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We proposed a model for manipulating giant cross-Kerr nonlinearity in an atomic gaseous medium consisting
of six-level inverted-Y systems. The absorption, dispersion, and cross-Kerr nonlinear coefficients of the medium
are derived as analytical functions of the parameters of probe, coupling, and signal fields. It is shown that the
cross-Kerr nonlinearity is enhanced significantly in three transparent windows under electromagnetically induced
transparency (EIT). Furthermore, the cross-Kerr nonlinearity can be manipulated between positive and negative
values by controlling intensity and/or frequency of the coupling laser. Such controllable giant cross-Kerr nonlin-
earity with the analytical interpretation is convenient to find experimental parameters and is useful for studying
applications of controllable multi-channel quantum phase gates. ©2019Optical Society of America

https://doi.org/10.1364/JOSAB.36.002856

1. INTRODUCTION

Electromagnetically induced transparency (EIT) is a quantum
interference effect that may lead to a complete cancellation in
resonant absorption of a weak probe field propagating through a
medium in the presence of a strong coupling field [1]. The EIT
effect can lead to a significant enhancement of Kerr nonlinearity
of the atomic medium [1–3]. There are two widely used Kerr
nonlinear effects involving self-Kerr or self-phase modulation
(SPM) and cross-Kerr or cross-phase modulation (XPM) [4].

In most applications using a Kerr nonlinear effect [4], a
strong nonlinear response of optical materials is often needed to
enhance conversion efficiency and reduce input light intensity.
Up to date, there is a large number of theoretical contribu-
tions [5–8] and experimental demonstrations [9–14] of the
control and the enhancement of Kerr nonlinearity in the EIT
media. Specifically, Schmidt and Imamoglu first proposed an
N-type four-level system to obtain giant cross-Kerr nonlinearity
under EIT conditions [5]. This scheme was experimentally
demonstrated in cold Rb atoms by Kang et al. [10]. Later, Joshi
and Xiao found large cross-Kerr nonlinearity in a four-level
inverted-Y system that can be used to realize polarization quan-
tum phase gates [6]. Xiao et al. [9] first measured the enhanced
self-Kerr nonlinear coefficient in a three-level 3-type atomic
system of hot Rb atoms. For three-level atomic configura-
tions, however, Kerr nonlinearity is only enhanced in a narrow
spectrum region because it only produces one EIT window.

To create multiple EIT windows, use multilevel atomic sys-
tems excited by several coupling laser fields [15,16]. That is, if
the N-level system excited by (N − 1) coupling laser fields, it is
possible to create (N − 2) EIT windows. In recent years, some
research groups have therefore focused on multilevel atomic
systems to simultaneously control the enhanced nonlinearity at
multiple frequencies [17–23]. Recently, we developed a simpler
model to create multiple EIT windows with only one coupling
laser field by using closely spaced hyperfine levels in quantum
system that was first demonstrated in a five-level ladder-type
85Rb atom [24]. The analytical model is applied for a five-level
atomic system of Rb atoms and we obtained three-EIT windows
on the absorption profile [25,26]. The analytical model has been
used to interpret the experimental observations with a good
agreement [27]. Along with the appearance of three-EIT win-
dows on absorption line, self-Kerr nonlinearity is also enhanced
at three different frequency regions [28]. This result also led
to the appearance of optical bistability at multiple frequencies
with low threshold intensity [29]. More recently, this system
was developed to manipulate the multifrequency light veloc-
ity in the presence of self-Kerr nonlinearity [30] and Doppler
broadening [31].

In this paper, we propose a six-level inverted-Y atomic system
to enhance and manipulate the cross-Kerr nonlinearity at multi-
ple frequencies. The expressions for absorption, dispersion,
and cross-Kerr nonlinear coefficients of a six-level inverted-Y
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Fig. 1. (a) Six-level inverted-Y atomic system and (b) energy level
diagram of 85Rb atom.

atomic system were derived according to the parameters of
laser fields. We show that the enhanced cross-Kerr nonlinearity
with a reduced absorption can be simultaneously obtained at
different frequencies. Moreover, the sign and magnitude of Kerr
nonlinearity are investigated by adjusting the amplitudes and
frequencies of the applied fields.

2. THEORETICAL MODEL

We consider a six-level inverted-Y atomic system interact-
ing with three laser fields as depicted in Fig. 1(a). A weak
probe laser field (with frequency ωp and Rabi frequency �p )
drives the transition |1〉↔ |2〉, whereas a strong coupling
laser field (with frequency ωc and Rabi frequency �c ) cou-
ples simultaneous transitions between state |2〉 and three
closely spacing states–|3〉, |4〉, and |5〉. A signal laser field is
applied to the transition, |2〉↔ |6〉. The frequency separa-
tions between levels |3〉−|4〉 and |5〉−|3〉 are, respectively,
denoted by δ1 and δ2. Experimentally, the scheme can be real-
ized in the 85Rb atom, with the states indicated in Fig. 1(b)
[32], where the related states |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉 are
5S1/2(F= 2), 5P3/2(F′′ = 3), 5D5/2(F′′ = 3), 5D5/2(F′′ = 4),
5D5/2(F ′′ = 2), and 5S1/2(F= 3), respectively. The frequency
separations between the closely spaced hyperfine levels are
δ1 = 9 MHz and δ2 = 7.6 MHz.

The evolution of the system, which is represented via the den-
sity operatorρ, is represented by the Liouville equation,

∂ρ

∂t
=−

i
~
[H, ρ] +3ρ, (1)

where H and3ρ represent the total Hamiltonian and relaxation
operator, respectively. Using the rotating-wave and the electric
dipole approximations, the total Hamiltonian of the system in
the interaction picture can be written as

H =
~
2


0 �p 0 0 0 0
�p 2(1p −1s ) �c a32 �c a42 �c a52 �s

0 �c a32 2(1p +1c ) 0 0 0
0 �c a42 0 2(1p +1c + δ1) 0 0
0 �c a52 0 0 2(1p +1c − δ2) 0
0 �s 0 0 0 0

 , (2)

where

1p =ωp −ω21, 1c =ωc −ω32, and 1s =ωs −ω62

(3)
are frequency detuning of the probe, coupling, and signal lasers,
respectively. From Eqs. (1) and (2) we derive the following equa-
tions of motion for the density matrix elements:

ρ̇66 =−062ρ66 +
i�s

2
(ρ62 − ρ26) , (4)

ρ̇55 =−052ρ55 +
i
2
�c a52(ρ52 − ρ25), (5)

ρ̇44 =−042ρ44 +
i
2
�c a42(ρ42 − ρ24), (6)

ρ̇33 =−032ρ33 +
i
2
�c a32(ρ32 − ρ23), (7)

ρ̇22 =−021ρ22 + 032ρ33 + 042ρ44 + 052ρ55 + 062ρ66

+
i
2
�p(ρ21 − ρ12)+

i
2
�c a32(ρ23 − ρ32)

+
i
2
�c a42(ρ24 − ρ42)+

i
2
�c a52(ρ25 − ρ52)

+
i
2
�s (ρ26 − ρ62), (8)

ρ̇11 = 021ρ22 +
i
2
�p(ρ12 − ρ21), (9)

ρ̇21 = [i1p − γ21]ρ21 +
i
2
�p(ρ22 − ρ11)

−
i
2
�c a32ρ31 −

i
2
�c a42ρ41

−
i
2
�c a52ρ51 −

i
2
�s ρ61, (10)

ρ̇31 = [i(1c +1p)− γ31]ρ31 +
i
2
�pρ32 −

i
2
�c a32ρ21,

(11)

ρ̇41 = [i(1c +1p + δ1)− γ41]ρ41 +
i
2
�pρ42 −

i
2
�c a42ρ21,

(12)

ρ̇51 = [i(1c +1p − δ2)− γ51]ρ51 +
i
2
�pρ52 −

i
2
�c a52ρ21,

(13)
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ρ̇61 = [i(1s −1p)− γ61]ρ61 +
i
2
�pρ62 −

i
2
�s ρ21, (14)

ρ̇32 = [i1c − γ32]ρ32 +
i
2
�pρ31 +

i
2
�c a42ρ34

+
i
2
�c a52ρ35 +

i
2
�c a32(ρ33 − ρ22)+

i
2
�s ρ36, (15)

ρ̇42 = [i(1c + δ1)− γ42]ρ42 +
i
2
�pρ41 +

i
2
�c a32ρ43

+
i
2
�c a52ρ45 +

i
2
�c a42(ρ44 − ρ22)+

i
2
�s ρ46,

(16)

ρ̇52 = [i(1c − δ2)− γ52]ρ52 +
i
2
�pρ51 +

i
2
�c a32ρ53

+
i
2
�c a42ρ54 +

i
2
�c a52(ρ55 − ρ22)+

i
2
�s ρ56, (17)

ρ̇62 = [i1s − γ26]ρ62 −
i
2
�s (ρ22 − ρ66)+

i
2
�Pρ61

+
i�c

2
a32ρ63 +

i�c

2
a42ρ64 +

i�c

2
a52ρ65, (18)

ρ̇43 = [−iδ1 − γ43]ρ43 +
i
2
�c a32ρ42 −

i
2
�c a42ρ23, (19)

ρ̇53 = [−iδ2 − γ53]ρ53 +
i
2
�c a32ρ52 −

i
2
�c a52ρ23, (20)

ρ̇63 = [i(1s −1c )− γ36]ρ63 +
i
2
�c a32ρ62 −

i
2
�s ρ23, (21)

ρ̇54 = [−i(δ1 + δ2)− γ54]ρ54 +
i
2
�c a42ρ52 −

i
2
�c a52ρ24,

(22)

ρ̇64 = [i(1c −1s + δ1)− γ46]ρ64 +
i
2
�c a42ρ62 −

i
2
�s ρ24,

(23)

ρ̇65 = [−i(1c −1s − δ1)− γ56]ρ65 +
i
2
�c a52ρ62 −

i
2
�s ρ25,

(24)

ρki = ρ
∗

ik, (25)

ρ11 + ρ22 + ρ33 + ρ44 + ρ55 + ρ66 = 1, (26)

whereγkl is the coherence decay rateρkl , which is determined as

γkl =
1

2

 ∑
Ek<E j

0 j k +
∑

Em<E l

0lm

 , (27)

where 0kl is the population decay rate from level |k〉 to level |l〉;
�p = d21 E p/~, �c = d32 E c/~, and �s = d26 E s /~ are Rabi
frequency induced by the probe, coupling, and signal fields,

respectively; dkl is a dipole moment of the |k〉 − |l〉 transition;
a32 = d32/d32, a42 = d42/d32, and a52 = d52/d32 are the rela-
tive transition strengths. This means that the coupling intensity
for the transitions |2〉↔ |3〉, |2〉↔ |4〉, and |2〉↔ |5〉 are
�c a32,�c a42, and�c a52, respectively.

The density-matrix equations are solved under the steady-
state condition to find the solutions for density matrix elements
related to the probe and signal responses up to third order.
Assuming that the coupling light intensity�c is much stronger
than the probe light intensity�p and signal light intensity�s ,
we obtain these equations from Eqs. (11)–(14):

ρ31 =
i�c a32

2[i(1c +1p)− γ31]
ρ21, (28)

ρ41 =
i�c a42

2[i(1c +1p + δ1)− γ41]
ρ21, (29)

ρ51 =
i�c a52

2[i(1c +1p − δ2)− γ51]
ρ21, (30)

ρ61 =
i�s

2[i(1p −1s )− γ61]
ρ21 −

i�p

2[i(1p −1s )− γ61]
ρ62.

(31)
From Eq. (18) combined with Eqs. (21), (23), and (24), we find
that

ρ62 =−
i�s (ρ22 − ρ66)

2(i1s + γ26)+ A
+

i�P

2(i1s + γ26)+ A
ρ61, (32)

where

A=
�2

c a2
32

2 (i(1s +1c )+ γ36)
+

�2
c a2

42

2 (i(1s +1c + δ1)+ γ46)

+
�2

c a2
52

2 (i(1s +1c − δ2)+ γ56)
.

(33)

By substituting Eq. (32) into Eq. (31) we have

ρ61 =
i�s

2
(
i(1p −1s )− γ61

)ρ21

+
�p�s (ρ66 − ρ22)

2 (2(i1s + γ26)+ A)
(
i(1p −1s )− γ61

) . (34)

By putting Eqs. (28)–(30) and (34) into Eq. (10) we find the
solution for the density matrix element ρ21, which relates to the
first-order (in probe field �p ) and to the third-order (in signal
field�s ) as
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ρ21 =
i�p(ρ11 − ρ22)

2(i1p − γ21)+
�2

s
2(i(1p−1s )−γ61)

+ B
+

i�p�
2
s (ρ66 − ρ22)

2
(
i(1p −1s )− γ61

)
(2(i1s + γ26)+ A)

(
2(i1p − γ21)+ B

) , (35)

where

B =
�2

c a2
32

2
(
i(1c +1p)− γ31

) + �2
c a2

42

2
(
i(1c +1p + δ1)− γ41

)
+

�2
c a2

52

2
(
i(1c +1p − δ2)− γ51

) .

(36)

Similarly, the solution for the density matrix element ρ26 that
relates to the first-order (in signal field�s ) and to the third-order
(in probe field�p ) is found as

ρ26 =
i�s (ρ66 − ρ22)

2(i1s − γ26)+
�2

p

2(i(1p−1s )+γ61)
+ N

+
i�s�

2
p(ρ11−ρ22)

2
(
i(1p−1s )+γ61

)(
2(i1p+γ21)+M

)
(2(i1s−γ26)+N)

,

(37)

χ (3)s =−
Nd2

21d2
26

3~3ε0
×

i(ρ11 − ρ22)(
i(1p −1s )+ γ61

) (
2(i1p + γ21)+M

)
(2(i1s − γ26)+ N)

. (45)

where

M =
�2

c a2
32

2
(
i(1p +1c )+ γ31

) + �2
c a2

42

2
(
i(1p +1c + δ1)+ γ41

)
+

�2
c a2

52

2
(
i(1p +1c − δ2)+ γ51

) ,
(38)

N =
�2

c a2
32

2 (i(1c +1s )− γ36)
+

�2
c a2

42

2 (i(1c +1s + δ1)− γ46)

+
�2

c a2
52

2 (i(1c +1s − δ2)− γ56)
.

(39)

We note that the solutions ρ21 and ρ26 can be deduced in
the case of the four-level atomic system as in [6], by setting
a42 = a52 = 0 in the expressions of A, B , M, and N.

The total susceptibilities can then be determined by

χp =−2
Nd21

ε0 E p
ρ21 ≡ χ

(1)
p + 3E 2

s χ
(3)
p , (40)

χs =−2
Nd26

ε0 E s
ρ26 ≡ χ

(1)
s + 3E 2

pχ
(3)
s . (41)

Therefore, the expressions for first- and third-order sus-
ceptibilities for the probe light field are determined by

χ (1)p =−
2Nd2

21

~ε0

i(ρ11 − ρ22)

2(i1p − γ21)+
�2

s
2(i(1p−1s )−γ61)

+ B
,

(42)

χ (3)p =−
Nd2

21d2
26

3~3ε0

×
i(ρ66−ρ22)(

i(1p−1s )−γ61
)
(2(i1s+γ26)+A)

(
2(i1p−γ21)+B

) .

(43)

Similarly, the expressions for first- and third-order
susceptibilities for the signal light field is

χ (1)s =−
2Nd2

26

~ε0

i(ρ66 − ρ22)

2(i1s − γ26)+
�2

p

2(i(1p−1s )+γ61)
+ N

, (44)

From the first- and third-order susceptibilities, we find the
linear dispersion n0 and cross-Kerr nonlinear n2 coefficients of
six-level atomic system for the probe light is [4]

n0 = 1+
Re(χ (1)p )

2
, (46)

n2 =
3Re

(
χ (3)p

)
2ε0n2

0c
. (47)

3. RESULTS AND DISCUSSION

To illustrate the analytical results, we apply cold 85Rb atomic
vapor as shown in Fig. 1(b), in which the atomic parameters are
given by [24,32]: N = 1012 atoms/cm3; 032 = 042 = 052 =

0.97 MHz; 021 = 062 = 6 MHz; d21 =1.6× 10−29C.m;
ωp = 3.77× 108 MHz and a32 : a42 : a52 = 1 : 1.4 : 0.6. For
simplicity, all quantities related to frequency are given in units
γ = 1 MHz.

First of all, to see how cross-phase modulation changes at
multiple frequencies, we plot probe susceptibility χp versus
probe detuning 1p/γ and signal susceptibility χs versus sig-
nal detuning 1s /γ as shown in Fig. 2. In the presence of the
strong coupling field, the EIT effect appears for both fields. In
addition to the EIT window at the center of the absorption line
1p = 0 (or1s = 0), there are two EIT windows that appear at
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Fig. 2. (a) Change of probe susceptibility χp versus probe detuning
1p/γ when1c =1s = 0. (b) Variation of signal susceptibility χs ver-
sus signal detuning1s /γ when1c =1p = 0. Other used parameters
are�p =�s = 0.1γ and�c = 10γ . The dashed and solid lines corre-
spond to absorption and dispersion.

the positions 1p =−9γ and 1p = 7.6γ (or 1s =−9γ and
1s = 7.6γ ). Correspondingly, normal dispersion curves are
also present in the three EIT windows, so the group velocity will
be manipulated at three frequency regions. Under the resonance
condition or equal detunings, the position of the EIT windows
for the probe beam is identical to those for the signal beam.
Therefore, the group velocity matching can also be realized, and
cross-Kerr nonlinearity is also enhanced, as shown in Fig. 3.

In Fig. 3, we plot cross-Kerr nonlinearity n2 (for the
probe field) with the respect to probe detuning when
�p =�s = 0.1γ , �c = 6γ , and 1c =1s = 0. From the
figure, it is clear that cross-Kerr nonlinearity is significantly
enhanced around three transparent spectral regions at 1p = 0,
1p =−9γ , and1p = 7.6γ . Namely, in each transparent win-
dow, there is a pair of positive–negative peaks of n2. In addition,
the magnitude and sign of the cross-Kerr nonlinear coefficient
can be controlled by adjusting the intensity and/or frequency of
the coupling field as described in Figs. 4 and 5, respectively.

Fig. 3. Cross-Kerr nonlinear coefficient n2 as a function of the
probe detuning when �p =�s = 0.1γ , �c = 6γ and 1c =1s = 0.
The dashed line represents absorption given by an imaginary part of
Eq. (40).

Fig. 4. Change of cross-Kerr nonlinearity according to coupling
Rabi frequency�c when1p = 3γ and1c =1s = 0. The dotted line
is zero.

In Fig. 4, we kept the detuning of the laser lights at1p = 3γ
and 1c =1s = 0, which corresponds to a positive peak of
n2 in Fig. 3, and plotted the Kerr nonlinear coefficient versus
Rabi frequency �c . It is shown that we can switch between
positive and negative values of n2 by tuning the Rabi frequency
of the coupling light by an amount of about 1�c = 2.5γ .
Such variation comes from intensity dependence of the EIT
efficiency, which results in an enhancement of Kerr nonlinearity
[3,5]. In Fig. 5, we plotted the Kerr nonlinear coefficient versus
frequency detuning 1c when other laser frequencies are kept
at 1p =1s = 0 and �c = 3γ . From Fig. 5 we also see that
the Kerr nonlinear coefficient of the medium for the given fre-
quency of probe laser has three pairs of positive–negative peaks
of n2 around1c = 0,1c =−9γ , and1c = 7.6γ .
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Fig. 5. Cross-Kerr nonlinear coefficient n2 as a function of coupling
frequency detuning1c when�c = 3γ and1p =1s = 0.

Fig. 6. Cross-Kerr nonlinear coefficient n2 as a function of probe
detuning in the case of the six-level (solid line) and four-level (dashed
line) systems when�p =�s = 0.1γ ,�c = 6γ and1c =1s = 0.

Finally, in Fig. 6, we compared the behavior of cross-Kerr
nonlinearity in the six-level and four-level systems, where levels
|4〉 and |5〉 in the four-level system are neglected by setting
a42 = 0 and a52 = 0 in expressions of A and B . It demonstrated
that the cross-Kerr nonlinearity of the six-level system exhibits
in a wider spectral region that corresponds to more positive and
negative peaks of n2. Namely, the six-level system has more pos-
sible ways to control the cross-Kerr nonlinearity that is needed
for applications in multifrequency regions. For experimental
realization of the six-level model, it could be arranged similarly
to that in [10], except multifrequency probe light should be
used. Here, the multifrequency probe light can be delivered
from a single-mode laser with two appropriate acoustic modu-
lators. As a consequence, the six-level inverted-Y system can be
used for a multichannel quantum phase gate, in the same way
that the single channel gate uses a four-level system in [6].

5. CONCLUSION

In this paper, we have proposed a model for the enhance-
ment and manipulation of cross-Kerr nonlinearity at multiple
frequencies in an atomic gaseous medium consisting of six-level
inverted-Y systems. The expressions for absorption, dispersion,
and cross-Kerr nonlinear coefficients of the medium are derived
as a function of the parameters of probe, coupling, and signal
fields. It is shown that in the presence of a strong coupling field
the EIT effect with three-windows appears for both fields. The
position of the EIT windows for the probe beam is identical
to those for the signal beam. Therefore, the group velocity
matching can also be realized and cross-Kerr nonlinearity is also
enhanced greatly around three spectral regions corresponding
to transparent windows. Moreover, the magnitude and sign
of the cross-Kerr coefficient can be manipulated by tuning the
frequency and/or the intensity of the coupling light. Such a
controllable giant cross-Kerr nonlinearity with the analytical
interpretation is convenient to find experimental parame-
ters and is useful for studying applications of controllable
multichannel quantum phase gates.
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