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Abstract
Phonon amplification in low-dimensional material structures has primary important appli-
cations for engineering instrumentation applications such as phonon spectrometers, phonon 
lasers, ultrafast optical modulators as well as other devices based on magneto, acoustoelec-
tric and thermal effects. In this paper, we report our theoretical calculation of the acoustic 
phonon rate in a parabolic semiconductor quantum well. Using the method of quantum 
kinetic equations, we have found the expression for the acoustic phonon growth rate and 
the condition for this phonon increase. The analysis results for the gain factor for the acous-
tic phonons depend on the temperature, amplitude and frequency of the laser field. We 
numerically calculate the rate of acoustic phonon excitation by the absorption of laser field 
energy at different temperatures.

Keywords Acoustic phonons · Quantum kinetic equations · Phonon amplification

1 Introduction

The development of methods for generating and amplifying coherent phonons in materials 
to exploit their use in construction devices such as high-frequency phonon spectrometers 
(Kharel et al. 2019; Huang and Jing 2019), optical modulators (Sun et al. 2016), phonon 
lasers (Li et  al. 2021; Cui et  al. 2021), electrical, magnetic and thermal devices are an 
important issue in the applied research of low-dimensional materials (Nunes and Fonseca 
2012).

The phenomenon of increasing negative phonons and optical phonons, parametric 
resonances in low-dimensional materials has been studied both theoretically and experi-
mentally in recent times (Zhao et al. 2013; Nunes 2014; Dompreh et al. 2016; Shinokita 
et al. 2016a; Nafees and Ansari 2265; Nguyen Tien Dung 2021). The main results of these 
papers are that by absorption of laser field energy, the interaction of the laser field with 
electron can lead to the excitation of higher harmonics and the amplification of phonon. 
With the development of modern experimental technology, the fabrications of low- dimen-
sional structures are possible. In reality, phonon amplification by absorption of laser radia-
tion in such confined structures would characterize the electron–phonon interaction.
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The study of quantum transport theories based on the quantum kinetic equation 
method (QKEM) is a useful tool to investigate the multiphoton absorption process. 
Using the quantum kinetic equation method, we suggested a trustful acoustic phonon 
excitation with a linear form. Using method QKEM, we can determine the analytic 
expression of the phonon growth rate with theoretical models with different low-dimen-
sional materials such as quantum holes, semiconductor superlattices, quantum wires, 
etc.(Nguyen Tien Dung 2021; Derkacs et al. 2008; Komirenko et al. 2000; Wang et al. 
2014; Shinokita et al. 2016b; Nues et al. 2002). From this expression, we can investigate 
the influence of temperature, laser parameters, material parameters.. on phonon increase 
rate.

In this paper, we start from the Hamiltonian of the electron–phonon system in a Sem-
iconductor Quantum Well (SQW) with parabolic potential under an intense laser field; 
we derive a quantum kinetic equation for phonon in SQW in the case of the multipho-
ton absorption process. Then, we calculate the phonon excitation rate for the two cases 
of the electron gas that are on-degenerative and degenerative. Finally, we numerically 
calculate the acoustic phonon excitation rate (APER) in a specific SQW with parabolic 
potential to illustrate the mechanism of the phonon amplification.

2  Quantum kinetic equation for phonon in a SQW

The research model is a semiconductor quantum well with parabolic potential made 
from semiconductors with nearly identical lattice structures. A simple model for a SQW 
with parabolic potential V(z) = kz2

2
 , where k is the force constant of the oscillator. We 

assume the electromagnetic wave of the laser field propagates in a direction perpendicu-
lar to the contact layers and penetrates deep into the sample. The planar polarized elec-
tromagnetic waves have electric field strength vectors: E⃗ = e⃗⊥E0 sinΩt ( ⃗e⊥ is the unit 
vector parallel to the pit well). Assume a non-decreasing potential for phonons (three-
dimensional phonons). A⃗ is the potential vector, depending on the external field:

The energy of the electron in the potential pit is quantized in a direction parallel 
to the surface normal. In which a two-dimensional electron gas is confined by SQW 
potential along the z direction and electrons are free on the x–y plane, the wave vector 
is k⃗⊥ . It is well known that its energy spectrum is quantized into discrete levels in the z 
direction. 𝜀n(k⃗⊥) is the energy spectrum of the electron for the wave k⃗⊥ , it takes the form 
(Bhattacharya et al., 2011):

e and  me are the charge and the effective mass of the electron, � =
√
k∕me.

The Hamiltonian for the system of the electrons and phonons in the case of the pres-
ence of the laser field is written as (Nguyen Tien Dung 2021; Derkacs et  al. 2008; 
Komirenko et al. 2000; Wang et al. 2014; Shinokita et al. 2016b; Nues et al. 2002):

(1)A⃗ = A⃗0 cosΩt, A0 = cE0∕Ω

(2)𝜀n(k⃗⊥) = �𝜔
(
n +

1

2

)
+

�2k⃗2
⊥

2me

= 𝜀n +
�2k⃗2

⊥

2me

; with n = 0, 1, 2…
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where a(n)
+

k⃗⊥

 and a(n)
k⃗⊥

 are the creation and annihilation operators of electron in the n state, b+
q⃗
 

and bq⃗ are the creation and annihilation operators of phonon, 𝜀q⃗ = �𝜔q⃗ is phonon energy 
for wave vector q⃗.

where Cq⃗ is the electron–phonon interaction constant and In1n2 (q⃗):

with Hn(z) =
1

2n!

√
�

�
(−1)ne

�z2

2
dn

dzn
e−�z

2 is wave function.
Similar to [2, 42], the average number of phonons in the quantum well is determined 

by the expression:

where Nq⃗(t) =< b+
q⃗
bq⃗ >t , the symbol < X >t means the usual thermodynamic average of 

operator X.
The quantum kinetic equation for Nq⃗(t) has form:

Substituting (3) into (6), we perform calculations that lead to the differential 
equation:

(3)

Ĥ(t) = Ĥe + Ĥph + Ĥe−ph =
∑
k⃗⊥,n1

𝜀n1

(
k⃗⊥ −

e

c�
A⃗(t)

)
a
(n1)

+

k⃗⊥

a
(n1)

k⃗
⊥

+
∑
q

�𝜔q⃗ b
+

q⃗
bq⃗

+
∑

k⃗⊥,q⃗,n1,n2

Cn1,n2
(q⃗) a

(n2)
+

k⃗⊥+q⃗
a
(n1)

k⃗
⊥

(bq⃗ + b+
−q⃗
)

(4)Cn1n2
(q⃗) = Cq⃗In1n2 (q⃗)

(5)In1n2 (qz) =

+∞

∫
−∞

Hn1
(z)Hn2

(z) exp(iqzz)dz

Nq⃗(t) =
⟨
b+
q⃗
bq⃗

⟩
t
= Tr

{
�̂�b+

q⃗
bq⃗

}
t

(6)
𝜕Nq⃗(t)

𝜕t
= i�

𝜕

𝜕t

⟨
b+
q⃗
bq⃗

⟩
t
=
⟨
b+
q⃗
bq⃗, Ĥ(t)

⟩
t

(7)

𝜕Nq⃗(t)

𝜕t
=

1

�2

∑
k⃗,n1,n2

|||Cn1n2
(q⃗)

|||
2

+∞∑
�,𝜎=−∞

J
𝜎
(Λ∕�Ω)J

�
(Λ∕�Ω)exp[i(� − 𝜎)Ωt]

×

t

∫
−∞

{[(
Nq⃗(t) + 1

)
fn2 (k⃗⊥ + q⃗)

(
1 − fn1 (k⃗⊥)

)
− Nq⃗(t)fn1 (k⃗⊥)

(
1 − fn2 (k⃗⊥ + q⃗)

)]

× exp
[
i

�

(
𝜀n2 (k⃗⊥) − 𝜀n1 (k⃗⊥ − q⃗) − 𝜀q⃗ − ��Ω

)
(t − t�)

]

+

t

∫
−∞

{[(
Nq⃗(t) + 1

)
fn2 (k⃗⊥)

(
1 − fn1 (k⃗⊥ − q⃗)

)
− Nq⃗(t)fn1 (k⃗⊥)

(
1 − fn2 (k⃗⊥)

)]

× exp
[
i

�

(
𝜀n2 (k⃗⊥) − 𝜀n1 (k⃗⊥ − q⃗) − 𝜀q⃗ − ��Ω

)
(t − t�)

]}
dt�
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where J
�
(z) is Bessel function, fn(k⃗⊥) is the distribution function of the electron, 

Λ = e�E⃗0q⃗⊥∕
(
meΩ

)
.

Equation (7) has the same form as the kinetic equations for phonon of F. Peng (Peng 
and Nan-xian 1992) and P. Zhao (Zhao 1994) which these authors established by other 
methods. The advantage of the method we have used here is due to the second quantiza-
tion method. Using this method, some quantum properties of a homogeneous particle 
system will be expressed in terms of wave and energy vectors.

It can be said that solving Eq. (7) in the general case is impossible. However, in some 
approximate cases considering electron–phonon interaction as a disorder, and the num-
ber of phonons satisfies the condition Nq⃗(t) ≫ 1 , then Eq. (7) has the following simple 
form:

this equation will be used to determine the phonon growth rate in the semiconductor 
quantum well.

3  Phonon excitation rate in a SQW

These results allow (Nunes 2014) one to introduce the kinetic equation for phonon number 
of the q mode:

where 𝛾q⃗ are parameters that determine the evolution of the phonon number Nq⃗(t) in time 
due to the interaction with the electrons. If 𝛾q⃗ > 0 the phonon population grows with time, 
whereas for 𝛾q⃗ < 0 we have damping.

Referring to Eq. (8) phonon excitation rate in (9) is:

In the strong-field limit, Λ >> �Ω and the argument of the Bessel function in Eq. (5) is 
larger. For large values of argument, the Bessel function is small except when the order is 
equal to the argument. The sum over � in Eq. (10) may then be written approximately:

(8)

𝜕Nq⃗(t)

𝜕t
=

1

�2

∑
k⃗,n1,n2

|||Cn1n2
(q⃗)

|||
2

+∞∑
�=−∞

J2
�
(Λ∕�Ω)

t

∫
−∞

dt� Nq⃗(t
�)

×
{[

fn2 (k⃗⊥ + q⃗) − fn1 (k⃗⊥)
]
exp

[
i

�

(
𝜀n2 (k⃗⊥ + q⃗) − 𝜀n1 (k⃗⊥) − 𝜀q⃗ − ��Ω

)
(t − t�)

]

+
[
fn1 (k⃗⊥) − fn2 (k⃗⊥ − q⃗)

]
exp

[
−
i

�

(
𝜀n1 (k⃗⊥) − 𝜀n2 (k⃗⊥ − q⃗) − 𝜀q⃗ − ��Ω

)
(t − t�)

]}

(9)
𝜕Nq⃗(t)

𝜕t
= 𝛾q⃗Nq⃗(t)

(10)

𝛾q⃗ =
𝜋

�

∑
k⃗,n1,n2

|||Cn1n2
(q⃗)

|||
2
[
fn2 (k⃗ + q⃗) − fn1 (k⃗)

]{
𝛿
(
𝜀n2 (k⃗ + q⃗) − 𝜀n1 (k⃗) − 𝜀q⃗ − Λ

)

+𝛿
(
𝜀n2 (k⃗ + q⃗) − 𝜀n1 (k⃗) − 𝜀q⃗ + Λ

)}

(11)
∞∑

�=−∞

J2
�

(
Λ

ℏΩ

)
�(E − �ℏΩ) =

1

2
[�(E + Λ) + �(E − Λ)]
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Here E = 𝜀n(k⃗ + q⃗) − 𝜀n(k⃗) − 𝜀q⃗ . The first delta function corresponds to the absorption 
and the second one corresponds to the emission of Λ∕(ℏΩ) photons. In other words, in the 
strong-field limit only multiphoton processes is significant and the electron–phonon colli-
sion takes place with the emission and absorption of Λ∕(ℏΩ) photons. Substituting Eq. (11) 
into Eq. (10), the phonon excitation rate becomes 𝛾q⃗ = 𝛾+

q⃗
+ 𝛾−

q⃗
 , where:

In the following, we will calculate for the case in which the electron gas is non-degener-
ative. In this case, we may simplify the carrier distribution function by using the Boltz-
mann distribution function fn(k⃗⊥) = exp

[
𝛽
(
𝜀F − 𝜀n(k⃗⊥)

)]
 . From Eq. (12), for the case in 

which q⃗ = q⃗z + q⃗⊥ , we obtain the expression for the rate of phonon excitations:

The upper and lower + (-) sign in the Eq. (13) corresponds to the absorption (emission) 
of a photon with energy ℏΩ of the laser field. Here � = 1∕

(
kBT

)
 , kB is the Boltzmann con-

stant and T is the temperature of the system.
Next we discuss the condition to obtain expression (13) and the condition to have the 

phonon increase according to the theoretical calculation:

a) The result is obtained when the argument of the Delta-Dirac function in (11) is zero:

 is the condition about the quality to have the phonon increased effects.

b) From Eq. (13), we see that the emission of many photons (lower sign) always gives 
𝛾
(±)

q⃗
< 0 . The process of absorbing many photons (upper sign) can lead to an increase 

in phonon 𝛾 (±)
q⃗

> 0 . Analyzing Eq. (13) we can obtain the conditions for the phonon 
amplification. From the condition 𝛾 (±)

q⃗
> 0 , we obtain exp

[
−𝛽

(
�𝜔q⃗ − Λ

)]
− 1 > 0 . The 

condition which the laser field must satisfy is:

The condition (1) simply means that if drift velocity of electron q⃗⊥E⃗0∕meΩ under the 
intense laser field, excesses the phonon phase-velocity, a deformation potential for mul-
tiphonon excitation can be generated in the SQW.

(12)𝛾
(±)

q⃗
=

𝜋

�

∑
k⃗,n1,n2

|||Cn1n2
(q⃗)

|||
2[
fn2 (k⃗ + q⃗) − fn1 (k⃗)

]
𝛿
(
𝜀n2 (k⃗ + q⃗) − 𝜀n1 (k⃗) − 𝜀q⃗ ± Λ

)

(13)

𝛾
(±)

q⃗
=

S

�4q2
⊥

�
m3

e

8𝜋3𝛽

�1∕2 �
n1,n2

���Cn1n2
(q⃗)

���
2

exp
�
𝛽
�
𝜀F − �𝜔

�
n1 +

1

2

���

× exp

⎡⎢⎢⎣
−

𝛽me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔(n2 − n1) − �𝜔q⃗ ∓ Λ

�2⎤⎥⎥⎦
�
exp

�
−𝛽

�
�𝜔q⃗ ∓ Λ

��
− 1

�

(14)
�k⊥
me

=
�q⊥
2

+
me

�q⊥

(
𝜀n2 − 𝜀n1 + Λ − �𝜔q⃗

)
>

�q⊥
2

→ 2k⊥ > q⊥

(15)Λ =
�eq⃗⊥E⃗0

meΩ
> �𝜔q⃗
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We calculate the rate of acoustic phonon excitation with |||Cq⃗
|||
2

= �q𝜉2∕(𝜌vaV) . Here, V, 
ρ,  va, and ξ are the volume, the density, the acoustic velocity, and the deformation potential 
constant, respectively. We have the rate of phonon excitations.

For the rate of acoustic phonon excitations:

In the following, we will calculate for the case in which the electron gas is degenerative. 
In this case, we may simplify the carrier distribution function by using the Boltzmann dis-
tribution function:

For the rate of acoustic phonon excitations:

Therefore, if Λ >> 𝜀F then the photon emission process can be neglected compared 
to the absorption process (Peng and Nan-xian 1992; Zhao 1994; Tronconi and Nunces 
1986; Nues et al. 1984). The general energy condition for an electron to move from a 
bonded state to a higher energy state is:

Note that Λ = e�E⃗0q⃗⊥∕
(
meΩ

)
 , for simplicity we assume q⃗ is directed in the direc-

tion of E⃗ , so Λ = eℏE0q∕
(
meΩ

)
= ℏqv , where v = eE0∕(meΩ) is the drag velocity of 

the electron under the action of the laser field. vph = 𝜔q⃗∕q is the phase velocity of the 
phonon. Thus, the condition Λ > �𝜔q⃗ means that the drag velocity v of the electron 
exceeds the phase velocity of the phonon, and Λ > 𝜀F means that the drag velocity of 
the electron exceeds �F∕(ℏq).

For 𝛾 (+)a
q⃗

 to determine then the condition

(16)

𝛾
(+)a

q⃗
=

𝜉2

2�3q⊥L𝜌va

�
m3

e

8𝜋3𝛽

�1∕2 �
n1,n2

���In1n2 (q⃗)
���
2

exp
�
𝛽
�
𝜀F − �𝜔

�
n1 +

1

2

���

× exp

⎡⎢⎢⎣
−

𝛽me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔
�
n2 − n1

�
− �𝜔q⃗ − Λ

�2⎤⎥⎥⎦
�
exp

�
−𝛽

�
�𝜔q⃗ − Λ

��
− 1

�

(17)fn

�
k⃗⊥

�
= 𝜃

�
𝜀F − 𝜀n

�
k⃗⊥

��
=

⎧⎪⎨⎪⎩

1 if 𝜀F > 𝜀n

�
k⃗⊥

�

0 if 𝜀F < 𝜀n

�
k⃗⊥

�

(18)

𝛾
(+)a

q⃗
=

𝜉2q2

�3𝜌vaq⊥L

�
m3

e

2

�
n1,n2

���In1,n2
�
q⃗
����

2

⎧⎪⎨⎪⎩

⎡⎢⎢⎣

�
𝜀F − 𝜀n1

− �𝜔q⃗ + Λ
�
−

me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔
�
n2 − n1

�
− �𝜔q⃗ + Λ

�2⎤⎥⎥⎦

1∕2

−

⎡⎢⎢⎣

�
𝜀F − 𝜀n1

�
−

me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔
�
n2 − n1

�
− �𝜔q⃗ + Λ

�2⎤⎥⎥⎦

1∕2⎫⎪⎬⎪⎭

(19)Λ > max
(
𝜀F ,�𝜔q⃗

)
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notice (19) we get the condition which the laser field must satisfy is

this means the amplitude of the external laser field is higher than some threshold 
amplitude as the condition of the Cerenkov.

4  Numerical results and conclusions

In order to clarify mechanism for the phonon amplification, we numerically calculate 
the rate of acoustic phonon excitation by the absorption of laser field energy. The param-
eters used in the calculation are as follows ℏ = 1.05 × 10−34 Js ,  me = 0.066m0, with 
 m0 being the mass of free electron,  ef = 0.05  eV, � = 5.32 × 103 kg∕m3 ,  va = 5370 m/s, 
ξ = 13.51 eV,  n1 = 1,  n2 = 2 for GaAs/Ga1-xAsxAl (Shinokita et al. 2016a).

(19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
𝜀F − 𝜀n1 − �𝜔q⃗ + Λ

�
−

me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔
�
n2 − n1

�
− �𝜔q⃗ + Λ

�2

≥ 0

�
𝜀F − 𝜀n1

�
−

me

2�2q2
⊥

�
�2q2

⊥

2me

+ �𝜔
�
n2 − n1

�
− �𝜔q⃗ + Λ

�2

≥ 0

(20)𝜀F ≥ 𝜀n1 +
me

2�2q2
⊥

(
�2q2

⊥

2me

+ �𝜔
(
n2 − n1

)
− �𝜔q⃗ + Λ

)2

Fig. 1  Dependence of phonon 
rate increase on laser field 
amplitude  E0 with frequency 
Ω =  1015 rad/s, wave number 
q = 2 ×  108  m−1, here T = 100 K 
solid curve and T = 150 K broken 
curve

Fig. 2  Dependence of phonon 
rate increase on laser field 
frequency Ω with laser field 
amplitude  E0 = 2.3 × 10 7 V/m, 
wave number q = 2 ×  108  m−1, 
here T = 100 K solid curve and 
T = 150 K broken curve

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 N. T. Dung et al.

1 3

  707  Page 8 of 9

The dependence of the phonon rate increase in the case of non degenerate electron 
gas on the laser field amplitude with frequency value Ω =  1015 rad/s at two temperatures 
T = 100 K and T = 150 K is described as Fig. 1.

The dependence of the rate of phonon increase in the case of non degenerate electron 
gas on Ω laser frequency with the laser field amplitude  E0 = 2.3 ×  107 V/m at two tem-
peratures T = 100 K and T = 150 K is described in Fig. 2.

Figures 1 and 2 show the existence of field strength and frequency values for maxi-
mum phonon growth rates. Comparing the graphs in Figs. 1 and 2 show that when the 
frequency increases, the rate of increase of phonon increases faster to the maximum 
value then decreases. The higher the temperature, the lower the maximum value mean-
ing that the number of negative phonons produced decreases. In our opinion, the reason 
for this is that the higher the temperature, the greater the phonon energy, while the field 
energy is constant, so the rate of acoustic phonon production decreases. The sensitivity 
of the rate of phonon production to temperature is a characteristic of negative phonons.

The dependence of the rate of phonon increase in the case of degenerate electron gas 
on the laser frequency Ω and the laser field amplitude  E0 as shown in Fig. 3.

From Fig. 3, we see that as the frequency and amplitude of the laser field increase, in 
the case of degenerate electron gas, the rate of increase of phonon increases.

In conclusion, we have analytically investigated the possibility of phonon amplification 
by absorption of laser field energy in a SQW with parabolic potential well in the case of 
multiphoton absorption process with non-degenerative and degenerative electron system. 
Starting from bulk phonon assumption and Hamiltonian of the electron–phonon system 
in laser field we have derived a quantum kinetic equation for phonon in SQW. However, 
an analytical solution to the equation can only be obtained within some limitations. Using 
these limitations for simplicity, we have obtained expressions of the rate of acoustic pho-
non excitation in the case of multiphoton absorption process. Finally, the expressions 
are numerically calculated and plotted for a SQW to show the mechanism of the phonon 
amplification. Similar to the mechanism pointed out by several authors for different mod-
els, phonon amplification in a SQW can occur under the conditions that the amplitude of 
the external laser field is higher than some threshold amplitude as the condition of the 
Cerenkov.

Fig. 3  Dependence of phonon 
rate increase on laser field 
frequency Ω and laser field 
amplitude, at wave number 
q = 2 ×  108  m−1
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