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Abstract  In the training program for chemistry pedagogical students at pedagogical universities, knowledge of 

oxidation-reduction reactions is taught when students learn about the electrochemistry chapter belonging to the 

theory of chemical processes. There, students are introduced to how to use standard electrode potential values of 

oxidation/reduction pairs to predict the likelihood of an oxidation-reduction reaction. However, a common difficulty 

for students is predicting reaction products of substances containing elements with several oxidation states. To 

simplify this problem, using the Latimer diagram will help students be more interested in predicting the stable 

oxidation state of the element, calculating the standard reduction potential of oxidation-reduction pairs that are not 

close to each other and predict the products of many complex oxidation-reduction reactions. 
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1. Introduction 

1.1. Latimer Diagram  

This is one of the potential data diagrams summarizing 

the relative thermodynamic stability of a series of 

compounds of the same element in different oxidation 

states [1,2,3,5]. The author of the diagram is Wendell 

Mitchell Latimer, an American chemist, one of the leaders 

in the application of thermodynamics in inorganic 

chemistry [13]. The Latimer diagram is a simple and 

convenient way to record the oxidation-reduction 

properties of an element representing many different 

oxidation numbers. From left to right, the elemental 

compounds are arranged in order of decreasing oxidation 

number [4,6]. 

The diagram is denoted [1,7,8]: 

 

Where: 

Oxid and Red are the oxidized and reduced forms of the 

reduction half-reaction. 

m and n  is the oxidation number of the element. 

E
o
 is the standard reduction potential of that half-

reaction (unit is V). 

Example: 

The symbol:  

 

means corresponding to the half-reaction: 

 

The symbol:  

 

means corresponding to the half-reaction: 

 

In addition, based on Hess's law, we can establish a 

Latimer diagram to compare the standard reduction 

potentials of the reactants and products of the reaction, 

thereby making predictions about the favorable direction 

of the reaction. 
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1.2. Latimer Diagram of Some Elements 

The electrode potential data are quoted from references 

[9,10,11,12,13,14]. 

Subgroup IA  

Acidic solution: 

 

Basic solution: 

 

Subgroup IIA  

Acidic solution: 

 

Basic solution: 

 

Subgroup IIIA 

Acidic solution: 

 

Basic solution: 

 

Subgroup IVA 

Acidic solution: 

 

Basic solution: 
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Subgroup VA 

Acidic solution: 

 

Basic solution: 

 

Subgroup VIA 

Acidic solution: 
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Basic solution: 

 

Subgroup VIIA 

Acidic solution: 

 

Basic solution: 
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Subgroup VIIIA 

Acidic solution: 

 

Basic solution: 

 
Subgroup IB 

Acidic solution: 
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Basic solution: 

 

Subgroup IIB 

Acidic solution: 

 

Basic solution: 
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Subgroup VIB 

Acidic solution: 

 

Basic solution: 

 

Subgroup VIIB 

Acidic solution: 
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Basic solution: 

 

Subgroup VIIIB 

Acidic solution: 

 

Basic solution: 

2. Content and Research Methods 

2.1. Predict the Stable Oxidation State of the 

Element 

Consider the two half-reactions side by side in the 

Latimer diagram: 

 

  If o

B/CE  > o

A/BE then half of the reaction of the B/C 

pair proceeds spontaneously in the forward 

direction and the other half A/B in the reverse 

direction → B is an unstable particle, it has the 
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ability to self-oxidize-reduce to A (higher oxidation 

number) and C (lower oxidation number). That 

process is called disproportion. 

  If o

B/CE  < o

A/BE then half of the reaction of the B/C 

pair proceeds spontaneously in the reverse direction 

and the other half A/B in the forward direction → B 

is a stable particle, particle A (higher oxidation 

number) will react with particle C (lower oxidation 

number) to produce B (intermediate oxidation 

number). That process is called comproportion. 

Note: The standard reduction potential written on the 

hyphen corresponds to the half-reaction going from left to 

right (forward direction). When writing in the reverse 

direction, pay attention to changing the sign of the 

standard reduction potential. 

Example 1: From the Latimer diagram for oxygen (see 

subgroup VIA), we see that H2O2 is unstable in acidic 

solution and is disproportioned into H2O and O2. 

 

The total reaction potential is quite positive, so the 

reaction is thermodynamically favorable. In fact, H2O2 

decomposes immediately under normal conditions, but 

occurs at a very small rate, not clearly observed. When 

there is a catalyst or when heated or exposed to light, the 

reaction occurs very quickly, sometimes causing an 

explosion. 

Example 2: From the Latimer diagram for iron (see 

subgroup VIIIB), we see 
3 2 2

o o

Fe /Fe Fe /Fe
E E   , that is, Fe

2+
 is 

stable to disproportion, while Fe
3+

 and Fe undergo 

comproportion, that is, they will interact with each other 

to produce Fe
2+

. This result is confirmed, by calculating 

the sum of the following two half-reactions: 

 

The total reaction potential is quite positive (+ 1.21V), 

so the comproportion occurs easily in aqueous solution. 

2.2. Calculate the Standard Reduction 

Potential of Oxidation-Reduction Pairs 

that are Not Close to Each Other 

Another application of the Latimer diagram is that from 

the diagram it is possible to calculate the standard 

reduction potential of oxidation-reduction pairs that are 

not close to each other. The calculation is based on the 

relationship between oG and E
o
 of the process and the 

reality is common oG of n successive processes is equal 

to the sum oG of n processes. For example, the E
o
 of the 

A/D pair can be calculated from the Latimer diagram as 

follows: 

 

Example: Calculate the potential Eo of the reduction of HClO2 to Cl- in acidic solution. 

 

From the Latimer diagram of chlorine, we can write the 

half-reactions and reactions that need to determine the 

standard reduction potential: 

 

Applying the above calculation we have: 

 

2.3. Predict Reaction Products 

A new application of the Latimer diagram is to be able 

to predict reaction products of substances containing 

elements with several oxidation states. Consider, for 

example, the reaction of iodide anion with permanganate 

in acidic solution. The Latimer diagrams of the relevant 

elements are as follows: 
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From the diagram above, we see that there are 3 

unstable particles with disproportion: HIO, 2

4MnO  and 

Mn
3+

. In addition, Mn is not stable in acidic environments 

so there is no need to consider them. Therefore, the 

diagram is simplified as follows: 

 

If permanganate (
4MnO  ) is added drop by drop to a 

hydroiodic acid solution HI (excess I
-
), then the reaction 

product needs to be compatible with the presence of 

iodide ion. Therefore iodate (
3IO ) cannot form, because it 

will react with I- to form 
3
I  ion (comproportion). 

Similarly, MnO2 does not form because it has the ability 

to oxidize I
-
. It follows that the total reaction must be: 

 

Conversely, if iodide solution is added drop by drop to 

an acidified permanganate solution (excess 
4MnO ), the 

reaction product must be consistent with the presence of 

4MnO . Therefore, Mn
2+

 ion cannot form because it will 

react with the 
4MnO  ion to produce MnO2 

(comproportion). Then I
-
 will not be completely oxidized 

to the 
3I

 
ion because the 

3I
 
ion has the ability to reduce 

4MnO

 
ion. The fact that the H5IO6- 3IO and 

4MnO -MnO2 

half-reactions are potentially equal (+ 1.70 V) further 

complicates the problem. Therefore, we see that I
-
 ion is 

not completely oxidized to 
3IO  or periodic acid (H5IO6) 

but to a mixture of products: 

 

Note that changing the excess reactants can lead to 

different products. 

In addition to the Latimer diagram, we also use the 

Pourbaix (Frost-Ebsworth) diagram to consider the 

general relationship between oxidation-reduction activity 

and Bronsted acid-base activity. 

The Pourbaix diagram, also known as the E-pH 

diagram, is a graphical tool used to predict the stability of 

different oxidation forms of an element in solution. This 

chart is built based on two main factors: 

Oxidation-reduction potential (E°): The ability of an 

element to attract or lose electrons. 

pH: The acidity or basicity level of the solution. 

The Pourbaix diagram, also known as the E-pH 

diagram, is a graphical tool used to predict the stability of 

different oxidation forms of an element in solution. This 

chart is built based on two main factors: 

Oxidation-reduction potential (E°): The ability of an 

element to attract or lose electrons. 

pH: The acidity or basicity level of the solution. 

The Pourbaix diagram can be used to determine the pH 

and ion concentration conditions required for a particular 

oxidation form of an element to be stable. This 

information can then be used to draw a Latimer diagram 

for that oxidation state.The Pourbaix diagram can also be 

used to determine the oxidation-reduction reactions that 

can occur between different oxidation forms of the 

element. This information can then be used to calculate 

the oxidation-reduction potentials of those reactions using 

the Latimer diagram. 

3. Conclusion 

Using the Latimer diagram will help students easily: (1) 

Predict the stable oxidation state of the element; (2) 

Calculate the standard reduction potential of oxidation-

reduction pairs that are not close to each other; (3) Predict 

the products of redox reactions. Thereby, you will develop 

skills such as "prediction", "calculation", "analysis" when 

using electrode potential values in different environments 

to conclude oxidation-reduction reactions. This is a 

difficult content, demonstrating the combination of 

electrochemical theory and inorganic chemistry to 

consider oxidation-reduction reactions that occur. Latimer 
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diagram applications will create excitement for chemistry 

students when studying inorganic chemistry at universities. 
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