability of the 
catalyst [69]. A simple three-step process for the Pfitzinger 
synthesis of substituted quinoline- 4-carboxylic acids from anilines 
was reported by Lindsay-Scott and Barlow (Scheme 46). Mixtures 
of regioisomers were formed and separated without chromato-
graphic purifications due to their solubility differences. The 
synthesis was completed at multigram-scale for all substrates (22-
54.4 mmol of isatins was used in the second step) [70]. Elghamry 
and  Al-Faiyz  described a simple one-pot synthesis of quinoline-4- 
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Scheme 47. 
 
carboxylic acids between enaminones and isatin (Scheme 47). High 
yield of quinoline derivatives was obtained. A plausible mechanism 
for the transformation was also presented [71]. 

Gao et al. reported an efficient Pfitzinger quinoline synthesis 
from ketoxime acetates and isatins. The reaction underwent N-O/C-
N bond cleavages and new C-C/C-N bond formations, along with 
the activation of Csp3-H bond (Scheme 48). The synthesis did not 

employ metal catalysts or extra oxidants and a high yield of 
products was obtained in most cases [72]. Perumal et al. 
demonstrated a new and efficient one-pot, three-component 
procedure for the regioselective synthesis of isoxazolo[5,4-
b]quinolin-4-yl)pyrimidine-2,4(1H,3H)-diones and isoxazolo[5,4-
b]quinolin-4-yl)-1H-pyrazol-5-amines by the cleavage of the isatin 
C-N bond followed by ring expansion in one-pot reaction using 
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environmentally benevolent p-toluene sulphonic acid as a catalyst 
(Scheme 49). The simple operation procedure, the use of 
inexpensive and environmentally friendly catalyst and high yields 
of products are the merits of the synthesis [73]. 

2.4. The Doebner Reaction 
Tavakol and Keshavarzipour reported the synthesis of 

Zn2+/ƛ‐carrageenan/Fe3O4 magnetic nanoparticles and applied this 
material as a catalyst for the synthesis of multi-substituted 
quinolines (Scheme 50). Sixteen quinolines were prepared in high 
yields through a one-pot reaction protocol between aromatic 
aldehydes, enolizable aldehydes and aniline derivatives in a 
nontoxic solvent [74]. Later, Tavakol group continued to develop a 
one-pot, multi-component quinoline synthesis protocol for the 

synthesis of quinolines. In this synthesis, the deep eutectic solvent 
Choline chloride/tin(II) chloride (ChCl2/SnCl2) was also employed 
as a green catalyst (Scheme 51). The reaction between aniline 
derivatives, aryl aldehydes and enolizable aldehydes occurred at  
60 °C for 2–3 h giving quinoline derivatives in high yields (54-
96)% [75]. Meng et al. used Cp2ZrCl2 or Cp2ZrCl2 supported on 
MCM-41 (Cp2ZrCl2/MCM-41) as the catalyst for the synthesis of 
quinolines from anilines and aldehydes (Scheme 52). When 
Cp2ZrCl2/MCM-41 was employed, the yields of the products were 
increased by 5-15% in comparison with Cp2ZrCl2 alone under the 
same reaction conditions [76]. A dehydrogenative cross-coupling 
process between primary alcohols and imines toward the synthesis 
of substituted quinolines catalyzed by ruthenium complex under 
microwave conditions was investigated by Porcheddu et al. 
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(Scheme 53). Quinolines were produced in moderate to good yield 
in the presence of TFA (30 mol%) [77]. 

With modification, the Doebner reaction between aniline 
derivatives and aldehydes could also form other products. Liao et 
al. synthesized 2-aroylquinolines through a copper-catalyzed 
selective aerobic oxidation and oxygenation approach (Scheme 54). 
Environment-benign O2 was used to oxidize the keto moiety in the 
final products and this was proved by using O18-labelling (O18 
appeared in the keto moiety of the products) [78]. From anilines 
and phenylacetaldehydes, Vishwakarma et al. developed an 
expedient method for the synthesis of substituted quinolines using 
imidazolium cation-based ionic liquids as the catalyst and the 
reaction medium (Scheme 55). Isolable 2,3-disubstituted quinoline 
intermediates were supposed to occur through C-C and C-N bond 
formation first, followed by C-C bond cleavage to produce 3-
substituted quinolines. The synthesis has many advantages such as 
nonmetal catalyst, environmentally friendly conditions, 
recyclability of reaction media, higher yields of products and short 
reaction times. The use of [Bmim]BF4 alone led to a mixture of the 
final product and the intermediate A with some substrates [79]. 

A simple and metal-free method was conducted by Nan et al. 
for the synthesis of quinolines through a three-component tandem 
reaction of arylamines, ethyl glyoxylate, and α-ketoesters catalyzed 
by inexpensive iodine (Scheme 56). The mild conditions synthesis 
resulted in quinoline-2,4-carboxylates in moderate to good yields 
with excellent functional group tolerance [80]. 

2.5. Other Reactions 
Cowen and Ramann performed an improved Doebner–Von 

Miller reaction to synthesize quinoline derivatives from acrolein 
diethyl acetal and aniline substrates without organic solvent 
(Scheme 57). Diverse substituted aniline substrates were found to 
be compatible with the reaction conditions. The reaction showed a 
broad range of functional group tolerance such as alkyl groups, 
halogens, phenols, and heterocycles. The corresponding quinoline 
products were isolated in moderate to good yields [81]. 

Regioselective synthesis of alkyl 2-(3- arylbenzo[f]quinolin-1-
yl)acetate catalyzed by camphorsulfonic acid was accomplished 
through δ -selective of β-ketoester (Scheme 58). The formation of 
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two new C-C bonds was performed in a one-pot fashion under mild 
Conrad-Limpac reaction conditions providing trisubstituted 
benzo[f]quinolines in good to excellent yields [82]. 

Amarasekara and Hasan reported Skraup synthesis of 
quinolines in which 1-(1-alkylsulfonic)-3-methylimidazolium 

chloride Brönsted acidic ionic liquids were employed as catalyst 
and reaction mediums (Scheme 59) [83]. The synthesis was 
performed under microwave irradiation in the absence of 
nitrobenzene as an oxidant and metal catalysts. Microwave 
irradiation was also used by Len et al. for Skraup quinoline 
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synthesis with a catalyst of sulfuric acid (Scheme 60). All reactions 
were performed in gram-scale (10 mmol of aniline derivatives) 
[84]. 

3. QUINOLINE SYNTHESIS THROUGH NOVEL 
SYNTHETIC ROUTES 

3.1. One-component Reaction 
Leroux et al. described the synthesis of 2,4- bis(fluoroalkyl)-

substituted quinoline derivatives using fluoroalkyl amino reagents 
(FARs) in two steps (Scheme 61). Under mild reaction conditions , 
high yields and very good regioselectivity of the products were 
observed [85]. 

A photochemical procedure for the synthesis of quinolines and 
indoles was developed by Chassaing et al. (Scheme 62). Quinolines 
products were formed only when the reaction was performed in 
EtOH/H2O media. The proposed mechanism for quinolines 
formation is outlined below [86]. 

In the investigation by Kapoor et al., 2-arylquinolines were 
formed as side products through one-pot synthesis by the reductive 
cyclization of 3-(2-nitrophenyl)- 1-arylprop-2-en-1-ones assisted by 
microwave irradiation using triethoxyphosphite [P(OEt)3] catalyst 
(Scheme 63) [87]. 

The preparation of 2-aryl-4-difluoromethylquinolines by NHC-
catalyzed umpolung of aldimines was introduced by Biju et al. 
(Scheme 64). The NHC generated from the bicyclic triazolium salt 

NH2

R HO OH

OH
+

H2SO4, H2O

MWI N

R

23 examples
23-66% yield  

Scheme 60. 

Rf1

Rf2

NR2

R1

FAR (1.2 equiv), BF3.Et2O

MeCN, rt to 50°C, 19 h N Rf1

Rf2

R1

35 examples
13-88% yield  

Scheme 61. 

N3
COR1R3

R2
hn

EtOH/H2O (1:1)
rt, 6 h

N R1

R2

R3

N
H

COR1

R2

R3+

A B

A:B = 25:75 - 100;0

5 examples
13-57% yield

hn

N
COR1R3

R2
solvent

NH2
COR1R3

R2

cyclization

 
Scheme 62. 

NO2

R

O

P(OEt)3

MWI, 80 W, 110°C

N
H

O

R N R

+

9 examples

57-62% yield                          27-30% yield  
Scheme 63. 

CF3

N

R2

R1
NHCs (5 mol%)

DBU (3 equiv)
DMF, 100°C, 36h

N

CF2H

R1
R2

25 examples
31-90% yield  

Scheme 64. 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



Recent Progress in the Synthesis of Quinolines Current Organic Synthesis, 2019, Vol. 16, No. 5    691 

 

and DBU base played the key success to this aza-Stetter type 
transformation [88]. 

In a study by Wang et al., quinolines were obtained through 
carbon–carbon double bond isomerization of α, β-unsaturated 
ketone derivatives under simple aerobic conditions (Scheme 65). 
Attractive features of the synthesis include catalyst-free, convenient 
operation, good functional group tolerance, the use of invisible light 
and atom economy [89]. 

Yan et al. reported an intramolecular cyclization of allylamines 
and ketones catalyzed by KO-t-Bu for quinoline synthesis (Scheme 
66). The reaction might undergo a rearrangement of α -aminoallyl 
radicals and generate nucleophilic enamine intermediates [90]. 

A new procedure for the synthesis of quinoline-3-carboxylic 
acid derivatives from methyl 2-(azidomethyl)-3-arylpropenoates 
and 2-(azidomethyl)-3-arylacrylonitriles was established by Yu  
et al. (Scheme 67). These substrates reacted with NBS with the 
assistance of visible light to generate iminyl radicals, which then 
underwent an intramolecular ortho attack on the aryl ring, yielding 
quinolone derivatives [91]. 

A novel and environmentally friendly approach for the 
synthesis of 2-arylquinoline and 2- styrylquinolines from o-
cinnamylanilines catalyzed by t-BuOK/DMSO was investigated by 
Ghorai et al. (Scheme 68). Regioselective 6-endo-trig intra-
molecular oxidative cyclization mediated by t-BuOK using DMSO 
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as an oxidant was supposed to occur at room temperature. The 
reaction has a wide substrate scope and good functional group 
tolerance, furnishing quinoline derivatives in moderate to good 
yields [92]. 

Yu et al. introduced a new method for the synthesis of 
quinolines from acyl oximes through visible-light induced iminyl-
radical formation (Scheme 69). In the presence of fac- [Ir(ppy)3] 
photoredox catalyst, the acyl oximes were transformed into iminyl 
radical intermediates, which then formed quinoline derivatives 
through intramolecular homolytic aromatic substitution. These 
reactions tolerate a wide range of substrates at room temperature 
giving products in high yields [93]. 

Xiao et al. presented a novel cascade cyclization of ortho-
propynol phenyl azides for the synthesis of multi-substituted 4-

chloro quinoline derivatives using TMSCl as the mediator (Scheme 
70). The C-N and C-Cl bonds were formed in one step through the 
cascade cyclization. Under mild conditions, quinoline products 
were afforded in moderate to excellent yields with a wide range of 
functional group tolerance [94]. 

In a study by Zhang et al., Langlois reagent was utilized for the 
synthesis of 6-(trifluoromethyl) phenanthridines under mild 
oxidative cyclization (Scheme 71). In the presence of silver nitrate, 
tert-butyl hydroperoxide, and sodium carbonate, a series of 
phenanthridines were yielded from corresponding aryl isonitriles in 
moderate to good yields, through a tandem trifluoromethylation–
cyclization process [95]. 

Quinolines can be formed by the reduction of 1,2,3,4-
tetrahydroquinoline derivatives. A dehydrogenative procedure for 
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the synthesis of 2- alkylaminoquinolines through direct α-C(sp3)-H 
amination of 1,2,3,4-tetrahydroquinolines catalyzed by copper 
iodide was conducted by Zhang et al. (Scheme 72). The reduction 
reaction used O2 as the oxidant under mild conditions with 
operational simplicity and suitablity for functional groups [96]. In 
Stahl and Iosub research, Co3O4-NGr/C was employed as the 
catalyst for quinoline synthesis through aerobic dehydrogenation of 
different 1,2,3,4-tetrahydroquinolines (Scheme 73) [97]. Menéndez 
et al. described a method for the synthesis of multi-substituted 
quinolines from 2-acyl-4-alkyl-4-dimethylhydrazonomethyl-
1,2,3,4-tetrahydroquinolines through a sequence of the oxidative 
generation of a C-4 nitrile group and its elimination under thermal 
conditions (Scheme 74). The transformation gave quinoline 
derivatives in very good yields [98]. 

3.2. Two-component Reaction 
Wang et al. explored an efficient and practical method for the 

synthesis of quinoline involving alkylation of N-propargylanilines 
with ethers mediated by TBPB (Scheme 75). The metal-free 
synthesis by a domino radical addition/cyclization reaction gave 3-

alkylated quinolines in one step in moderate yields [99]. In a similar 
study, Sun et al. employed fac-Ir(ppy)3 as the catalyst for the 
synthesis of 3-difluoroacetylated quinolines and 3-fluoroacetylated 
quinolines from N-propargyl aromatic amine and ethyl bromodi-
fluoroacetate through a cascade addition/cyclization induced by 
visible light (Scheme 76). The reactions occurred under mild 
conditions affording quinoline derivatives in good yields for most 
substrates [100]. From N-propargyl aromatic amine derivatives and 
arylsulfonylhydrazides, Tang et al. established a new method for 
the synthesis of 3-arylsulfonylquinoline derivatives through a 
sequence of sulfonylation, cyclization, aromatization mediated by 
TBHP without using any metals (Scheme 77). The synthesis was 
suitable for a wide range of substrates and gave quinoline 
derivatives in high yields [101]. Guan et al. developed a protocol 
for the synthesis of quinoline-3-carboxylic esters from N-(3-
phenylprop-2-ynyl)anilines via regioselective cyclocarbonylation 
with carbon monoxide and alcohols catalyzed by palladium 
complex (Scheme 78) [102]. Zhang et al. reported the synthesis of 
3-vinylquinolines from the dimerization of N-arylpropargylamines 
(Scheme 79). The  quinoline  products were formed through the Pd- 
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catalyzed electrophilic cyclization of the amine substrates, followed 
by hydroarylation process through trapping of the σ-
quinolinylpalladium intermediate. Products were obtained in 
moderate to good yields and are suitable for many functional 
groups [103]. 

A unique [3 + 3] annulation of anilines with allyl alcohols to 
prepare quinoline derivatives catalyzed by Ru complex was 
discovered by Kapur et al. (Scheme 80). A sequence of installation 
of the directing group, oxidation of the allyl alcohol, ortho-C-H 
functionalization, annulation, removal of the directing group, and 
oxidation/ aromatization was supposed to occur in one-pot reaction 
giving quinoline products [104]. The intermediate A could be 
isolated in separate experiments. Later, Kapur et al. employed Pd 
catalyst for this transformation (Scheme 81). The mechanism 

proposed that firstly β-amino ketones were formed by the oxidative 
coupling of allyl alcohols with anilines from catalyzation by [Pd], 
and then these intermediates were converted into substituted 
quinolines [105]. 

Sudalai et al. presented a simple annulation strategy for the 
synthesis of quinoline carboxylates through rhodium-catalyzed 
cyclization from anilin derivatives and propiolate esters (Scheme 
82). This reaction might proceed through a rhodacycle of in situ 
generated amide and enamine ester followed by ortho C-H 
activation of arylamines with rhodium catalyst [106]. In a 
mechanistic study, the intermediate amide reacts with ethyl 
propiolate to form the same product. The reaction of electron-rich 
anilines and ethyl propiolates furnished 2,3-disubstituted quinoline 
carboxylates [106]. In Dai et al., research, the reaction of primary 
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arylamines and 2 equivalents of electron-deficient terminal alkynes 
provided 2,4-disubstituted quinoline derivatives under 
Cu(OAc)2·H2O catalyst (Scheme 83) [107]. 

Jiang et al. developed a Pd-catalyzed oxidative annulation 
between o-alkenylanilines and alkynes for the synthesis of 2,3-
disubstituted quinolines (Scheme 84). A sequence of amination of 
alkyne, alkenyl migration insertion, and aerobic C-C bond cleavage 
was supposed to occur and the proposed reaction mechanism is 
illustrated below. Good functional group tolerance and high 
regioselectivity are the merits of the synthesis [108]. 

Prathapan et al. reported a simple method for the synthesis of 
substituted quinolines without using metal under mild conditions 

from nitrones and acetylenes (Scheme 85). They employed oxalic 
acid adsorbed on silica gel as a catalyst and the reaction was 
performed in MeCN at room temperature [109]. 

In work done by Roschenthaler, 2-difluoromethyl-4-aryl-, 
alkyl- or perfluoroalkylquinolin-3-ylphosphonates were obtained 
through regioselective heterocyclization of XCF2-alkynylphos-
phonates with ortho-aminoaryl ketones mediated by K2CO3 or 
Li2CO3/TMEDA (Scheme 86). A series of quinolines were prepared 
in moderate to excellent yields [110]. 

Zhang et al. developed a new strategy for the synthesis of 
quinolines from benzamidine precursors and alkynes (Scheme 87). 
The  reaction  underwent  a  sequence  of  C–C coupling  and  cycli- 

NH2

R1 + COOR2
Rh2(OAc)4 (0.25 mol%)

HCOOH, 50°C N

COOR2

R1

10 examples
65-83% yield

NH2

R1 + COOR2

(RhCp*Cl2)2AgSbF6

Cu(OAc)2.H2O
DCE, 50°C, 5 h

N

COOR2

R1

2

7 examples
75-87% yield

COOR

HCOOH
Rh2(OAc)4

H
N

R1

O
Rh(I)

H
N

R1
O

Rh

H

III

COOR2

H
N

R1

COOR

Rh

O

H N
H

COOR2

R1

RhIIIH
III

- H
2 O, - Rh(I)

 
Scheme 82. 

NH2

Ar + 2

COOMe
Cu(OAc)2 (0.5 equiv)

Na2S2O8 (1 equiv)

Ca(OAc)2.H2O (2.2 equiv)
Bu4NOAc (0.1 equiv)

MeCN, rt, 12h

N COOMe

COOMe

Ar

20 examples
51-89% yield  

Scheme 83. 

NH2

Ph

R1 R2 COOR3+

PdCl2 (10 mol%)
PPh3 (20 mol%)
Cu(OTf)2.xH2O
PvOH (1 equiv)

MeCN/DMSO, O2

N
R1

R2

COOR3

31 examples
41-85% yieldPdCl2

H2O

N
H

Ph

R1
PdIICl

N
H

R1

R2

COOR3

PdIICl

N
H

COOR3

R2

ClPdII Ph

alkyne

R1

N
H

COOR3

R2

ClPdIII Ph

R1

O
O

N R2

O Ph

R1

OClPdII

H

COOR3-PhCHO
PdIIOHCl

 
Scheme 84. 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



Recent Progress in the Synthesis of Quinolines Current Organic Synthesis, 2019, Vol. 16, No. 5    697 

 

N
O

R2R1

R3OC COR3+

N R3

OH

O R3

13 examples
23-90% yield

oxalic/silica

MeCN, rt

N
O

R2R1

COOMe!

O

MeO

N

R2R1

COOMe

OH

COOMe

NH2

COOMe

OH

COOMe

 
Scheme 85. 

R3

O

NH2R1

R2
PO(OEt)2

CF2X

+

K2CO3 (1.0 equiv)
or Li2CO3/TMEDA

toluene, 110°C N

R2

R1

PO(OEt)2

CF2X

R3

35 examples
32-97% yield  

Scheme 86. 

N N

R1 R2+

Pd(OAc)2 (5 mol%)

HOTf (5 mol%)
PhMe, 130°C N

R1

R2

11 examples
42-91% yield

[Pd]

N

R1
N

[Pd]

R2
N N

R1 [Pd]

R2

- [P
d],

 - N
HMe 2

 
Scheme 87. 

X

NH2

N

H
N Ar

O

COOR

COOR

+

PhMe, argon
110°C

N

COOR

COOR

X

9 examples
86-91% yield

X

N

N

H
N Ar

O

ROOC

COOR

H N

X

COOR

Ph N
H
COOR

NH

Ar
O

H
H2N

H
N Ar

O

 
Scheme 88. 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



698    Current Organic Synthesis, 2019, Vol. 16, No. 5 Duc Dau Xuan 

 

R1

H
N R2

O
R3 R4+

CpCo(CO)I2 (10 mol%)
AgSbF6 (20 mol%)

Zn(OTf)2 (20 mol%)

Li2CO3, TFE, 120°C N

R1

R2

R3

R4

33 examples
43-82% yield

CpCo+(OTf)

R1

H
N R2

O
Co

Cp

R1

H
N

R2

O
Co

R3
R4

Cp

Zn(OTf)2

N
H

R1

R3

R4

R2

OCo+Cp

N
H

R1

R3

R4

R2

OH
- H2O

Tf
OH

 

Scheme 89. 

N3

R1
R2

OH
R3

R4

+

HNTf2 (10 mol%)
p-TSA (1 equiv)

DCE, 60°C, 3h N

R1

R2

R4

R3

12 examples
48-86% yield

H+, -H2O

N3

R1
R2

+

R4

R3 N3

R1

R2

R3

R4

-N2, - H+

 
Scheme 90. 

NH2

R1

CH2OOR2

COOR2

+  2

Cu(OTf)2 (5 mol%)
HOTf (10 mol%)

MeCN, 120°C, 24 h N

R1

COOR2

COOR2

16 examples
56-95% yield

NH2

R1

COOR2

COOR2

+

Cu(OTf)2 (5 mol%)
HOTf (10 mol%)

MeCN, 120°C, 24 h
N

R1

COOR2

R3

23 examples
70-94%  yield

R3

O

+

 
Scheme 91. 
 
zation reaction by directed C–H activation of benzamidine and 
terminal alkynes catalyzed by Pd(II). The transformation was 
suitable for a broad range of functional groups [111]. 

Imanzadeh reported the synthesis of quinoline-2,3-dicar-
boxylates from a reaction of N’-((2-aminophenyl)(phenyl) 
methylene)  benzohydrazides  with acetylenic esters without using 
any catalysts under mild conditions (Scheme 88). In short reaction 
time, nine quinolines were obtained in excellent yields with simple 
operation [112]. 

Zhang et al. reported the synthesis of quinolines from 
acetanilide and internal alkynes (Scheme 89). The transformation 
might undergo the ortho C-H activation and nucleophilic addition 

of C-Co species toward the amides. Advantages of the synthesis 
include high yields of products, wide substrate compatibility and 
good functional group tolerance [113]. 

A straightforward procedure for the synthesis of polysubstituted 
quinolines from 2-azido phenylethanols and internal alkynes was 
developed by Niggemann and Stopka (Scheme 90). The reaction 
was supposed to proceed through a highly reactive benzyl cation in 
a C-C bond formation - Schmidt sequential reaction [114]. 

A cascade annulation of anilines with internal alkyne esters 
catalyzed by copper (II) for the synthesis of 2,4-disubstituted 
quinolines in one-pot reaction was reported by Yi et al. (Scheme 
91). The reactions showed exclusive regioselectivity, broad 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



Recent Progress in the Synthesis of Quinolines Current Organic Synthesis, 2019, Vol. 16, No. 5    699 

 

substrate scope, wide functional group tolerance and produced 
quinolines in good to excellent yield. Furthermore, the second 
molecule of alkyne esters in the reaction could be replaced by 
(hetero)aryl- or cycloalkyl-ketone substrates [115]. 

Hashmi et al. developed an efficient synthesis of 2-
aminoquinolines through one-step intermolecular [4+2] annulation 
of 2-ethynylanilines with ynamides catalyzed by gold complex 
(Scheme 92). Good substrate scope, high regioselectivity, good 
functional group tolerance, mild reaction conditions and good yield 
of products are the advantages of the synthesis [116]. 

In a study by Tiwari et al., 3- ketoquinolines were synthesized 
from acetophenones, anthranils and DMSO and the reaction was 
catalyzed by K2S2O8 (Scheme 93). The mechanistic study proposed 
that α,β-unsaturated ketones generated in situ from the 

acetophenone by one-carbon homologation by DMSO were 
afforded first, and then the products were formed by the aza-
Michael addition of anthranils and subsequent annulation. The 
plausible reaction mechanism is also displayed [117]. 

A domino reaction of p-toluenesulfonylhydrazone with 
anthranils to form 2,3- quinoline derivatives catalyzed by 
Cu(II)/Ag(I) was achieved by Ji et al. (Scheme 94). New C-C, C-N, 
and C-S bonds were formed in one step through free-radical 
cyclization under mild conditions resulting in quinolines in 
moderate yields [118]. 

Zhang et al. described an approach for the synthesis of 2-
substituted quinolines from reactions between 2- aminobenzyl 
alcohol and alkyne/ketone or 2-aminophenethyl alcohol and 
aldehyde catalyzed  by AgOTf (Scheme 95). The reaction occurred 
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at mild conditions and could tolerate both electron-donating and 
electron-withdrawing substituents in the alkyne moiety [119]. 

A chemoselective and regioselective strategy for the synthesis 
of multi-substituted quinolines starting from the Morita-Baylis-
Hillman adducts and anilines was developed by Coelho et al. 
(Scheme 96). The products were afforded in good to excellent 
yields (industrial-scale 89 tons) with simple operations  applied for 
one substrate [120]. 

From nitroarenes and allyl tolyl sulfone carbanions, which were 
formed when treated with base and silylating agents, 
Wojciechowski et al. obtained 4-toluenesulfonyl quinolines via a 
step-by-step procedure (Scheme 97) [121]. 

A mild, efficient and highly regioselective method for the 
preparation of 3-chloride or 3-bromide substituted quinoline 
derivatives through cyclization–halogenation tandem reaction was 
described by Cheng et al. (Scheme 98). o-Trifluoroacetyl anilines 
were treated with alkynyl Grignard reagents to form propargylic 
alcohols, and then halogen sources (HCl or HBr) were directly 
introduced into the one-pot system catalyzed by Cu(II) to afford 
final products [122]. 

In a study by Marinelli et al., 4-sulfonylquinolines and 4-
nitroquinolines were synthesized through a sequence of addition 
and annulation reactions of sulfinate anions with β-(2-
aminophenyl)-α,β-ynones, which were prepared from Sonogashira 
coupling between phenyl iodide and propargyl alcohol, followed by 
MnO2-mediated oxidation (Scheme 99). Multi-substituted 

quinolines were produced in good to excellent yields under mild 
conditions [123]. 

From Δ2-isoxazolines, Lal et al. investigated a new approach 
for the synthesis of quinolines under reductive conditions (Scheme 
100). High yields of 2-substituted quinolines were obtained with 
simple purification [124]. 

In a study by Orellana et al., quinolines were synthesized 
through a coupling of ortho-bromoaniline derivatives with 
substituted cyclopropanols in a single step (Scheme 101). The 
reaction underwent a sequence of intermolecular condensation and 
oxidation catalyzed by palladium(II) with good functional group 
tolerance [125]. 

From indoles and ethyl halodiazoacetates, Hansen et al. 
investigated a mild and efficient method for the preparation of ethyl 
quinoline-3-carboxylates. A cyclopropanation-ring expansion 
pathway was proposed to occur (Scheme 102). N-substituted indole 
might follow a different reaction pathway and the quinolines 
products were not formed [126]. 

A Knoevenagel/Staudinger/aza-Wittig sequence reaction was 
developed by Wu et al. for the synthesis of quinolines from 2-
azidobenzaldehyde and carbonyl compounds (Scheme 103). The 
reaction showed many merits such as mild reaction conditions, high 
yields of disubstituted quinoline products and simple purification 
[127]. 

Rajanna et al. discovered a method for quinoline synthesis 
using 2,4,6-trichloro-1,3,5-triazine and trichloroisocyanuric acid as 
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catalysts under conventional heating or ultrasonication (Scheme 
104). Higher yields of the products and considerably shorter 
reaction time were observed with ultrasonication design [128]. 

From vinyl azides and α -carbonyl benzyl bromides, Zhou 
reported the synthesis of quinolines through sequential C-C and C-
N bond formation with the assistance of visible light (Scheme 105). 

Moderate to good yields of products with good functional group 
tolerance were obtained [129]. 

Jiang et al. discovered an approach for the synthesis of 
disubstituted quinolines from vinyl azides and anilines in a one-step 
procedure (Scheme 106). In this approach, vinyl azides played as a 
dual synthon via C-C and C−N bond cleavage as well as two C-C 

X NH2

R

O

NaNO2, NH4Cl

DMF, 60°C NX R

NO2

X = H or Cl 13 examples
46-84% yield

X NH2

R

ONO2

HNO
2

X NH2

R

O

TolSO2Na, NH4Cl

DMF, 60 !C NX R

SO2Tol

X = H or Cl 16 examples
66-92% yield  

Scheme 99. 

NO2

+ RCH=NOH
NCS, Et3N

DMF NO2

NO
R

reductive
cyclization

N R1

13 examples
70-90% yield

13 examples
72-82% yield  

Scheme 100. 

Br

NH2
HO R2

R3

+

Pd(OAc)2 (10 mol%)
dppb (20 mol%)

K2CO3 (4 equiv)
PhMe, D, argon

N R2

R3

R1 R1

16 examples
41-89% yield  

Scheme 101. 

N
H

X Br

N2

OEt

O

+

N

X

COOEt
R R

8 examples
40-94% yield

Rh2(esp)2
Cs2CO3

CH2Cl2, rt

N

Br

COOEt

H

-HBr

 
Scheme 102. 

Pers
on

al 
Use

 O
nly

 

Not 
For 

Dist
rib

uti
on



702    Current Organic Synthesis, 2019, Vol. 16, No. 5 Duc Dau Xuan 

 

bonds and one C-N bond formation. The use of air as the sole 
oxidant and a broad range of functional group tolerance are 
attractive features of the synthesis [130]. 

A new DBN-catalyzed [5+1] annulation between 2-
isocyanochalcones and nitroalkanes was developed by Xu et al. for 
the synthesis of aromatic quinolines and 3-nitrodihydroquinolines 
(Scheme 107). Merits of the synthesis include mild reaction 
conditions, and high yields of products in most cases [131]. 

3.3. Three-component Reaction 
An efficient, CuOTf-catalyzed, three-component approach for 

the synthesis of quinoline derivatives was established by Zhang  
et al. (Scheme 108). A [2 + 2 + 2] annulation between hetero-
cumulenes, alkynes and diaryliodonium salts was proposed to occur 
through a cation intermediate providing quinolines in good yields 
with the formation of two C-C bonds and one C-N or C-S bond in 
the one-pot reaction. Good regioselectivity was achieved when 
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unsymmetrical alkynes were employed due to electronic effect 
[132]. 

An efficient and regioselective synthesis of multiply substituted 
quinolines from aldehyde, aniline, and carbonyl compounds, or 
aniline and 1,3-diketones was reported by Zhang et al. (Scheme 
109). The synthesis proceeded by the formation of a silver-
catalyzedC-C bond. Good to excellent yields of quinolines were 
obtained in most cases with a broad range of substrates and good 
functional group tolerance [133]. 

Kumar et al. disclosed a regioselective synthesis of 2-
aminoquinolines and 2-arylquinoline-3-carbonitriles mediated by 
copper iodide from ortho-bromobenzaldehyde and active methylene 
nitriles (Scheme 110). The synthesis involved Knoevenagel 
condensation of the reactants to form the intermediate A, which 
then underwent reductive amination catalyzed by copper iodide and 
intramolecular cyclization. Moderate to good yields of products 
were obtained through a one-pot tandem reaction with broad 

substrate scope and good functional group tolerance. In separate 
experiments, intermediates such as A, B, C could be isolated by 
changing reaction conditions [134]. 

The synthesis of polysubstituted quinolines from anilines, 
aldehydes, and alcohols under mild conditions catalyzed by 
Ag(OTf) in the presence of air was achieved by Zhang et al. 
(Scheme 111). The synthesis showed good substrate scope,good 
functional group tolerance and gave products in good yields for 
most substrates [135]. 

Orru et al. introduced a novel synthesis of 4-aminoquinolines 
through a sequence of imidoylative Sonogashira cross-coupling and 
cyclization mediated by an acid in one-pot reaction (Scheme 112). 
The reaction was compatible with various substituents on arene as 
well as a wide range of isocyanides [136]. 

The synthesis of quinolines from arylisothiocyanate, 
alkyltriflate, and alkynes in one-pot protocol was presented by Xi  
et al.  (Scheme 113). The reaction underwent alkyltriflate triggered  
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domino electrophilic activation. Good functional group tolerance, 
complete regioselectivity, and high yields of products are the 
advantages of the synthesis [137]. 

Guo et al. synthesized 2-arylquinolines through Cu-catalyzed 
C–H cyclization of aryl ketones, anilines, and DMSO (Scheme 
114). The synthesis employed O2 as an oxidant and DMSO as a 
carbon source resulting in quinolines adducts in moderate to good 
yields [138]. 

CONCLUSION 
Many methods for the synthesis of substituted quinoline rings 

have been developed recently. Over the past five years, the majority 
of those reports have been based on cycloisomerization and 
cyclization processes. Undoubtedly, more imaginative approaches 
to quinoline synthesis will appear in the literature in the near future. 
Application of known methods to natural product synthesis is 
probably the next challenge in the field. Improving the efficiency 
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and versatility as well as the use of environmentally friendly 
methods and economical procedures for quinoline synthesis will 
attract more attention of the chemists. Another direction will be the 
employment of established or new methods to the synthesis of 
bioactive quinoline derivatives which can be used as drugs. 
Industrial-scale synthesis of commercially and medicinally 
important quinolines will possibly be developed. In medicinal 
chemistry, more and more quinoline-containing compounds with 
valuable bioactivities will be discovered. The relationship between 
structure and bioactivities of quinoline derivatives might also be the 
next challenge to the field.  
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