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Abstract We present a comparative study of the control of group velocity in three-level atomic systems including
Λ-, Ladder-, and V-types via spontaneously generated coherence (SGC) and relative phase of laser fields. In the steady
regime, expressions of group index are derived as an analytical function of controllable parameters related to SGC
and relative phase. It is shown that the group velocity can be further slowed down or speeded up under SGC in
which modifications of group velocity due to the SGC in Λ- and V-systems are stronger than that in Ladder-system.
In particular, when interference strength of SGC p increases from 0.7 to 1.0, the light propagation is switched from
superluminal to subluminal modes (for Λ- and Ladder-systems) or from subluminal to superluminal modes (for V-
system). In the presence of relative phase, the group velocity changes between subluminal and superluminal modes with
a period of 2π. In resonant region, the largest positive value of group index reaches at the relative phase φ = π while
the largest negative value of group index reaches at φ = 0 and 2π for the Λ- and Ladder-systems, otherwise, for the
V-system the largest positive group index occurs at φ = 0 and 2π, and the largest negative group index occurs at φ = π.
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1 Introduction

The manipulation of subluminal and superluminal

light propagation in optical medium has attracted many

attentions due to its potential applications during the

last decades, such as controllable optical delay lines, opti-

cal switching, telecommunication, interferometry, optical

data storage, and optical memories quantum information

processing, and so on.[1] The most important key to ma-

nipulate subluminal and superluminal light propagations

lies in its ability to control the absorption and dispersion

properties of a medium by a laser field. Slow light or

subluminal propagation takes place in positive dispersion

region, whereas negative dispersion region leads to fast

light or superluminal propagation.

As we know that coherent interaction between atom

and light field can lead to interesting quantum interference

effects such as electromagnetically induced transparency

(EIT)[2] and spontaneously generated coherence (SGC).[3]

The EIT is a quantum interference effect between the

probability amplitudes that leads to a reduction of res-

onant absorption for a weak probe light field propagat-

ing through a medium induced by a strong coupling light

field.[4] Basic configurations of the EIT effect are three-

level atomic systems including the Λ-, Ladder-, and V-

type configurations. In each configuration, the EIT effi-

ciency is different, in which the Λ-type configuration is

the best, whereas the V-type configuration is the worst,[5]

therefore, the manipulation of light in each configuration

are also different. Whereas, the SGC effect can be cre-

ated by the interference of spontaneously emission of ei-

ther a single exited level to two closely lying atomic lev-

els (Λ-type), two closely lying atomic levels to a common

atomic level (V-type), or nearly equispaced atomic level

case (Ladder-type). In 1996, Xia et al.[6] carried out the

first experimental investigation of spontaneously emission

interference by using the sodium molecule.

Since the discovery of EIT, the control of opti-

cal properties of the medium becomes possible such

as controlling group velocity,[1,7] enhancement of Kerr

nonlinearity,[8] controlling optical bistability,[9] control-

ling pulse propagation,[10] and so on. Also, the ef-

fect of SGC on the optical properties in atomic systems

was investigated for absorption and dispersion,[11] group

velocity,[12] Kerr nonlinearity,[13] optical bistability,[14]

and pulse propagation.[15] It was shown that the atomic

responses under SGC are sensitive to relative phase of

the applied fields.[15−17] Recently, several researchers have

studied the possibility of switching light propagation from

subluminal to superluminal modes in the EIT media by

changing the interference strength of SGC effect or/and

relative phase of applied fields.[18−22]

So far, the influence of SGC on the group velocity in
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three-level atomic systems investigated numerically,[18−22]

however, there is a lack of comparison of light manipula-

tion between configurations. In this work, we develop an

analytic model for a comparative study of influences of

SGC and relative phase on group velocity in three-level

systems including the Λ-, Ladder-, and V-type configura-

tions. Such a comparison would be useful to choose an

appropriate excitation configuration and parameters for

experimental observations and related applications. More-

over, the analytical results have some advantages, such as

it is easy to investigate the effect of controllable param-

eters on optical properties,[23−24] to verify experimental

observations[25] and to study related applications, e.g.,

enhancement of Kerr nonlinearity,[26] controlling optical

bistability,[27] controlling group velocity.[28−29]

2 Theoretical Models

2.1 Λ-system

We first consider a Λ-type system as shown in Fig. 1(a).

A coupling laser Ec with frequency ωc couples the transi-

tion |3⟩ ↔ |2⟩ while a probe laser Ep with frequency ωp

applies the transition |1⟩ ↔ |2⟩. We denote Γ1 and Γ2 are

the spontaneous decay rates of the excited state |2⟩ to the

ground states |1⟩ and |3⟩, whereas Γ0 is population relax-

ation between the hyperfine levels |1⟩ and |3⟩. When the

two lower levels |1⟩ and |3⟩ are closely spaced such that

the two transitions to the excited state interact with the

same vacuum mode, spontaneously generated coherence

can be present.

Fig. 1 (Color online) Three-level excitation schemes: (a)
Λ, (b) Ladder, and (c) V.

The frequency detuning of the probe and coupling

lasers from the relevant atomic transitions are respectively

determined by:

∆p = ωp − ω21, ∆c = ωc − ω23. (1)

The Rabi frequencies of probe and coupling fields are

given by:

Ωp = 2µ⃗21 · E⃗p/~, Ωc = 2µ⃗23 · E⃗c/~, (2)

with µ21 and µ23 being the electric dipole matrix elements.

To ensure that one field acts on only one transition we

chosen E⃗c ⊥ µ⃗21 and E⃗p ⊥ µ⃗23. We denote θ is the angle

between the two dipole moments µ⃗21 and µ⃗23. We have:

p = cos θ =
µ⃗21 · µ⃗23

|µ⃗21| |µ⃗23|
, (3)

is called as quantum interference parameter resulting from

the cross coupling between spontaneous emission paths |2⟩
→ |1⟩ and |2⟩ → |3⟩. If the two dipole moments are or-

thogonal to each other than p = 0, which clearly shows

that there is no quantum interference due to spontaneous

emission. When the two dipole moments are parallel to

each other than the quantum interference is maximal and

p = 1. So the quantum interference strength can be ad-

justed by control the alignments of two dipole moments.

Using a restriction that each of the linearly polarized

field couples only one of the optical transitions, we can find

that the Rabi frequencies are connected to the parameter

p by the following relation:

Ωp = G0p

√
1− p2 = G0p sin θ,

Ωc = G0c

√
1− p2 = G0c sin θ, (4)

where G0p and G0c are the Rabi frequencies when p = 0,

namely Ω0p = 2|µ⃗21| · |E⃗p|
/
~ and Ω0c = 2|µ⃗23| · |E⃗c|

/
~.

If we consider the phase of laser fields, so that the Rabi fre-

quencies of the probe and coupling fields can respectively

define as:

Ωp = Gp exp (iφp) , Ωc = Gc exp (iφc) (5)

with, Gp and Gc are the real parameters, ϕp and ϕc are

phase of the probe and coupling fields, respectively.

The evolution of the system, which is represented via

the density operator ρ, is determined by the following Li-

ouville equation:[23]

∂ρ

∂t
= − i

~
[H, ρ] + Λρ, (6)

where H represents the total Hamiltonian and Λρ repre-

sents the decay part, given by:[30]

Λρ = −
2∑

i,j=1

Γij(S
+
i S−

j ρ+ ρS+
i S−

j − 2S−
j ρS+

i ), (7)

where S−
i = |i⟩ ⟨2|, S+

i = |2⟩ ⟨i|, S−
j = |3⟩ ⟨j|, and

S+
j = |j⟩ ⟨3| represent respectively symmetric and anti-

symmetric superpositions of the dipole moments of the

two bare systems; Γij describes cross-damping rates be-

tween the superpositions.

In the framework of the semiclassical theory, the den-

sity matrix equations involving the SGC and relative

phase can be written as:

ρ̇11 = iGp(ρ21 − ρ12) + 2Γ1ρ22 − Γ0ρ11, (8a)

ρ̇22 = iGp(ρ12−ρ21)+iGc(ρ32−ρ23)−2(Γ1+Γ2)ρ22, (8b)

ρ̇33 = iGc (ρ23 − ρ32) + 2Γ2ρ22 − Γ0ρ33, (8c)

ρ̇21 = γ21ρ21 + iGp(ρ11 − ρ22) + iGcρ31, (8d)

ρ̇31 = γ31ρ31 − iGpρ32 + iGcρ21 + 2ηφp
√

Γ1Γ2ρ22, (8e)

ρ̇32 = γ32ρ32 − iGpρ31 − iGc(ρ33 − ρ22). (8f)

The above equations are restricted by ρ11 + ρ22 + ρ33
=1 and ρji = ρ∗ij . Here, we are set ηφ = ηeiφ, γ31 =
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−i(∆p−∆c), γ21 = −i∆p−(Γ1+Γ2), γ23 = −i∆c−Γ1−Γ2,

γ22 = 2(Γ1 + Γ2), and φ = φp − φc is the relative

phase between the probe and the coupling fields. Term

Γ21 = p
√
Γ1Γ2 represents the SGC effect that resulting

from the cross coupling between the spontaneously emis-

sions of the transitions |2⟩↔|1⟩ and |2⟩↔|3⟩. It depends

on the nonorthogonality of the dipole moments µ⃗21 and

µ⃗23, that is, depends on the interference parameter p.

Now, we analytically solve the density matrix equa-

tions under the steady-state condition by setting the time

derivatives to zero. From Eqs. (8a), (8e), and (8f), we

determine the terms ρ31 as follows:

ρ31 =
iB20ρ21 + iB10ρ12 −B11ρ11

B
, (9)

where

B = A123A
∗
321 −A31A

∗
13, (10)

B20 = A∗A123 −A∗
21A123 +AA∗

13, (11)

B10 = A12A
∗
13 −A∗A123 −AA∗

13, (12)

B11 = A11A
∗
13 +A∗

11A123, (13)

and (*) denotes the complex conjugation.

With

A123 = γ13γ232Γ0Γ1 − 2Γ1G
2
cγ13 + 2G2

pΓ0Γ1, (14)

A12 = 2GcΓ0Γ1γ23, (15)

A31 = 2G2
cΓ1γ31, (16)

A11 = GcGpΓ0

[
2Γ2 − Γ0 −

2GcΓ21

Gp
(ηφ + η∗φ)

]
+ 2Γ2

0Γ21γ23η
∗
φ, (17)

A = 2G3
cΓ1 +G2

pGc

[
2Γ2 − Γ0 −

2GcΓ21

Gp
(ηφ + η∗φ)

]
+ 2GpΓ0Γ21γ23η

∗
φ. (18)

By substituting Eq. (9) into Eq. (8d) and using the initial

conditions: ρ11 ≈ 1, ρ22 ≈ ρ33 ≈ 0, we find the solution

ρ21 for the probe transition as:

ρ21 =
i[(GpB −GcB11)(γ12B

∗)−GcB10(GpB
∗ −GcB

∗
11)]

G2
cB10B∗

10 − (γ12B∗ −GcB∗
20)(γ21B −GcB20)

. (19)

2.2 Ladder-System

The Ladder-type system is shown in Fig. 1(b). A cou-

pling laser Ec with frequency ωc couples the transition

|2⟩↔|3⟩ while a probe laser Ep with frequency ωp applies

the transition |1⟩↔|2⟩. The frequency detuning of the

probe and coupling lasers from the relevant atomic tran-

sitions are respectively determined as ∆p= ωp − ω21, ∆c

= ωc − ω32. The spontaneous decay rate from the higher

excited state |3⟩ to the lower excited state |2⟩ is Γ2 and

the state |2⟩ decays to the group state |1⟩ with a rate

Γ1. When nearly equispaced levels than the effect of SGC

can occur. The alignment of the two dipole moments µ⃗21

and µ⃗32 is determined by p = cosθ = µ⃗21 · µ⃗32/|µ⃗21||µ⃗32|,
with θ being the angle between the two dipole moments.

Similarly, the density matrix equations of the Ladder-type

system involving the SGC and relative phase are given by:

ρ̇11 = 2Γ1ρ22 + iGp(ρ21 − ρ12), (20a)

ρ̇22 = −2Γ1ρ22 + 2Γ2ρ33 + iGp(ρ12 − ρ21)

+ iGc(ρ32 − ρ23), (20b)

ρ̇33 = −2Γ2ρ33 + iGc(ρ23 − ρ32), (20c)

ρ̇21 = γ21ρ21 − iGp(ρ22 − ρ11) + iGcρ31

+ 2ηφp
√

Γ1Γ2ρ32, (20d)

ρ32 = γ32ρ32 − iGp(ρ31 − iGc(ρ33 − ρ22), (20e)

ρ̇31 = γ31ρ31 − iGp(ρ32 + iGcρ21, (20f)

where ρ11 + ρ22 + ρ33 = 1 and ρji = ρ∗ij . Here, we set

ηφ = η e iφ, γ31 = i(∆p +∆c)− Γ2, γ21 = i∆p − Γ1, γ32 =

i∆c − Γ1 − Γ2.

From Eqs. (20a), (20c), (20e), and (20f), we find the

terms ρ31 as follows:

ρ31 =
iB1ρ21 + iB2ρ12

B3
, (21)

where

B1 = AA∗
321 +A13A−A32A

∗
321, (22)

B2 = A13A
∗
32 −A13A−AA∗

321, (23)

B3 = A321A
∗
321 −A∗

13A13, (24)

and (*) denotes the complex conjugation.

With

A321 = 2Γ2Γ1γ32γ31 + 2Γ2Γ1G
2
p − Γ1γ31G

2
c , (25)

A32 = 2Γ2Γ1γ32Gc, (26)

A13 = Γ1γ13G
2
c , (27)

A = Gc[Γ1G
2
c + Γ2G

2
p]. (28)

By substituting Eq. (21) into Eq. (20e), we find the terms

ρ32 as follows:

ρ32 =
(γ31B1 +GcB3)ρ21 + γ31B2ρ12

GpB3
. (29)

Substituting Eqs. (21) and (29) into Eq. (20d) and using

the initial conditions: ρ11 ≈ 1, ρ22 ≈ ρ33 ≈ 0, we find the

solution ρ21 for the probe transition as:

ρ21 =
iGp(γ12 + F1 + F ∗

2 )

F1F ∗
1 − (γ21 + F2)(γ12 + F ∗

2 )
, (30)
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where

F1 =
(2Γ12γ31e

iφ

Gp
−Gc

)B2

B3
, (31)

F2 = 2Γ12e
iφ
(γ31B1

GpB3
+

Gc

Gp

)
−Gc

B1

B3
. (32)

2.3 V-type System

Atomic excitation for the three-level V-type configu-

ration is shown in Fig. 1(c), where two closely spaced ex-

cited states |2⟩ and |3⟩ are coupled to the ground state |1⟩.
The transition |3⟩↔|1⟩ is excited by a coupling field of fre-

quency ωc, whereas the transition |2⟩↔|1⟩ is excited by a

probe field of frequency ωp. The frequency detuning of the

probe and coupling lasers from the relevant atomic transi-

tions are respectively determined by: ∆p = ωp−ω21,∆c =

ωc−ω31. We also denote Γ1 and Γ2 are spontaneous emis-

sion rates from |2⟩ and |3⟩ levels to |1⟩, respectively. The
alignment of the two dipole moments µ⃗21 and µ⃗31 is de-

termined as, p = cos θ = µ⃗21 · µ⃗31/|µ⃗21| |µ⃗31| with θ being

the angle between the two dipole moments. Similarly, the

evolution of the system in the presence of the SGC effect

and relative phase can be represented by the following

density matrix equations:

ρ̇11 = iGp(ρ21 − ρ12) + iGc(ρ31 − ρ13) + 2Γ1ρ22 + 2Γ2ρ33 + 2p
√

Γ1Γ2(η
∗
φρ32 + ηφρ23), (33a)

ρ̇22 = iGp(ρ12 − ρ21)− 2Γ1ρ22 − p
√

Γ1Γ2(η
∗
φρ32 + ηφρ23), (33b)

ρ̇33 = iGp(ρ13 − ρ31)− 2Γ2ρ33 − p
√

Γ1Γ2(η
∗
φρ32 + ηφρ23), (33c)

ρ̇21 = γ21ρ21 + iGp(ρ11 − ρ22)− iGcρ23 − p
√
Γ1Γ2η

∗
φρ31, (33d)

ρ̇31 = γ31ρ31 − iGpρ32 + iGc(ρ11 − ρ33)− p
√
Γ1Γ2η

∗
φρ21, (33e)

ρ̇32 = γ32ρ32 − iGpρ31 + iGcρ12 − p
√
Γ1Γ2ηφ(ρ22 + ρ33), (33f)

where γ31 = −i∆c − Γ2, γ21 = −i∆p − Γ1, and γ32 = i(∆p −∆c)− Γ1 − Γ2.

From Eqs. (33b), (33c), and (33f), we have

ρ31 =
−iA∗

3ρ23−iA∗
2ρ32−iA∗

xX +A∗
1ρ21 +A∗

21ρ12
A∗ , (34)

ρ13 =
iA3ρ32 + iA2ρ23 + iAxX +A1ρ12 +A21ρ21

A
, (35)

and (*) denotes the complex conjugation, where

A3 = −2γ32Γ
2
1Γ2Γ12e

−iφGc, (36)

A2 = 2γ23Γ
2
1Γ2(Γ12e

iφGc − 2GpΓ2), (37)

Ax = −Γ3
12Γ1Gc(Γ1 + Γ2) + Γ1Γ

2
12e

−iφ(Γ1 + Γ2)(Γ12e
iφGc − 2GpΓ2), (38)

A1 = Γ12Γ1Γ2e
−iφ[(2GcΓ1 − Γ12e

iφGp)Gc +Gp(Γ12e
iφGc − 2GpΓ2)], (39)

A21 = Γ1Γ2[Γ
2
21GpGc + (2GcΓ1 − Γ12e

−iφGp)(Γ12e
iφGc − 2GpΓ2)], (40)

A = Γ2
21Γ

2
1G

2
c − Γ2

1(Γ12e
−iφGc − 2GpΓ2)(Γ12e

iφGc − 2GpΓ2), (41)

X = Γ21(e
−iφρ32 + eiφρ23). (42)

By substituting Eqs. (34) and (35) into Eq. (33e), we derive the terms ρ32 as follows:

ρ32 =
C11ρ11 − iC2ρ21 − iC1ρ12

C
, (43)

ρ23 =
C∗

11ρ11 + iC∗
2ρ12 + iC∗

1ρ21
C∗ , (44)

where

C11 = B(B∗
3 +B∗

XΓ21e
iφ)−B∗(BXΓ21e

iφ +B2), (45)

C2 = B∗
1(BXΓ21e

iφ +B2) +B21(B
∗
3 +B∗

XΓ21e
iφ), (46)

C1 = B∗
21(BXΓ21e

iφ +B2) +B1(B
∗
3 +B∗

XΓ21e
iφ), (47)

C = (B∗
XΓ21e

−iφ +B∗
2)(BXΓ21e

iφ +B2)− (B∗
3 +B∗

XΓ21e
iφ)(B3 +BXΓ21e

−iφ). (48)
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With

B3 = G2
c(A3A

∗ +A∗
2A)− 2γ31Γ2AA

∗
2 − 2GpΓ2AA∗, (49)

B1 = G2
c(A1A

∗ −A∗
21A) + 2γ31Γ2AA

∗
22, (50)

B21 = G2
c(A21A

∗ −A∗
1A) + 2γ31Γ2A

∗
1A− 2Γ21Γ2e

−iφAA∗, (51)

B = 2GcΓ2AA∗, (52)

B2 = G2
c(A2A

∗ +A∗
3A)− 2γ31Γ2AA∗

3, (53)

BX = G2
c(A

∗
XA+AXA∗) +GcAA∗ − 2γ31Γ2AA∗

X . (54)

Substituting Eqs. (43) and (44) into Eq. (42), we have

X =
(C11C

∗E−iφ + C∗
11Ceiφ)Γ21ρ11 + i(C∗

1Ceiφ − C2C
∗e−iφ)Γ21ρ21 + i(C∗

2Ceiφ − C1C
∗e−iφ)Γ21ρ12

CC∗ . (55)

Substituting Eqs. (43), (44), and (55) into Eq. (34), we have:

ρ31 =
iD11ρ11 +D21ρ21 +D12ρ12

D
, (56)

where

D12 = A∗
21(CC∗)2

∗
+A∗

3C
∗C∗

2C
2 + (C∗

2Ceiφ − C1C
∗e−iφ)Γ21A

∗
xCC∗ −A∗

2CC1(C
∗)2, (57)

D21 = A∗
1(CC∗)2 + (C∗

1Ceiφ − C2C
∗e−iφ)Γ21A

∗
xCC∗ −A∗

2CC2(C
∗)2 +A∗

3C
∗C∗

1C
2, (58)

D11 = −A∗
3C

∗C∗
11C

2 −A∗
x[(C11C

∗e−iφ + C∗
11Ceiφ)Γ21]CC∗ − iA∗

2CC11(C
∗)2, (59)

D = (CC∗)2A∗. (60)

Substituting Eqs. (44) and (56) into Eq. (33d) and using

the initial conditions: ρ11 ≈ 1, ρ22 ≈ ρ33 ≈ 0, we find the

solution ρ21 for the probe transition:

ρ21 = −i
( FF ∗

2 + F1F
∗

F2F ∗
2 − F1F ∗

1

)
, (61)

where

F1 = GcC
∗
2D − Γ12e

−iφD12C
∗, (62)

F2 = γ21C
∗D − Γ12e

−iφD21C
∗ +GcC

∗
1D, (63)

F = GpC
∗D −GcC

∗
11D − Γ12e

−iφD11C
∗. (64)

In order to derive expressions for group velocity, we

start from the susceptibility of atomic medium for the

probe light that is determined by the following relation:

χ =
2N |µ⃗21|2

~ε0Gp
ρ21. (65)

where N is the atomic density, c and ϵ0 are the speed of

light and permittivity of free space, respectively.

The linear dispersion coefficient n for the probe light

is written as

n = 1 +
Re(χ)

2
. (66)

The group velocity is defined by

vg =
c

ng
, (67)

where ng is the group index which is related to the linear

dispersion as:

ng = n+ ωp
∂n

∂ωp
. (68)

3 Light Manipulation Via SGC and Relative

Phase

In order to illustrate the analytical results, we consid-

ered the case of 85Rb atomic medium at D1 and D2 tran-

sitions with the atomic parameters are chosen as:[31−32]

µ21 = 2.53×10−29 Cm, ωp= 377×1012 Hz, Γ1 = Γ2 = 5.7

MHz for the Λ- and V-systems, while Γ1 = 5.7 MHz and

Γ2 = 0.97 MHz for the Ladder-system. For simplicity, all

the parameters related to frequency are given in units of

γ = 1 MHz.

To start with, in order to see the change of the group

index ng according to the interference parameter p of the

SGC effect, we keep the relative phase at ϕ = 0 and plot

ng versus the probe detuning for different values of p, as

shown in Fig. 2(a) for the Λ-type system, (b) for the

Ladder-type system and (c) for the V-type system. Other

parameters used in Fig. 2 are η = 1, ∆c = 0, Gp= 5γ, and

Gc = 10γ. From figure we can see that under SGC effect,

the absolute value of ng is greatly enhanced (both positive

and negative parts), therefore, the group velocity becomes

slower or faster than those without SGC. In comparison

between the three configurations, enhancement of group

index due to the SGC in Λ- and V-systems are greater than

that in the Ladder-system; variation of group index in V-

system is opposite to the other two systems. In addition,
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spectral regions corresponding to slow light or fast light

in the presence of SGC are narrower than those without

SGC, so a frequency region of slow light in the case of the

absence of SGC can switch into a region of fast light when

the SGC presents, and vice versa. The physical reason for

these phenomena arises from the influence of SGC on the

absorption and dispersion that leads to the linewidth of

absorption line deeper and narrower compared to in the

case of SGC absents, therefore, the dispersion curve is also

steeper as p increases.[11]

In order to see more clearly the ability to control group

velocity according to parameter p, we plot ng versus p

when fixing the parameters of the laser fields at φ = 0,

∆c = 0, ∆p = 4γ, Gp= 5γ, and Gc = 10γ. The results

are described as in Fig. 3. It shows that the influence

of SGC on group index or velocity becomes more obvi-

ous when p > 0.7. In particular, when p increases from

0.7 to 1.0, ng also varies from negative to positive values

(for Λ- and Ladded-systems) or from positive to negative

values (for V-system). That is, the light propagation is

switched from superluminal to subluminal modes (for Λ-

and Ladded-systems) or from subluminal to superluminal

modes (for V-system).
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Fig. 2 (Color online) Variations of the group refractive index ng versus ∆p for different values of p = 0 (dashed line),
p = 0.7 (dot-dashed line), and p = 0.9 (solid line) when η = 1, φ = 0, ∆c = 0, Gp= 5γ, Gc = 10γ: (a) Λ-type system,
(b) Ladder-type system, and (c) V-type system.
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Fig. 3 (Color online) Variations of ng versus p in Λ-type sys-
tem (solid line), Ladder-type system (dot-dashed line) and
(c) V-type system (dashed line). The other parameters are
chosen the same with those for Fig. 2, except ∆p = 4γ.

Under the SGC effect, we can switch the propagation

mode of light by changing the intensity (a) and the fre-
quency (b) of the coupling laser as illustrated in Fig. 4 for
the Λ-type system (solid line), for the Ladder-type system
(dot-dashed line) and for the V-type system (dashed line).
Other parameters used in Fig. 4 are η = 1, p = 0.9, ∆p=
4γ, Gp= 5γ, ∆c= 0 (a) and Gc = 10γ (b). It is clear
that the group index varies between negative and positive
values with changing intensity and/or frequency of the
coupling field. Similar to Figs. 2 and 3, variation of group
index ng according to Gc (a) and ∆c (b) in V-system is
opposite to the other two systems.

Now, we investigate the influence of relative phase on
the group velocity by plotting ng versus ∆p for different
values of relative phase ϕ in the presence of SGC with p
= 0.9, as displayed in Fig. 5. Other parameters used in
Fig. 5 are ∆p= 0, Gp= 5γ, ∆c= 0, and Gc = 10γ. We
found that, under the SGC condition, the group index is
quite sensitive to variation in the relative phase, namely,
by changing the value of the relative phase, the value of
the group index is greatly modified, in particular, at φ =
π/2 or 3π/2.
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Fig. 4 (Color online) Variations of ng versus Gc (a) and ∆c (b) in Λ-type (solid line), Ladder-system (dot-dashed line),
V-system (dashed line). The employed parameters are φ = 0, p = 0.9, ∆p= 4γ, Gp= 5γ, ∆c= 0 (a) and Gc = 10γ (b).

Fig. 5 (Color online) Variations of ng versus ∆p for different values of φ = 0 (solid line), φ = π/2 (dot-dashed line),
φ = π (dashed line), and φ = 3π/2 (dotted line) when η = 1, p = 0.9, ∆c = 0, Gp= 5γ, Gc = 10γ: (a) Λ-type system,
(b) Ladder-type system, and (c) V-type system.

Fig. 6 (Color online) Variations of the group index ng on
relative phase φ in Λ-type (solid line), Ladder-system (dot-
dashed line), V-system (dashed line). The employed param-
eters are η = 1, p = 0.9, ∆p= 0, ∆c= 0, Gp= 0.01γ, and Gc

= 5γ.

In order to see more clearly this change, we plot ng
according to φ as shown in Fig. 6, here the parameters

are similar to those in Fig. 5, except ∆p = 0. It is shown

that the group index varies periodically between a maxi-

mal positive to a minimal negative values with a period of

2π. Correspondingly, the group velocity changes between

subluminal and superluminal modes. Therefore, we can

also use the relative phase as a knob to switch the light

propagation from subluminal to superluminal. In addi-

tion, we also find that in each period of 2π, the largest

positive value of group index reaches at the relative phase

φ = π, while the largest negative value of group index

reaches at φ = 0 and 2π for the Λ- and Ladder-systems,

otherwise, for the V-system the largest positive group in-

dex occurs at φ = 0 and 2π, and the largest negative group

index occurs at φ =π.

4 Conclusions

We have made a comparative study of light manipula-
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tion via the SGC and relative phase in three-level atomic

systems including Λ-, Ladder-, and V-types under EIT

condition. Under the SGC effect, the group velocity be-

comes slower or faster than those without SGC. The influ-

ence of SGC is significant when the interference strength

of SGC p increases from 0.7 to 1.0, which leads to the light

propagation is switched from superluminal to subluminal

modes. In the presence of relative phase, the group veloc-

ity changes between subluminal and superluminal modes

with a period of 2π. Thus, we can use the SGC effect

and the relative phase as a knob to switch the light prop-

agation from subluminal to superluminal modes. In com-

parison between the three configurations, modifications

of group index due to the SGC and relative phase in Λ-

and V-systems are greater than that in the Ladder-system;

variation of group index according to the SGC and relative

phase in V-system is opposite to the other two systems.

We note that unlike previous works, here we do not use

incoherent pumping so the SGC effect requires that the

intensity of probe field must be greater that with incoher-

ent pumping, therefore the found analytical solutions did

not use the weak field approximation. In addition, the

analytical results are convenient to determine controllable

parameters for experimental observations and study other

related applications.
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