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Abstract
Optical properties including absorption, dispersion, group index, Kerr nonlinearity, and optical
bistability of a three-level V-type atomic medium have modified by varying an external magnetic
field. By changing the magnitude or the sign of the external magnetic field, the transparency
window with normal dispersion transfers to the enhanced absorption with anomalous dispersion
at the line center, and hence the light propagation switches between subluminal and superluminal
modes. The magnitude and the sign of the Kerr nonlinearity are controlled with the strength and
the sign of the magnetic field. As a consequence, the behaviors of optical bistability are also
made to appear or disappear when switching on/off the magnetic field. Moreover, the threshold
intensity and width of optical bistability are also changed by the magnetic field and the coupling
field. The results can be used to control the working characteristics of applied devices and study
the related effects.

Keywords: electromagnetically induced transparency, group velocity, Kerr nonlinearity, optical
bistability

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, modification of optical properties of an atomic
medium by external fields has received considerable attention
from research groups due to it can change the working
characteristics of applied devices. The linear and nonlinear
optical properties of the medium can be modified by quantum
coherence and interference via electromagnetically induced
transparency (EIT) effect [1–3]. The EIT can arise from the
destructive quantum interference of the transition amplitudes
which can significantly reduce resonant absorption of the
probe beam propagating inside an opaque atomic medium [4].
Simplest exciting schemes of the EIT are three-level atomic
systems consisting of Λ-type [5], V-type [6], and ladder-type
[7] configurations. The EIT materials have interesting appli-
cations in the fields of quantum and nonlinear optics includ-
ing lasing without population inversion [8], slow and fast
light [9–12], enhancement of Kerr nonlinearity [13–23],
controlling optical bistability [24–27], pulse propagation

[28–30], all-optical switching [31, 32], and so on. The studies
demonstrated that the linear and nonlinear optical properties
of materials are easily controlled according to the intensity,
frequency, polarization, and phase of external light fields. To
understand more deeply about these topics, readers can refer
to review papers [4, 33].

Recently, many studies have been interested in using an
external magnetic field to control absorption and dispersion
[34–39], light propagation [40, 41], Kerr nonlinearity [42],
and optical switching and bistability [43, 44]. In most of these
studies, the external magnetic field is utilized to separate the
degenerate sublevels of the ground-state via the Zeeman
effect and form the three-level Λ-type scheme.

In this paper, we suggest using the magnetic field to
remove the degeneracy among the excited-state sublevels and
create a three-level V-type scheme. By solving the density
matrix equations in a steady-state condition (r = 0 ), we have
derived the analytical expressions for first- and third-order
susceptibilities as functions of laser parameters and external
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magnetic field. We have shown that the external magnetic
field can use as a ‘knob’ to control absorption and dispersion,
group index, Kerr nonlinearity, and optical bistability of the

degenerated three-level V-type EIT medium. Besides, the
investigation can help us deeply understand the causal rela-
tionship between linear and nonlinear optical properties.

2. Theoretical model

The degenerated three-level V-type atomic system in an
external magnetic field as shown in figure 1. The σ− polarized
probe beam (and angular frequency ωp) Ep drives the trans-
ition |1〉 ↔ |2〉, while the σ+ polarized coupling beam (and
angular frequency ωc) Ec couples the transition |1〉 ↔ |3〉. In
this configuration, the magnetic field (B) is arranged parallel
to the propagation direction of both probe and coupling
beams and is used to separate the degenerate sublevels |2〉 and
|3〉 of the excited-state via the Zeeman effect. The Zeeman
shift between the sublevels |2〉 and |3〉 is determined by [42]

mD = m g BB B F F with mB is the Bohr magneton, gF is the
Landé factor, and = m 1F is the magnetic quantum number
of the involved state. Spontaneous decay rates of the excited
states |2〉 and |3〉 are Γ21 and Γ31, while Γ32 is the relaxation
rate between the levels |2〉 and |3〉 by collisions. We define
the frequency detunings of the probe and coupling fields are
Δp=ωp−ω21 and Δc=ωc−ω31, respectively. The Rabi
frequencies of the probe and coupling fields are respectively
determined by W = d Ep p21 / and W = d Ec c31 / with dmn is
the dipole moment for the transition |m〉↔|n〉.

The master equation of motion for the density operator
describing the time evolution of the atomic system is written

as follows:

r r= - + r


i
H L, , 1[ ] ( )

where rL represents the relaxation processes. The total
Hamiltonian has the form:

From equations (1) and (2), we obtain the density matrix
equations in the presence of the external magnetic field as:
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where γmn is the dephasing rate of atomic coherence ρmn

which is related to the spontaneous decay rate Γmn as follows:

Figure 1. Degenerated three-level V-type atomic system in an
external magnetic field: the state |3〉 is lifted while the state |2〉 is
lowered by the same amount ΔB corresponding to the Zeeman shift.
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Figure 2. Unidirectional ring cavity containing an atomic medium of
length L. Ep

I and Ep
T represent the incident and the transmitted probe

fields, respectively.
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In order to investigate the linear and nonlinear optical
properties of the materials, we need to derive the expres-
sions of the linear and nonlinear susceptibilities by finding
the solution of density matrix equations up to third-order
perturbation (under the steady-state condition) via an
iterative technique. That is, the density matrix elements are
expanded as:

r r r r= + + , 12mn mn mn mn
n0 1 ( )( ) ( ) ( )

Assuming that the atom initially populates in the
ground state |1〉, r » 1,11

0( ) while r r» » 0.22
0

33
0( ) ( ) In the weak

probe field approximation, the solution of the density matrix
element ρ21 in first-order can be found from equations (6)
and (8) as follows:
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Similarly, the expression for ρ21 in third-order has the
form:
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Therefore, ρ21 in third-order is calculated as:
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Finally, the density matrix element ρ21 up to third-order
can be obtained as:
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here D* is the complex conjugation of D.

The probe susceptibility c is proportional to ρ21 through
the following expression:
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where N is the number density of atoms, ε0 is the free space
permittivity.

On the other hand, the probe susceptibility can also be
presented in an alternative form as:

c c c= + E3 . 20p
1 2 3 ( )( ) ( )

From equations (19) and (20) we derive the first-order
susceptibility c 1( ) and the third-order susceptibility c 3( ) as the
functions of laser parameters and external magnetic field:
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where the expressions P and Q are determined by
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Based on the first-order susceptibility, we determine the
linear absorption α and dispersion n0 as:

a
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These expressions will be used to study the control of
absorption and dispersion coefficients according to the
external magnetic field. As a consequence, the change in the
dispersion can lead to the modification of the group velocity
which is defined as follows:

=v
c

n
, 27g

g
( )

with c is the speed of light in vacuum, ng is the group index
that defined as
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On the other hand, from the third-order susceptibility we
obtain the self-Kerr nonlinear coefficient n2 as follows:
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To see the advantage of controllable Kerr nonlinearity, we
apply this Kerr nonlinear medium to the optical bistability device.
We put the atomic sample of length L containing N degenerated
three-level V-type atomic system into a unidirectional ring cavity
(figure 2). We denote R and T are the reflection and transmission
coefficient of mirrors M1 and M2 with R+T=1. Assuming
that mirrors M3 and M4 have 100% reflectivity. The probe beam
Ep circulates in the ring cavity, while the coupling beam Ec
do not.

The total electromagnetic field is represented by

= + +w w- -E E e E e c c. ., 32p
i t

c
i tp c ( )

The dynamic equation of the probe field under the slowly
varying envelop approximation is:
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with wP p( ) is polarization induced by the probe field:
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From equations (33) and (34), the probe field amplitude
in the steady state can be written as:
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For a perfectly tuned cavity, in the steady state, the
boundary conditions for the incident field (Ep

I) and the

transmitted field (Ep
T ) are

=E L E T , 36p p
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where R is the feedback mechanism from the mirror M2,
which is an essential element to optical bistability. In the
mean-field limit and associating with the boundary condition
equations, we derive the input-output amplitude relationship
for the probe beam:

r= -Y X iC , 3821 ( )

where = Y d E T ,p
I

21 ( )/ = X d E Tp
T

21 ( )/ are normal-

ized input and output fields, respectively; = w
e 

C
N Ld

c T2
p 21

2

0
is

cooperation parameter. Thus, the transmitted probe field
depends on the incident probe field and the coherence term
ρ21 via equation (38). Therefore, the bistable behaviors can be
identified by atomic variables through ρ21 which can find
from equations (3)–(10).

3. Results and discussion

Now, we apply the theoretical model to 87Rb atoms with
the levels |1〉, |2〉 and |3〉 corresponding to the states S5 1 2/

= =F m1, 0 ,F( ) = = -P F m5 2, 1 ,F3 2 ( )/ and =P F5 3 2 (/
= +m2, 1 .F ) The parameters are taken to be [43]: N=4.5×

1017 atoms/m3, Γ21=Γ31=5.7MHz and γ21=γ31=γ23=
3MHz, d21=1.6×10

−29 C.m. The Landé factor gF =−1/2,
and the Bohr magneton μB =9.274 01×10−24 JT−1. In the
following investigations, all the parameters related to frequency
are scaled with γ=2π×1MHz. In this way, the Zeeman shift
ΔB can also be expressed in γ, and hence the magnetic field
strength B is scaled by g m g= - - - m g .c B F F

1 1 1 For instance, if the
Zeeman shift ΔB=14γ then the magnetic field strength

m= D B m gB B F F( )/ = 14γc.

3.1. Modifying linear optical properties

First, we consider the absorption and dispersion properties of the
medium for the probe beam in the absence B=0 (solid line) and
the presence B=±14γc (dashed line) of the external magnetic
field, as presented in figures 3 and 4, respectively. Where, the
coupling parameters are Ωc=40γ and Δc=0. From figure 3,
we can see that by choosing the external magnetic field
B=−14γc or and B=14γc, electromagnetically induced
transparency (EIT) at the resonant frequency is converted to
electromagnetically induced absorption (EIA). At the same time,
strong absorption peaks at the positions of Δp=20γ or
Δp=−20γ is transformed into the transparency windows.

As a consequence, the normal dispersions in transparency
windows are also changed to anomalous dispersions in strong
absorption regions and vice versa, via turn-on/off of the
magnetic field as depicted in figure 4. These lead to the group
velocity is also switched from subluminal to superluminal and
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vice versa, as described in figure 5. Specifically, the sub-
luminal light regime in the resonant region when B=0 is
converted to a superluminal light regime when B=−14γc or
B=14γc. Otherwise, the subluminal regime at the positions
of Δp=20γ or Δp=−20γ when B=0 are transformed to
the superluminal regime when B=−14γc or B=14γc.

In figure 6, we present the variation of group index
versus the external magnetic field when Δp=Δc=0 and
Ωc=40γ, which corresponds to the subluminal regime when
B=0. The variation in figure 6 shows that both the magni-
tude and the sign of the group index is changed with respect

to the magnetic field. That is, for the given values of para-
meters Δc, Δp and Ωc we can choose an optimized magnetic
field to attain the maximum value of the group index.

3.2. Modifying nonlinear optical properties

Next, we investigate the influence of the magnetic field on the
amplitude and the sign of Kerr-nonlinear coefficient as depicted
in figure 7. Here, we have plotted the Kerr nonlinear coefficient
versus the probe detuning when B=0 and B=±13γc. Figure 7
shows that the zero value of Kerr nonlinear coefficient at

Figure 4. Variations of dispersion versus probe detuning in the absence B=0 (solid line) and the presence (dashed line) of the external
magnetic field B=−14γc (a) and B=14γc (b). The parameters of the coupling field are fixed at Ωc=40γ and Δc=0.

Figure 3. Variations of absorption versus probe detuning in the absence B=0 (solid line) and the presence (dashed line) of the external
magnetic field B=−14γc (a) and B=14γc (b). The coupling parameters are Ωc=40γ and Δc=0.
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two-photon resonance of probe and coupling lights (Δp=
Δc=0) andΩc=40γ in the case of B=0 is transformed to the
positive peak when B=−13γc or the negative peak when
B=13γc. At the same time, frequency regions with positive
nonlinearity can be switched into those with negative nonlinearity
and vice versa. In addition, from figure 7 we can see that the
negative peak of Kerr nonlinear coefficient at Δp=19γ or the
positive peak at Δp=−19γ in the case of B=0 is transformed
to the zero points when B=−13γc or B=13γc, respectively.
Similar to linear dispersion, moreover, the nonlinear dispersion is

also changed from normal to anomalous when turn-on/off of the
magnetic field.

In order to see the change of Kerr nonlinear coefficient
versus the magnetic field, we fix the parameters of the probe and
coupling fields atΔp=Δc=0 and Ωc=40γ (that corresponds
to the zero point of Kerr nonlinear coefficient when B=0), and
plot nonlinear coefficient with respect to the magnetic field as
represented in figure 8. It is also shown that both the magnitude
and the sign of the Kerr nonlinearity are controlled with
the external magnetic field. This means that we can choose the

Figure 5.Variations of the group index versus probe detuning in the absence B=0 (solid line) and the presence (dashed line) of the external
magnetic field B=−14γc (a) and B=14γc (b). The parameters of the coupling field are fixed at Ωc=40γ and Δc=0.

Figure 6. Variation of the group index versus the external magnetic field when Δp=0, Δc=0 and Ωc=40γ.
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appropriate magnetic field to achieve the optimum value of the
Kerr nonlinearity. This is important to control the characteristics
of optical bistability (OB) that will examine below.

In figure 9 we consider the variation of the negative peak
of nonlinear coefficient at Δp=Δc=0, Ωc=40γ and
B=13γc (see the dashed line of figure 7(a)) with respect to
the Rabi frequency (a) and the frequency detuning (b) of the
coupling field. It shows that the magnitude and the sign of the
Kerr nonlinearity can also be changed by tuning the intensity
or frequency of the coupling beam. That is, with given

parameters of the probe field and the magnetic field we can
adjust the intensity or the frequency of the coupling field to
obtain the negative, positive, or zero values of the Kerr
nonlinear coefficient.

Finally, we apply such a controllable nonlinear coeffi-
cient to the OB device and control the characteristics of the
OB as in figures 10 and 11. For figure 10, we plotted the
input-output intensity of the OB when Δp=0 (a) and
Δp=19γ (b) in the absence (B=0) and the presence
(B=−13γc) of the magnetic field. Where, the coupling

Figure 7. Variations of Kerr nonlinear coefficient versus probe detuning in the absence B=0 (solid line) and the presence (dashed line) of
the external magnetic field B=−13γc (a) and B=13γc (b). The coupling parameters are Ωc=40γ and Δc=0.

Figure 8. Variation of Kerr nonlinear coefficient versus the external magnetic field when Δp=0, Δc=0 and Ωc=40γ.

7

Phys. Scr. 95 (2020) 105103 N H Bang and L V Doai



parameters are Ωc=40γ and Δc=0. As indicated in
figure 7, when the magnetic field is absent B=0, Kerr
nonlinear coefficient is zero at the two-photon resonance of
probe and coupling fields Δp=Δc=0 and is maximum at
the frequency detuning Δp=19γ. Otherwise, when the
magnetic field is present with B=−13γc, the nonlinear
coefficient is maximum at Δp=0 and is zero at Δp=19γ.
Therefore, from figure 10(a) we can see that at Δp=0 there
is no OB behavior when B=0 (see the solid line), however,
the OB behavior has appeared when B=−13γc (see the
dashed line). Similarly, the OB behavior at Δp=19γ when

B=0 (see the solid line of figure 10(b)) is disappeared when
B=−13γc.

Besides, the variations of the Kerr nonlinearity in figure 9
also lead to the change of the OB behaviors with respect to the
intensity and frequency of the coupling field as demonstrated in
figure 11. It shows that when increasing the Rabi frequency Ωc

from 25γ to 32γ or decreasing the frequency detuningΔc from
6γ to 0, the magnitude of Kerr nonlinear coefficient is also
increased. Therefore, the OB behavior appears more clearly;
however, in these regions, the probe field absorption increases,
so that the OB thresholds also increase.

Figure 9.Variations of Kerr nonlinear coefficient versus the intensity when Δc=0 (a) and the frequency detuning when Ωc=40γ (b) of the
coupling field. Other parameters are Δp=0 and B=13γc.

Figure 10. The input–output intensity curves in the absence B=0 (solid line) and the presence B=−13γc (dashed line) of the external
magnetic field. Other employed parameters are Ωc=40γ, Δc=0, Δp=0 (a) and Δp=19γ (b).
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4. Conclusion

We have studied the modification of absorption, dispersion,
group index, Kerr nonlinearity, and optical bistability of
degenerated three-level V-type EIT medium by the external
magnetic field. By changing the strength or the sign of the
magnetic field, electromagnetically induced transparency is
converted to electromagnetically induced absorption, and
hence the dispersion response is also switched between nor-
mal and anomalous regimes. These lead to light propagation
is changed from subluminal to superluminal regimes and
vice versa. That is, for the given parameters of the probe and
coupling fields we can be found the optimum magnetic field
to attain the maximum value of the group index. The external
magnetic field is also used to transform the zero value of the
Kerr nonlinear coefficient in the resonant region into the
positive or negative peaks and vice versa. The magnitude and
the sign of the Kerr nonlinearity are changed by tuning the
magnetic field. As a result, the OB behaviors are made to
appear or disappear when turn-on/off of the external magn-
etic field. Moreover, the threshold intensity and the width of
optical bistability are also controlled by the magnetic field or
the intensity and frequency of the coupling beam.
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