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distance. Furthermore, Fe3O4 NPs of size range from 
7 to 17 nm have been synthesized with high magneti-
zation saturation (65.1–68.1  emu/g) and their super-
paramagnetic behaviors have been determined. The 
experimental results indicated that the SAR value 
could increase with the concentration and has a bell 
shape at a specific size of MNPs, which are in good 
agreement with the theoretical simulation. All theo-
retical and experimental study of SAR recognized 
the important role of magnetic anisotropy to enhance 
SAR values. Especially, the results showed that there 
exists an optimal concentration at 15 mg/ml for 17 nm 
Fe3O4 NPs that maximized SAR value.

Abstract  Specific absorption rate (SAR) of mag-
netic iron oxide (Fe3O4) nanoparticles (NPs) is an 
important property in hyperthermia applications. In 
this work, the dependence of magnetic anisotropy 
(K) on concentration of Fe3O4 NPs has been investi-
gated using the Monte Carlo simulations. The results 
showed that the K value increases with the NPs con-
centration which helps to clarify the dual behavior 
of both increase and decrease of SAR value with 
concentration based on the Linear Response Theory 
(LRT). The theoretical results explained the influ-
ence of concentration on SAR based on the relation-
ship between magnetic anisotropy and inter-particle 
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Introduction

Magnetic nanoparticles (MNPs) have been used for 
biomedical applications, especially in cancer therapy 
based on magnetic inductive heating (MIH) [1, 2]. To 
date, there are a lot of works showing a high specific 
absorption rate (SAR), or high specific loss power 
(SLP) of MNPs has an impact on the ability of the 
removal of cancer cells as well as decreasing the num-
ber of MNPs [2, 3]. Among MNPs, magnetite (Fe3O4) 
has attracted increasing attention because of its bio-
compatibility, high saturation, chemical stability, and 
simple fabrication methods [2]. Unfortunately, there 
is a strong decrease in the saturation magnetization of 
Fe3O4 MNPs upon size reduction in nanoscale, which 
leads to a decrease in SAR value. For example, the 
SAR value of Fe3O4 MNPs with size in the range of 
biomedical application (10–20 nm) was much lower 
than that of the particles in the 30–40-nm range [4]. 
Therefore, its concentration (the number of MNPs in 
fluids) must be high in order to enhance SAR, but this 
can be toxic to healthy cells and limit their applica-
tion in MIH [3]. So, the relationship between the con-
centration and the SAR value of Fe3O4 MNPs needs 
to be systematically considered.

Nowadays, researchers have taken advantage of 
the development of the computational tool to carry 
out numerical studies about the physical phenom-
ena of MNPs by using theoretical calculations and 
simulations. For example, in MIH, Rosensweig used 
Linear Response Theory (LRT) to calculate the heat-
ing efficiency of magnetic fluids [5]. Hergt et  al. 
[6] and Carrey et  al. [7] studied MIH of MNPs by 
Stoner–Wohlfarth model-based theories (SWMBTs). 
In addition, Papadopoulos et  al. [8], Eddahri et  al. 
[9], Kanaoujiya et  al. [10], and Wu et  al. [11] stud-
ied MIH of MNPs by a technique simulation, the so-
called Monte Carlo (MC) simulation. This technique 
simulation was introduced for first time in the work of 
Binder et al. in 1970 [12]. Subsequently, Binder et al. 
demonstrated a good qualitative agreement between 
the predictions of this simulation and the trend of 
experimental results [13]. Therefore, until now, the 

MC method based on Metropolis Algorithm [14] 
remains the most one [15] for numerical studies.

In order to investigate the dependence of SAR 
on the concentration, Tan et  al. used MC simu-
lations [16]. The interesting results of the work 
of Tan et  al. were the increase, decrease, or 
bell shape of the plot of SAR versus concentra-
tion [16]. These contradictory trends were also 
observed in other works. For instance, Urtizberea 
et  al. [17] and De la Presa et  al. [18] revealed a 
decrease in the SAR value while the concentra-
tion of MNPs increased. The stronger inter-
particle interactions with shorter inter-particle 
distance were used explain to this tendency. 
However, this hypothesis might not be consistent 
with other tendencies. In contrast to these above 
results, Maternez-Boubeta et  al. found a slight 
increase of SAR with a growing in the concen-
tration [19]. In addition, the existence of optimal 
concentration of MNPs was found in a work of 
Haase et  al. [20]. In an interesting work by Kim 
et  al., a decrease of SLP with an increase of the 
concentration in a range of 0.1 to 0.5 mg/ml was 
discovered at H = 70–140 Oe; however, there is 
also an existence of an optimal concentration in a 
range of 1 to 100 mg/ml at 140 Oe [21]. Although 
the impact of the concentration of MNPs on the 
SAR value was confirmed in the above works, 
these contradictory trends cannot be explained by 
theories such as LRT and SWMBTs because the 
theoretical SAR cannot be dependent on the con-
centration [5, 22]. This is still an interesting topic 
that needs attention.

Recently, the results of these works of Lan 
et al. [23], Nemati et al. [24], Carrey et al. [7], and 
Habib et  al. [25] have provided a new approach 
to explain this problem. The work of Lan et  al. 
found that the blocking temperature shifted rap-
idly toward higher temperatures with an increase 
of the concentration by MC simulations [23]. This 
result found the relation between the magnetic 
anisotropy (K) and the concentration of MNPs. In 
addition, the works of Nemati et  al. [24], Carrey 
et al. [7], and Habib et al. [25] found that the SAR 
value can either increase or decrease when the K 
value increased. Thus, the dependence of SAR on 
the concentration of MNPs can be systematically 
explained based on the relations between K and 
SAR, and the K value and the concentrations.
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As mentioned above, these above relationships 
have suggested a new approach to find the mech-
anism of the dependence SAR on the concentra-
tion. In order to find this mechanism, we applied 
MC simulations to create a model for investigating 
the effect of inter-particle distance (dc-c) on the K 
value of MNPs. The results of MC simulations 
confirmed the dependence of the K value on the 
dc-c value, relating to the concentration of MNPs 
in fluids. Based on this prediction of MC simu-
lations, the relationship between the theoretical 
SAR value and the K value for 7, 11, and 17 nm 
Fe3O4 MNPs was calculated by LRT. The theo-
retical results found the existence of a peak of the 
plots SAR (K) for 11-nm and 17-nm Fe3O4 MNPs. 
Corresponding to these theoretical trends, there 
exist optimal concentrations for the above MNPs. 
Next, for comparison of the theoretical tendency 
with experimental data, we have prepared Fe3O4 
MNPs by the co-precipitation method. All sam-
ples had average size in a range of 7–17 nm with 
narrow distribution and superparamagnetic behav-
ior. All results demonstrated that the experimental 
tendency of the dependence of SAR on the con-
centration was in good agreement with the predic-
tions of theoretical ones. Especially, there was an 
optimal concentration for 17-nm Fe3O4 MNPs in 
practice.

Model and theoretical results

Model

To investigate the dependence of K value on the 
concentration of MNPs in fluids, we built the model 
based on the relationship between the inter-parti-
cle distance dc-c and the inter-particle interactions 
(Fig.  1). Hence, the energy of each MNPs with the 
presence of the dipolar interaction would be [23, 26]

In Eq. (1), the first term is the anisotropy energy, 
and ni is the direction of the anisotropy axis with |

|

ni
|

|

=1. The second and third terms are Zeeman energy 
and the energy of inter-particle interactions (dipolar 
interactions) between two MNPs i and j separated 
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shortest value of rij is the value of dc-c. An equi-
librium configuration meant minimization of the 
energy can be obtained using the MC method. In 
our work, an initial configuration generated 512 
particles with (8, 8, 8) size. Each nanoparticle had 
its total magnetic moment, |

|

�i
|

|

= MSVi , with ran-
dom values ( �,� ) with � ∈ [0, 2�] , and � ∈ [0, 2�] , 
and a volume that can be obtained from a lognormal 
distribution, g(D):

where D0 and σ are the mean size (diameter) and 
standard deviation (size dispersion), respectively.

The external field H was assumed along the 
z-axis direction. Besides, we believed that all 
directions of the easy axis of MNPs aligned at an 
angle Ψ with the field and a magnetization orien-
tated. So as to optimize this configuration, a pro-
cedure was written as follows: (1) a position in the 
configuration was randomly chosen and the angle 
values ( �,� ) from that position is extracted; (2) 
a new orientation was created by the expression 
( � + �,� + � ) where � is a small value and selected 
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Fig. 1   The schematic of MNPs with the shortest inter-particle 
distance, dc-c



	 J Nanopart Res          (2022) 24:214 

1 3

  214   Page 4 of 13

Vol:. (1234567890)

randomly from − 1 to 1; (3) both energies of cur-
rent Ecurr and new angles Enew were calculated; 
(4) the difference of energy, ΔE = Enew − Ecurr , 
was also computed; (5) the new orientation can be 
updated to the configuration with a probability min 
[

1, exp(−ΔE∕kTB)
]

.
In order to describe the relationship between 

SAR value and the concentration of MNPs in flu-
ids, we applied the Linear Response Theory (LRT) 
to calculate the theoretical SAR value, SARtheo. 
We note that the LRT is suitable for superpara-
magnetic nanoparticles [7]. Based on LRT, the 
value of SARtheo (W/g) can be determined as fol-
lows [22]:

where ϕ is the fraction of volume, ρ is the 
mean mass density of MNPs, and P is loss power 
of MNPs. Based on the LRT, the P value can be 
expressed [22]:

where �
0
 is the permeability of free space, H is 

the amplitude of alternating magnetic fields (AMF), 
f is the frequency of AMF, �

0
 is the initial dc sus-

ceptibility, and � is the relation time as shown in 
detail in [22, 27].

Theoretical results

In order to compare theoretical results with 
experimental ones, we used experimental data 
to build the model for Fe3O4 MNPs. Follow-
ing the mentioned model, we initially inves-
tigated the zero-field cool (ZFC) curves for 7, 
11, and 17  nm Fe3O4 MNPs (mentioned in the 
“Experimental results and discussion” sec-
tion) corresponding to S1, S2, and S3 samples, 
respectively. For one thing, we evaluated the 
influence of the concentration of MNPs in fluid 
on the ZFC peak related to the value of block-
ing temperature, TB. From there, we relied on 
the proportional relationship between (anisot-
ropy energy) KV and (thermal energy) kbTB to 
evaluate the effect of the concentration on the 
value of K for each sample. For another thing, 

(3)SAR
����

=
P

��

(4)P = ��
0
�
0
H2f

2�f 2�

1 + (2�f�)2

we assumed that when the concentration of 
MNPs in fluid increased, the state of the sam-
ple changed from dilute to solid (from “weak” 
interaction to strong interaction between Fe3O4 
MNPs), and the magnetic anisotropy of each 
sample might increase approach the value of K 
of dried samples mentioned in the “Experimen-
tal results and discussion” section. Finally, we 
quantified the reduction of K by the concentra-
tion of MNPs for each sample.

Figure  2 represents ZFC curves of all dilute 
S1, S2, and S3 samples. As can be seen in Fig.  2, 
each ZFC hit a peak where the temperature was 
the blocking temperature, TB. Garcia-Otero et  al. 
expressed that the value of TB was not dependent 
on the sample’s dispersion [28]; however, all results 
indicated that there was a shift to higher tempera-
ture of TB when the size distribution changed from 
monodispersity to polydispersity (as represented in 
Fig. 5). For S1 sample, TB value change from 22.5 K 
(monodispersity) to 26.5 K at σ = 0.1, and 29.5 K at 
σ = 0.2. Similarly, TB value changed from 339.5  K 
(monodispersity) to 364.5 K at σ = 0.1, and 657.5 K 
at σ = 0.2 for S3 sample. For S2 sample, TB value 
changed from 90.5 K (monodispersity) to 96.5 K at 
σ = 0.1. Except for the case at σ = 0.2 of S2 sample, 
it is clear that the TB value of each sample at σ ≠ 0 
(polydispersity) is higher than that of one at σ = 0 
(monodispersity). This tendency is in good agree-
ment with those reported earlier [23]. Lan et  al. 
found that there was a shift to higher temperature of 
TB value for 7.5 nm γ-Fe2O3 [23]. Despite the shift 
to higher temperature of TB when the size distribu-
tion changed from monodispersity to polydisper-
sity for S2 sample, the value of TB at σ = 0.1 was 
higher than the ones at σ = 0.2. This result showed 
that the influence of dispersion on the TB value was 
complex because of the contribution of MNPs with 
various sizes when distribution was widened. Thus, 
it should be taken into account the size distribution 
in investigating the influence of the concentration 
(linked to dc-c) on the TB value.

For each sample, we used the above model to 
determine the value of TB in ZFC curve with the 
various value of dc-c. Then, we investigated the influ-
ence of TB on dc-c. The summary of the results is 
described in Fig. 3. Based on a simple inter-particle 
interactions model, we fitted these outcomes under 
the following theoretical formula [26]:
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in which T0 is the value of TB at dc-c = D0, and A 
and B are free parameters. The values of A and B are 
shown in Table 1.

As a general trend in Fig. 3a and b, when the inter-
particle distance increased, the reduction of TB value 
was observed in all samples. These tendencies were 
in good agreement with those reported earlier [23, 
26]. The reduction of TB value with a growth of the 
inter-particle distance was reported in detail in the 
work of Bae et al. [26] for 5- and 7-nm Fe3O4 MNPs. 
Subsequently, Lan et  al. also found that when the 
concentration increased with a decrease in dc-c value, 
the TB value increased because of the growth of the 

(5)
TB

T
0

= A +
B

(

dc−c∕D0

)3

interacting strength [23]. As one can see, the depend-
ence of TB on dc-c was well fitted with Eq. (5) for S1 
and S2 samples. For S1 and S2 samples, the blocking 
temperature decreased with insignificant changes in 
dc-c and that included large dc-c. Based on Fig. 3 and 
Table 1, the value of TB reduced to 67.23, 83.29, and 
83.14% for S1 sample at σ = 0, σ = 0.1, and σ = 0.2, 
respectively. In the same way, the value of TB reduced 
to 64.43, 86.10, and 83.81% for S2 sample at σ = 0, 
σ = 0.1, and σ = 0.2, respectively. In a previous work, 
Bae et  al. indicated that the value of TB reduced to 
88.00 and 93.33% for 5- and 7-nm Fe3O4 MNPs, 
respectively [26]. All results demonstrated that the 
simple inter-particle interactions model was suit-
able to describe the relationship between TB and dc-c. 
Despite the data of S3 sample (at σ = 0.1 and σ = 0.2) 

Fig. 2   ZFC curves at various value of σ for a S1, b S2, and c S3 samples

Fig. 3   TB/T0 versus dc-c/D0 with various values of σ for a S1, b S2, and c S3 samples. The solid line represents the fitting curve 
assuming the theoretical formula: TB

T0

= A +
B

(dc−c∕D0)
3
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that cannot be fitted under Eq.  (9), the reduction of 
TB was also observed. For S3 sample, the value of TB 
reduced to 74.65, 68.43, and 66.10% for S3 sample 
at σ = 0, σ = 0.1, and σ = 0.2, respectively. All results 
indicated that the reduction of TB occurred when the 
inter-particle distance increased.

Generally, it is clear that there was a propor-
tional relationship between KV and kbTB in prac-
tice. So, with a certain value of nanoparticles, 
the value of magnetic anisotropy will decrease 
with a fall in TB. Hence, when the inter-particle 
distance increased, the strength of inter-particle 
interaction went down, which could lead to the 
reduction of TB and K of MNPs. So, the dipolar 
interactions among Fe3O4 MNPs play an impor-
tant role in magnetic properties, especially 
in their value of magnetic anisotropy. It was 
noted that the K dependence on concentration is 
used in the calculation of SAR versus K in the 
following.

When the concentration of MNPs in f luid 
increased, an increase in the inter-particle 
interaction could lead to a rising in the value 
of K of MNPs in the f luid. Thus, the highest 
value of K of MNPs in f luid might equal the 
K value of the corresponding dried sample 
(mentioned in the “Experimental results and 
discussion” section). Figure 4 presents the plot 
of SAR versus K/Kdried sample for all samples. 
From Fig.  4, there was a peak of the plot SAR 
versus K/K dried sample for S2 and S3 sam-
ples. For S1 sample, an increase in SAR value 
along with K was observed. These results were 
interesting, which explain previous contradic-
tory results [17–21]. When the concentration 
went up (related to the inter-particle distance 
decreased), a growth in the strength of inter-
particle interactions lead to an increase in the 
K value of MNPs. Depending on its size, results 
from rising K value cause the change (increase 
or decrease) in SAR value.

Fabrication and experimental results

Fabrication

Chemical

All chemicals used in this work were purchased 
Sigma-Aldrich Company including iron(II) chloride 
tetrahydrate (FeCl2·4H2O, ≥ 99%), iron(III) chlo-
ride hexahydrate (FeCl3·6H2O, ≥ 99%), and sodium 
hydroxide (NaOH, ≥ 97%). Deionized water was used 
in all experiments.

Synthesis of Fe3O4 MNPs

Fe3O4 MNPs were synthesized by co-precipitation 
method with the process as follows: dissolve 0.16  g 
NaOH in 50  ml deionized water. Next, dissolve 
0.78 g FeCl2·4H2O and 2.16 g FeCl3·6H2O in 50 ml 
of deionized water. Subsequently, dissolve this solu-
tion in the above solution of NaOH. The mixture 
was stirred at 500  rpm and kept at different temper-
atures—50, 70, and 90  °C—for 1  h. After that, the 

Table 1   A and B values for 
all samples

Sample A B

σ = 0 σ = 0.1 σ = 0.2 σ = 0 σ = 0.1 σ = 0.2

S1 0.67231 0.83291 0.83141 0.38144 0.14579 0.15472
S2 0.64432 0.861 0.8381 0.37935 0.13759 0.138
S3 0.82847 – – 0.18481 – –

Fig. 4   SAR value versus K/Kdried sample for all samples
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reaction mixture was naturally cooled to room tem-
perature. Using a magnet to collect the black precipi-
tate, wash it with deionized water. The final product 
of Fe3O4 MNPs was collected by a magnet. These 
products prepared at 50, 70, and 90 °C were denoted 
as S1, S2, and S3, respectively.

Characterization techniques

The crystalline structures of dried Fe3O4 MNPs 
were analyzed by X-ray diffraction (XRD) (Bruker 
D8-Advance instrument), in the reflection mode 
a Cu-Kα line of 1.5406  Å. The morphology of all 
samples was examined using transmission elec-
tron microscopy (TEM) with a TEM system (JEOL 
JEM-1010). The DC magnetic properties of the 
samples at room temperature were investigated 
using a home-made vibrating sample magnetometer 
under the magnetic field up to 11 kOe. Based on the 
experimental data of Fe3O4 MNPs (size distribu-
tion, magnetic saturation), we used MC simulations 
to investigate the dependence of magnetic anisot-
ropy on the concentration of MNPs. The magnetic 
induction heating rates of the samples were meas-
ured using a commercially available UHF-20A, 
supplied by Chengdu JinKeZhi Electronic Co, Ltd, 
at the frequency of 450 kHz and amplitude of 200 
Oe. The value of SAR was calculated using the fol-
lowing equation [29]:

where m is the concentration (mg/ml) of sample in 
magnetic fluid, C is the specific heat capacity of water 
(4.185 J/gK), and dT/dt is the slope of the measured 
temperature–time curve. In the current experiments, 
the temperature slope was calculated via analyzing 
the temperature versus time curves for the whole time 
range, i.e., first to fit experimental curves by the fol-
lowing equation [30]:

to gain: ∆T, tm are the temperature difference 
between the initial and steady state, and the time con-
stant of heating, respectively.

Then, the value of dT/dt is determined as equal to 
∆T/tm. The results from these measurements will be 
detailed in the results and discussion sections.

(6)SAR(W∕g) =
C

m

dT

dt

(7)T = Tp + ΔT
(

1 − et∕tm
)

Experimental results and discussion

All XRD patterns of S1, S2, and S3 samples are 
depicted in Fig. 5. A single phase for Fe3O4 (MNPs 
all samples) was confirmed by the reflections indexed 
as (220), (311), (400), (511), and (440) planes (mag-
netite, JCPDS card no. 85–1436). Next, we used 
Scherer’s equation to calculate the crystallite size of 
all samples. The values of D311 and DXRD were the 
crystallite size using the profile of the (311) plane and 
the average crystallite size using all planes, respec-
tively. These obtained values are listed in Table 2.

In addition, we also used the Halder–Wagner 
method to calculate the samples’ crystallite sizes [31, 
32]. By this method, the crystallite size, DH-W, was 
determined by the following equation [31, 32]:

where d∗ = 2sin�∕� and �∗ = FWHMcos�∕� ; ε is 
the strain, θ is the diffraction angle, FWHM is full-
width at half maximum of peaks, and λ is the wave-
length used.

Following the method mentioned above, the slope 
of the plot 

(

�
∗

d∗

)2

 verus �
∗

(d∗)2
 (Fig. 6) gave the values of 

(8)
(

�
∗

d∗

)2

=
1

DH−W

�
∗

(d∗)2
+
(

�

2

)2

Fig. 5   XRD patterns of S1, S2, and S3 samples

Table 2   D
XRD

 , D311, DH-W, and DTEM values of all samples

Samples D
XRD

(nm) D311 (nm) DH-W (nm) DTEM (nm)

S1 6.2 ± 1.2 6.8 ± 1.3 5.7 ± 1.1 7.0 ± 1.1
S2 6.6 ± 1.4 6.9 ± 1.0 7.7 ± 1.8 11.0 ± 2.1
S3 6.8 ± 1.5 7 ± 1.1 7.9 ± 1.3 17.0 ± 1.5
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DH-W (Table 2). As can be seen in Table 2, all DXRD , 
D311, and DH-W values for S1, S2, and S3 samples are 
ranging from 6 to 8 nm. The crystallite size of Fe3O4 
MNPs increases with an increase in reaction tempera-
ture. Figure 7a–c present the TEM images of Fe3O4 
MNPs. The average nanoparticle sizes determined 
from these TEM images were 7, 11, and 17  nm for 
S1, S2, and S3 samples, respectively. The solid lines 
for S1, S2, and S3 samples (Fig. 7d–f) were a good fit 
for data using the lognormal distribution (Eq. (2)) [5, 
29]. All samples had size distribution with 
σ = 0.1–0.2.

Next, Fig.  8 shows the typical room temperature 
(~ 295  K) magnetic curves for S1, S2, and S3 sam-
ples. The obtained magnetization saturation (MS) was 
65.1, 67.0, and 68.1 emu/g corresponding to S1, S2, 
and S3 samples, respectively. All of them were less 
than 90  emu/g, their bulk value [22]. Here, there 
was a surge increase in MS values with an increase 
in diameter. This tendency was well suited to those 
reported earlier [33, 34]. An increase in MS value of 
Fe3O4 MNPs was found in the work of Goya et  al. 
when its size increased from 5 to 150 nm [33]. This 
extension could be explained by a core–shell model. 
Thanks to this model, MNPs might be divided into 
two parts, including a core of MNPs with the same 
magnetic properties as their bulk counterpart and a 
non-magnetic shell. On the other hand, as the nano-
particle size improved, it has a fall in the ratio of sur-
face area to volume leading to an increase in MS value 
[34].

where Kbulk = 9 × 103  J/m3. The obtained DSPM
cr

 
value was about 28  nm, whereas our Fe3O4 MNPs 
had size in a range of 7–17 nm. Thus, the superpara-
magnetic behavior was confirmed for S1, S2, and S3 
samples.

In order to determine the value of K for each sam-
ple, we fitted data of initial magnetization curves 
under “the law of approach to saturation” (Fig. 8b) by 
the following equation [37]:

in which χp is the high field differential suscep-
tibility and a, b is free parameter. Subsequently, the 
value of K can be determined from b by the following 
equation [37]:

The obtained K values were 69.7, 45.9, and 
18.7 kJ/m3 corresponding to samples S1, S2, and S3, 
respectively. These values were higher than the bulk 
value (9 kJ/m3). It was clear that the value of K for 
Fe3O4 decreased from 69.7 to 18.7 kJ/m3 when size 
increased from 7 to 17  nm. The main cause of this 
phenomenon is associated with an increase in the 
contribution from the surface when the size of MNPs 
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went down. This tendency was compatible with pre-
vious theoretical predictions and models [37, 38].

For comparing the theoretical results, the mag-
netic induction heating rates of the samples at vari-
ous concentrations were measured (Fig. 9). The value 
of SARexp was calculated using Eqs. (6) and (7). 

Table 3 and Fig. 10 present the value of SARexp for all 
samples.

As mentioned in “Theoretical results” section, the 
K value of each sample increased with an increase of 
concentration of MNPs. Therefore, we could compare 
the experimental tendency (Fig. 10) to the theoretical 
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ones (Fig. 4) because the direction of the x-axis (K/
Kdried sample) in Fig. 4 was similar to itself (concentra-
tion) in Fig. 10. For S1 sample, the value of SARexp 
increased from 29 to 97  W/g when the concentra-
tion of Fe3O4 MNPs increased from 5 to 20  mg/ml 

(Table 3 and Fig. 10). This tendency of S1 sample was 
compatible with the theoretical prediction in Fig.  4 
(as presented in Fig.  10b). For S2 sample, although 
the theoretical results demonstrated that there was an 
optimal value of K, our experimental results of SAR 
on K might be on the left of the plot of SARtheo versus 
K/Kdried sample. Similar to S1 sample, the result of S2 
sample was in agreement with the theoretical results 
(as can be seen in Figs. 4 and 10b and Table 3). This 
tendency of S1 and S2 samples was in agreement 
with the work of Maternez-Boubeta et  al. [19]. In 
contrast, a decrease in the SAR value while the con-
centration of MNPs increased was found in ref. [17, 
18]. This trend might be on the right of the plot of 
SARtheo versus K/Kdried sample for S3 sample (Figs.  4 

Fig. 8   a M–H curves and b the initial magnetization curves of 
Fe3O4 MNPs. The solid lines in (b) represent the fitting curve 
assuming “the law of approach to saturation” for all samples. 
As observed in Fig.  8, all samples had superparamagnetic 

behavior. In order to confirm this behavior, we used the follow-
ing equation [35, 36] to calculate the value of critical diameter 
( DSPM

cr
 ) of Fe3O4 MNPs and compared it with the DTEM values 

of all samples.

Fig. 9   Magnetic heating curves measured for a S1, b S2, and c S3 samples

Table 3   SARexp values for S1, S2, and S3 samples

Concentration
(mg/ml)

SARexp (W/g)

S1 S2 S3

5 24 22 26
10 39 30 44
15 51 53 48
20 97 65 28
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and 10). Especially, Fig.  10b showed the existence 
of optimal concentration (at 15  mg/ml) for S3 sam-
ple. This experimental result confirmed not only our 
theoretical predictions (Fig. 7) but also the results of 
the works of Haase et al. [20] and Kim et al. [21]. In 
addition, Tan et al. demonstrated that the plot of SAR 
versus concentration can increase, decrease, or have 
a bell shape [16], which was in agreement with all of 
our results. Thus, both theoretical prediction and our 
experimental results on Fe3O4 MNPs indicated that 
the different influence of the concentration on SAR 
was caused by its size and its magnetic anisotropy. 
The Fe3O4 MNPs would achieve an optimal concen-
tration when their size was in the range of 11–17 nm.

Conclusion

In summary, the detailed study of MC simulations 
under the various inter-particle distance suggested 
that the value of magnetic anisotropy of MNPs 
increased with an increase in concentration. Never-
theless, it could lead to an increase or decrease in the 
value of SAR depending on the MNPs’ size. Both cal-
culation and experimental study of SAR for S1, S2, 
and S3 samples recognized the important role of mag-
netic anisotropy to enhance SAR values. In addition, 
the theoretical results indicated that there is a peak of 
the plot SAR versus magnetic anisotropy for S2 and 
S3 samples. Thus, in any case, there was an optimal 
concentration for 11–17  nm Fe3O4 MNPs. Interest-
ingly, our experimental results have shown that SAR-
exp had the highest value at 15 mg/ml for S3 sample. 

These outcomes contribute valuable information for 
the enhancement of SAR for biomedical applications.
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