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In this paper, we propose an analytical model to study the effect of Doppler broadening on self-Kerr nonlinearity
in a five-level ladder-type atomic system. First- and third-order susceptibilities and the self-Kerr nonlinear coeffi-
cient are found as the function of temperature and parameters of laser fields. The analytical model is applied to hot
85Rb and 87Rb atoms, and it is shown that under the electromagnetically induced transparency (EIT) effect, the self-
Kerr nonlinear coefficient is enhanced around three transparent spectral regions. When the temperature of atomic
vapor increases (i.e., Doppler width increases), the depth and width of the EIT windows decrease accordingly, and
therefore the amplitude of the Kerr nonlinear coefficient decreases significantly. In addition, because the frequency
gaps between hyperfine levels of upper excited state 5D5/2 of 85Rb atoms are much smaller than those of 87Rb atoms,
the EIT windows as well as the nonlinear dispersion curves for 85Rb atoms are closer than those for 87Rb atoms as
the Doppler effect presents. The analytical results agree well with the experimental observation when reducing to a
three-level atomic system. The analytical model can be used to easily fit the experimental observations of self-Kerr
nonlinearity in a five-level atomic system under different temperature conditions and apply to a variety of applica-
tions relating to all-optical-switching techniques. ©2019Optical Society of America

https://doi.org/10.1364/JOSAB.36.003151

1. INTRODUCTION

It is well known that third-order Kerr nonlinearity plays an
important role in nonlinear optics [1]. In the past few decades,
the discovery of the electromagnetically induced transparency
(EIT) [2] effect has led to the large enhancement of the Kerr
nonlinear coefficient with low light intensity and reducing
absorption [3]. In particular, giant cross-Kerr nonlinearity in
EIT medium was first suggested by Schmidt and Imamoglu [4]
and has been experimentally measured by Kang and Zhu [5],
whereas Wang et al. first directly measured the large self-Kerr
nonlinear coefficient by using an optical ring cavity [6]. Such an
enhanced Kerr nonlinearity can increase conversion efficiency
of the nonlinear optical processes at low light levels, such as
controlled-NOT (CNOT) gates [7], quantum phase gates
[8], frequency conversion [9], optical solitons [10], all-optical
switching [11], optical bistability [12,13], and so on.

Early research work on the EIT and the enhancement of
self-Kerr nonlinearity has been done for three-level atomic
systems, including 3-, ladder-, and V-type configurations
[14–17]. This work shows that the Kerr nonlinearity is only
enhanced around a transparent spectral region, that is, the
occurrence of a positive–negative pair of nonlinear coefficients
around the EIT window. However, recent studies on the EIT

[18–22] and self-Kerr nonlinearity [23–28] have been focused
on multi-level atomic systems (four-level, five-level, and six-
level systems) to generate multiple EIT windows, and therefore
the Kerr nonlinearity is also enhanced at multiple frequency
regions. In general, there are two ways to create multiple EIT
windows. The first is to use many coupling laser fields to excite
many atomic transitions; for example, McGloin et al. [18]
theoretically studied an N-level atomic system excited by N − 1
coupling laser fields and found (N − 2) EIT windows. The
second way is to use only a coupling laser field to excite closely
spaced hyperfine atomic levels; for example, Wang et al. [20]
experimentally studied the EIT in a multi-level cascade system
of cold 85Rb atoms and obtained three EIT windows, and Khoa
et al. [22] measured three-window EIT spectrum in hot 85Rb
atomic vapors.

So far, there have been some theoretical studies on the
enhancement of Kerr nonlinearity in multi-level atomic systems
using several coupling laser fields [23–27], and a one coupling
laser field [28] is proposed. However, most of these works have
often neglected the effect of Doppler broadening and therefore
the obtained results are only suitable for cold atoms confined
in a magneto-optical trap (MOT). There are also some experi-
mental studies of Kerr nonlinear coefficients carried out for hot
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atoms [6,17,26,27], and experimental results were simulated by
numerical method with good agreement. However, there is still
a lack of analytical representation of the Kerr nonlinear coeffi-
cient in the presence of Doppler broadening. Such an analytical
model not only provides a precise understanding of the Kerr
nonlinear coefficient as a function of laser fields and the temper-
ature of medium but is also easily used to fit the experimental
results and study applications relating to all-optical-switching
techniques [29].

In this work, we develop an analytical model to study the
influence of Doppler broadening on self-Kerr nonlinearity of
a five-level ladder-type atomic system using one coupling laser
field. First- and third-order susceptibilities and the self-Kerr
nonlinear coefficient are found as the function of temperature
and parameters of laser fields. Influences of temperature and
laser parameters on the Kerr nonlinear coefficient of 85Rb and
87Rb atoms are studied. The calculated results are also compared
with experimental results when reducing to the three-level
system.

2. THEORETICAL MODEL

The interaction of two laser fields with a five-level ladder-type
atomic system composed of a ground state |1〉, an intermedi-
ate state |2〉, and three excited states |3〉, |4〉 and |5〉 is shown
in Fig. 1. Here, three states |3〉, |4〉 and |5〉 are closely spaced
hyperfine levels that have the frequency gaps between the levels
|3〉 − |4〉 and |5〉 − |3〉 as δ1 and δ2, respectively. A weak probe
field with Rabi frequency�p interacts with the |1〉→ |2〉 tran-
sition, while an intense coupling laser field with Rabi frequency
�c couples the transitions |2〉→ |3〉, |2〉→ |4〉, and |2〉→ |5〉
simultaneously.

In rotating wave approximation, the evolution of the system is
given by the full set of density matrix equations as follows [28]:

Fig. 1. Five-level ladder-type atomic system driven by two laser
fields.
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The above equations are constrained by
5∑

n=1
ρnn = 1 and

ρmn = ρ
∗
nm . Here, 1p =ωp −ω21 and 1c =ωc −ω32 are

the detuning of the probe and the coupling fields, respec-
tively. The Rabi frequencies are given by �p = d21 E p/~
and �c = d32 E c/~ with d21 and d32 denoting the electric
dipole matrix elements. The strengths of the atom-field
coupling between the transitions |2〉↔ |3〉, |2〉↔ |4〉, and
|2〉↔ |5〉 are characterized by the ratio of electric dipole
moments a32 = d32/d32, a42 = d42/d32, and a52 = d52/d32.
0mn denotes the population decay rate of the excited state,
whereasγmn = 0mn/2 is the coherence atomic decay rate.

To derive the linear and nonlinear susceptibilities, we need
to find the steady-state solution of the density-matrix equations
up to high-order perturbations. From the above density matrix
equations, we found the solution for the density matrix element
ρ21 (which corresponds to the probe response) in the first- and
third-order perturbations as [28]
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and F ∗ is the complex conjugation of F .
The solution of the density matrix element ρ21 is therefore

calculated up to third order as
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Thus, the susceptibility of the atomic medium is related to the
density matrix elementρ21 by the following relationship:
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However, for centersymmetry medium, the total susceptibility
can be extracted into linear and nonlinear terms as follows:
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(3). (21)

Therefore, the first- and third-order susceptibilities χ (1) and
χ (3) can be obtained according to the following expressions:
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In the above derivations, we ignored the Doppler broadening.
For hot atoms, therefore, it is necessary to take into account
Doppler broadening. To eliminate the first-order Doppler effect
in our experimental scheme, we consider the coupling field is
counter-propagating with the probe field in the medium, and
their frequencies are very close. Therefore, an atom with velocity
ν moving toward the probe beam will see the up-shift frequency
of the probe beam as ωp + (v/c )ωp and see the down-shift
frequency of the coupling beam asωc − (v/c )ωc . In such a case,
the frequency detuning of the laser beams is adjusted accord-
ingly as 1′p =1p + (v/c )ωp and 1′c =1c − (v/c )ωc . The
numbers of atoms having velocity v that lie along the beams
obey a Maxwellian distribution:
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where u =
√

3kB T/m is the root mean square atomic velocity,
and N0 is the total atomic density of the atomic medium. For
an inhomogeneously broadened medium, the full width at
half-maximum of the absorption line can be given by
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Thus, the susceptibility expressions must be modified to
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Because ωp is very close to ωc , the expressions (26) and (27)
become
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F is determined from expression (18), and z∗ is the complex
conjugation of z.

By integrating the expressions (29) and (30) over the velocity
v from −∞ to +∞, we obtain the expressions for first- and
third-order susceptibilities under Doppler broadening as
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where erf(z) is the error function, which is determined by
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From the first- and third-order susceptibilities, we find the
absorption (α), dispersion (n0), and self-Kerr nonlinear (n2)
coefficients under Doppler broadening as [1]

α =
ωp Im(χ (1))

c
, (35)
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1
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From the obtained results we note that, first, although this
configuration uses only one coupling laser beam, and it can
therefore be applied to the case of closely spaced hyperfine
atomic levels, if the excited states are far apart, the model can
still be used by assuming the coupling laser beam corresponding
to three independent lasers �1 = a32�c , �2 = a42�c , and
�3 = a52�c . Second, such a five-level configuration can be
reduced to four-level and three-level configurations by giving
a52 = 0 (in a four-level system) and both a52 = 0 and a42 = 0

(in a three-level system). This means that the present model is
universal and applicable to various exciting configurations.

3. APPLYING TO 85Rb AND 87Rb ATOMIC
VAPORS

In general, an analytical model can be applied to any atomic
or molecular systems that have an energy-level diagram sim-
ilar to that presented in Fig. 1. In this paper, we apply the
analytical model for the Doppler broadened medium for the
5S1/2 − 5P 3/2 − 5D5/2 transition of 85Rb atoms [Fig. 2(a)]
and 87Rb atoms [Fig. 2(b)] with selected states as labeled in
Fig. 2 [30]. The natural linewidths of the 5P3/2 and 5D5/2 states
are 6.1 MHz and 0.97 MHz, respectively. For 85Rb atoms, the
probe laser drives the transition 5S1/2, F= 3→ 5P3/2, F′ = 3,
while the coupling laser couples three sets of transitions 5P3/2,
F′ = 3→ 5D5/2, F′′ = 4, F′′ = 3, and F′′ = 2. For 87Rb atoms,
the probe laser drives the transition 5S1/2, F= 2→ 5P3/2,
F′ = 3, and the coupling laser drives three transitions 5P3/2,
F′ = 3→ 5D5/2, F′′ = 4, F′′ = 3, and F′′ = 2. The relative
strengths of the three transitions induced by the coupling
field are a32 : a42 : a52 = 1 : 1.46 : 0.6 for 85Rb atoms and
a32 : a42 : a52 = 1 : 1.3 : 0.75 for 87Rb atoms. The frequency
gaps between the hyperfine levels of 87Rb atoms as δ1 = 28.8
MHz and δ2 = 22.3 MHz are greater than those of 85Rb atoms
as δ1 = 9.0 MHz and δ2 = 7.6 MHz. This will lead to signifi-
cant differences in the spectrum of 85Rb and 87Rb atoms when
the Doppler width is large enough.

First, we study the effect of the Doppler broadening on
EIT spectra of 85Rb and 87Rb atoms by plotting absorption
coefficients with respect to the probe detuning at different
temperatures as described in Figs. 3 and 4, respectively. Here,
the parameters of the coupling laser are fixed at �c = 40 MHz
and 1c = 0 (i.e., the coupling laser is resonant with the transi-
tion 5P3/2, F′ = 3→ 5D5/2, F′′ = 3), while the temperature
is changed as T= 100 K (WD = 0.3 GHz) [Figs. 3(a) and
4(a)], T= 200 K (WD = 0.42 GHz) [Figs. 3(b) and 4(b)],
T= 300 K (WD = 0.51 GHz) [Figs. 3(c) and 4(c)], and
T= 400 K (WD = 0.6 GHz) [Figs. 3(d) and 4(d)]. It is clear
that the absorption spectrum exhibits three transparent win-
dows. For 85Rb atoms, the positions of the EIT windows
are 1p =−9 MHz (corresponding to the transition 5P3/2,

Fig. 2. Energy-level diagram of 5S1/2 − 5P3/2 − 55/2 transition of
(a) 85Rb atoms and (b) 87Rb atoms.
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Fig. 3. Plots of the absorption coefficient of 85Rb atoms versus the
probe field detuning at different temperatures and (a) T= 100 K,
(b) T= 200 K, (c) T= 300 K, and (d) T= 400 K. The parameters of
the coupling laser are�c = 40 MHz and1c = 0.

Fig. 4. Plots of absorption coefficient of 87Rb atoms versus the
probe field detuning at different temperatures and (a) T= 100 K,
(b) T= 200 K, (c) T= 300 K, and (d) T= 400 K. The parameters of
the coupling laser are�c = 40 MHz and1c = 0.

F′ = 3→ 5D5/2, F′′ = 4), 1p = 0 (corresponding to the tran-
sition 5P3/2, F′ = 3→ 5D5/2, F′′ = 3), and 1p = 7.6 MHz
(corresponding to the transition 5P3/2, F′ = 3→ 5D5/2,
F′′ = 2). For 87Rb atoms, the positions of the EIT windows
are 1p =−28.8 MHz (corresponding to the transition 5P3/2,
F′ = 3→ 5D5/2, F′′ = 4), 1p = 0 (corresponding to the

transition 5P3/2, F′ = 3→ 5D5/2, F′′ = 3), and 1p = 22.3
MHz (corresponding to the transition 5P3/2, F′ = 3→ 5D5/2,
F′′ = 2). The frequency separations between EIT windows
coincide with the frequency gaps between hyperfine levels of
the 5D5/2 states. When the temperature increases (leading
to an increase in Doppler width), therefore, there is overlap
between the EIT windows for the 85Rb atom, while the EIT
windows for the 87Rb atom can still be distinguished, because
the frequency gaps between the hyperfine levels of the 87Rb
atom are greater than those of the 85Rb atom. In general, the
EIT windows may not be overlapped when the Doppler shift
of the two-photon coherence is smaller than the frequency gap
between the transparency peaks [31]. The Doppler shift of the
two-photon resonance was calculated as follows [31]:

ωtwo = (k p − kc ) · v, (38)

where k p and kc are the wave vectors of the probe and cou-
pling laser, and v is the velocity of the atom, v =

√
3kB T/m.

Therefore, we derive the condition for temperature as

T <
mδ2

12π2kB

(
λpλc

λp − λc

)2

, (39)

where δ is the frequency gap between hyperfine levels. Thus,
for 85Rb atoms with δ = 7.6 MHz then T< 500 K, whereas
for 87Rb atoms with δ = 22.3 MHz then T< 3800 K. In addi-
tion, to detect such hyperfine components in a weak probe
regime, the probe intensity is usually smaller than the saturation
intensity of the probe transition, given by Isat =

π
3

hc
λ3τ

, where
τ = 0−1 is the lifetime of the upper state andλ is the wavelength
of the probe laser.

Moreover, we see that the growth of temperature leads depth
and width of the EIT windows to decrease significantly. This
is because the increase in temperature will reduce the atomic
coherence and thus weaken the quantum interference that leads
to the EIT effect. We also note that the depth and width of EIT
windows are not the same because the relative strengths of the
three transitions 5P3/2, F′ = 3→ 5D5/2, F′′ = 4, F′′ = 3, and
F′′ = 2 are different.

Next, we study the influence of the Doppler broadening on
the Kerr nonlinearity of the 85Rb and 87Rb atoms in the EIT
condition by plotting the self-Kerr nonlinear coefficient ver-
sus the probe detuning at different temperatures T= 100 K
[Figs. 5(a) and 6(a)], T= 200 K [Figs. 5(b) and 6(b)],
T= 300 K [Figs. 5(c) and 6(c)], and T= 400 K [Figs. 5(d)
and 6(d)]. Other parameters are similar to those in Figs. 3 and
4. From the figures, we see that due to generation of three EIT
windows on the absorption line, the Kerr nonlinear coefficient
also exhibits a line profile with three normal dispersive curves
inside the transparent windows. This means that there are three
pairs of negative–positive values of Kerr nonlinear coefficient
around positions1p =−9 MHz,1p = 0, and1p = 7.6 MHz
for the 85Rb atom or at positions 1p =−28.8 MHz, 1p = 0,
and 1p = 22.3 MHz for the 87Rb atom. Therefore, the Kerr
nonlinear coefficient of the five-level ladder-type system is
enhanced simultaneously at different frequencies. Due to the
large frequency gaps between the hyperfine levels in the 5D5/2

state of the 87Rb atom, the nonlinear coefficient is enhanced
at far more resonant regions than in the case of the 85Rb atom.
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Fig. 5. Plots of self-Kerr nonlinear coefficient of 85Rb atoms versus
the probe field detuning at different temperatures and (a) T= 100 K,
(b) T= 200 K, (c) T= 300 K, and (d) T= 400 K. The parameters of
the coupling laser are�c = 40 MHz and1c = 0.

Fig. 6. Plots of self-Kerr nonlinear coefficient of 87Rb atoms versus
the probe field detuning at different temperatures and (a) T= 100 K,
(b) T= 200 K, (c) T= 300 K, and (d) T= 400 K. The parameters of
the coupling laser are�c = 40 MHz and1c = 0.

We also see that, under the influence of Doppler broadening,
the profile of the nonlinear coefficient is greatly broadened,
and therefore the normal dispersive curves are compressed.
Especially when the temperature increases, the amplitude of the
normal dispersive curves (appearing in the EIT windows) is sig-
nificantly reduced. To see this reduction quantitatively, in Fig. 7,
we plot the nonlinear coefficient according to the temperature
when fixing parameters of laser fields at�c = 40 MHz,1c = 0,
1p =−2 MHz for the 85Rb atom and 1p = 20 MHz for the
87Rb atom, which corresponds to one peak of nonlinearity in
Figs. 3 and 4, respectively.

The coupling frequency dependence of the self-Kerr non-
linear coefficient is illustrated in Fig. 8 for the 85Rb atom and
Fig. 9 for the 87Rb atom. Here, other parameters are employed

Fig. 7. Plots of self-Kerr nonlinear coefficient of (a) 85Rb atoms and
(b) 87Rb atoms versus the temperature when �c = 40 MHz, 1c = 0,
and 1p =−2 MHz for 85Rb atoms and 1p = 20 MHz for 87Rb
atoms, which corresponds to one peak of nonlinearity in Figs. 3 and 4,
respectively.

Fig. 8. Plots of self-Kerr nonlinear coefficient of 85Rb atoms
versus the coupling field detuning at different temperatures and
(a) T= 100 K, (b) T= 200 K, (c) T= 300 K, and (d) T= 400 K.
Other parameters are�c = 40 MHz and1p = 0.

as �c = 40 MHz, 1p = 0 (i.e., the probe frequency is reso-
nant with the transition |1〉→ |2〉), and T= 300 K. This is
similar to the probe frequency dependence of the self-Kerr
nonlinear coefficient in that there are three normal dispersive
curves appearing in the EIT windows. The positions of these
dispersive curves are also localized at 1c =−9 MHz, 1c = 0,
and1c = 7.6 MHz for the 85Rb atom or at1c =−28.8 MHz,
1c = 0, and 1c = 22.3 MHz for the 87Rb atom. The occur-
rence of positive–negative pairs of the nonlinear coefficient
shows that we can control the amplitude and sign of the non-
linear coefficient (for a given frequency of the probe laser) by
changing the frequency of the coupling laser. The same situ-
ation can also be performed by adjusting the intensity (Rabi
frequency) of the coupling laser, as shown in Fig. 10. Such a
nonlinear coefficient with controllable magnitude and sign
allows us to control the characteristics of application devices,
such as optical bistability, all-optical switching, and so on.
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Fig. 9. Plots of self-Kerr nonlinear coefficient of 87Rb atoms
versus the coupling field detuning at different temperatures and
(a) T= 100 K, (b) T= 200 K, (c) T= 300 K, and (d) T= 400 K.
Other parameters are�c = 40 MHz and1p = 0.

Fig. 10. Plots of self-Kerr nonlinear coefficient of (a) 85Rb
atoms and (b) 87Rb atoms versus the coupling Rabi frequency
when T= 300 K, 1c = 0, and 1p =−2 MHz for 85Rb atoms
and1p = 20 MHz for 87Rb atoms, which corresponds to one peak of
nonlinearity in Figs. 3 and 4, respectively.

Finally, to test the analytical model for self-Kerr nonlinearity
under the Doppler effect, we compare the theoretical result
with experimental measurement of self-Kerr nonlinearity in
Ref. [6] for the case of a hot 87Rb three-level atomic system (an
experimental observation of the self-Kerr nonlinear coefficient
in a five-level ladder-type atomic system has not been published
so far). In this case, the states |1〉, |2〉, and |3〉 are chosen as
5S1/2 (F= 1), 5S1/2 (F= 2), and 5P 1/2 (F′ = 2), respectively.
In experimental observations for hot atomic vapors, due to a
collisional dephasing effect and the laser linewidths, we have
to account for their influences in coherence dephasing rates
in the density matrix equations by writing decaying rates as
γ21→ γ21 + δωp and γ31→ γ31 + δωc + γcol, where γcol

presents the collisional dephasing rate, whereas δωp and δωc

are the linewidths of the probe and coupling lasers, respectively
[6,15]. By choosing other parameters similar to those in Ref. [6],
i.e., γ21 = 3.5 MHz, γ31 = 1.1 MHz, �c = 72 MHz, and
T= 340 K, we plot the self-Kerr nonlinear coefficient of 87Rb

Fig. 11. Theoretical plots of self-Kerr nonlinear coefficient of
87Rb atoms versus (a) the probe detuning and (c) the coupling detun-
ing. Experimental measurements of self-Kerr nonlinear coefficient
of 87Rb atoms versus (b) the probe detuning and (b) the coupling
detuning [6]. For both cases, the other parameters are �c = 72 MHz
and T= 340 K. Solid squares are with EIT and open circles are
without EIT.

atoms versus the probe detuning and the coupling detuning as
displayed in Figs. 11(a) and 11(c), respectively. Experimental
measurements of the self-Kerr nonlinear coefficient of the 87Rb
atom versus the probe detuning and the coupling detuning
are shown in Figs. 11(b) and 11(d), respectively [6]. The com-
parisons show that the theoretical curves are in tremendous
agreement with the experimental measurements.

4. CONCLUSION

We have developed an analytical model to study the influence
of Doppler broadening on self-Kerr nonlinearity in a five-level
cascade-type atomic system under the EIT condition. The
expressions for the first and third susceptibilities and the self-
Kerr nonlinearity of a five-level cascade-type atomic medium
are found as a function of parameters of the light fields and the
temperature of the medium. The analytical model is applied
to the transition 5S1/2 − 5P3/2 − 5D5/2 of warm 85Rb and
87Rb atoms, and it is shown that under the EIT effect, Kerr
nonlinearity is enhanced at multiple frequencies with reducing
absorption. Besides the enhanced nonlinearity, its amplitude
and sign are also controlled according to the intensity and fre-
quency of the coupling laser. When the temperature of atomic
vapor increases (i.e., Doppler width increases), the depth and
width of the EIT windows decrease accordingly, so the ampli-
tude of the Kerr nonlinear coefficient decreases significantly.
In addition, due to the frequency gaps between the superfine
levels of the upper excited state of the 85Rb atom being much
smaller than those of the 87Rb atom, the EIT windows and the
nonlinear dispersion curves for the 85Rb atom are closer than
those for the 87Rb atom. The analytical results agree well with
the experimental observation when reducing to a three-level
atomic system. The analytical model can be used to fit the exper-
imental observations of self-Kerr nonlinearity in a five-level
atomic system under different temperature conditions and
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apply to a variety of applications relating to all-optical-switching
techniques.
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