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A B S T R A C T   

In this paper, the exchange field effects are theoretically investigated to generate the mass in ferromagnetic/ 
topological crystalline insulator SnTe heterostructure. The Dirac theory of exchange field-induced system pre-
dicts the anisotropic gaps in both low- and high-energy regimes. At small momenta, the group velocity is 
anisotropic, coinciding with orientation-dependent Fermi velocities, however; it increases (decreases) when the 
magnetization vector is parallel (antiparallel) to the host spin direction. Further, we found that the effective mass 
is anisotropic as well and y-direction is responsible for the heavy-mass band around Dirac points. Moreover, the 
proximity coupling leads to the switching of the effective mass sign at small momenta due to the band gap 
opening and concavity changing of bands. Additionally, a decreasing behavior for effective mass with exchange 
field strength is seen independently of the direction.   

1. Introduction 

Gapless phases in the band structure of novel quantum materials 
have attracted great interests in science and technology [1–15]. Theo-
retically and experimentally, such nontrivial band structures are 
discovered in the topological insulators (TIs), which are characterized 
by topological invariants [3–6,16,17]. The well-known topological in-
variants are the time-reversal symmetry Z2, chiral symmetry and the 
electron-hole symmetry. In such materials, topological features can be 
achieved from gapped bulk states and the metallic surface states 
[18–20]. In addition to this topological classification of band structures, 
crystal symmetries also lead to the topological features [18,19,21–23], 
which have been observed in topological crystalline insulators (TCIs). 

While in strong TIs, there is an odd number of gapless surface states, 
in TCIs with the crystal point-group symmetries, an even number of 
them appears [24]. The real head of TCIs is lead thin salt family realized 
by angle-resolved photoemission spectroscopy (ARPES); SnTe, 
Pb1− xSnxSe (x ≥ 0.2) and Pb1− xSnxTe (x ≥ 0.4) [21–23], in which the 
main and important physics of them originates from the reflection 
symmetry [19,21–23,35]. In these TCIs, two crystal faces including 
metallic gapless states have been reported both theoretically and 
experimentally; namely (111) and {(110),(001)} surface states. The 

discrepancies between the bulk Brillouin zone (BZ) and surface BZ (SBZ) 
in IV-VI semiconductors in reality demonstrate nice surface physics in 
SnTe and related alloys. For the crystal face (111), while the crystal face 
(001) contains four Dirac cones centered at non-time-reversal-invariant 
X1 and X2 points, four Dirac cones are centered at 
time-reversal-invariant Γ and M points on SBZ [19,22,23,36–38]. These 
SBZ points are the projected points of the bulk BZ {L1, L2, L3, L4} points. 
We focus on the crystal face (001) because it shows robust surface states. 

Another important difference between TCIs and TIs refers to the 
robustness of metallic states against the external perturbations, strong in 
TIs, while controllable in TCIs simply. For instance, physical external 
perturbations may engineer TCI phase and lead to topological phase 
transitions and to the reduction of spatial crystal symmetry [21,25–34]. 
Also, it has been found that a mechanical strain shifts the Dirac point 
positions and eventually leads to the band gap opening [30,31,39]. 
Furthermore, the time reversal symmetry breaking can happen in the 
presence of a magnetic dopant [40], leading to a gap opening at four 
Dirac points [21,41]. Additionally, applying a perpendicular electric 
field has introduced a topological transistors [32]. Recently, it has been 
reported that the electric field and staggered potential may tailor the 
electrical conductivity of TCI thin films [42,43]. Thus, recently, much 
attention has been focused on symmetry breaking in TCIs, resulting in 
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novel device applications. 
Recent theoretical research on the valleytronics on the surface of a 

TCI has shown that the proximity coupling to a ferromagnet opens the 
gap [44]. In other words, the gaps open in the presence of the mass term 
originating from the exchange magnetization with an exchange field. 
However, the fundamental electronic properties of the system in prox-
imity coupling a ferromagnet are left to be studied. In this paper, we 
investigate the proximity effects on the group velocity and effective 
mass of surface Dirac fermions in ferromagnetic/SnTe(001) hetero-
structure. Since each of the Dirac cones has a particular anisotropy, 
based on this, anisotropic group velocity and effective mass appear. We 

use the low-energy k
⃗
⋅p
⃗ 

model around X1 and X2 points in SBZ to describe 
the Dirac cones. 

The present paper is composed as follows. In Sec. 2, the effective k
⃗
⋅p
⃗ 

Hamiltonian of SnTe(001) massless Dirac fermions is introduced. Also, 
the proximity effect is investigated on the band gap of Dirac cones in 
both low- and high-energy regimes. In Sec. 3, the exchange field-induced 
group velocity is represented. In Sec. 4, we discuss the manipulated 
effective mass by the proximity effect. The remarkable results are 
summarized in Sec. 5. 

2. Theory and method 

First of all, we investigate the electronic band structure of the ex-
change field-induced SnTe(001). The theoretical Dirac-like Hamiltonian 

proposed for such states including momenta k
⃗
= (kx, ky) and the Fermi 

velocities v1 = 1.3 eV Å and v2 = 2.4 eV Å near both X1 and X2 points of 
the SBZ, respectively, is given by (ℏ = 1) [19,21–23,36,45]: 

ℋ̂X1 (k
⃗
) = v1kx σ̂y − v2ky σ̂x + nτ̂x + δσ̂y τ̂y +ℳz σ̂ z, (1a)  

ℋ̂X2 (k
⃗
) = v2kx σ̂y − v1ky σ̂x + nτ̂x + δσ̂x τ̂y +ℳz σ̂ z, (1b)  

where 
̂
σ⃗ = (σ̂x, σ̂y, σ̂z) and 

̂
τ⃗ = (τ̂x, τ̂y) are the Pauli matrices in spin and 

sublattice [cation and anion] space, respectively. To get into the 
experimental observations, an intervalley scattering at the lattice scale is 
introduced with two parameters n = 0.07 eV and δ = 0.026 eV [21,36]. 
The last term in both Hamiltonians represents the exchange magneti-
zation with the exchange field ℳz, which arises due to proximity 
coupling to the ferromagnet. 

These Hamiltonians are understood as follows. The transformation of 

ℋ̂X1 (k
⃗
)⇔ ℋ̂X2 (k

⃗
) is valid between them because of four-fold C4 discrete 

rotation symmetry described by σ̂x ↦→σ̂y, σ̂y ↦→ − σ̂x, kx↦→ky, and ky↦→ −

kx. This allows us to focus on one of them, here X1 point. To find the 
dispersion energy relation, we diagonalize the Hamiltonian. By this, we 
obtain 

ℰ
μ,ν
X1
(k

⃗
) = μ

̅̅̅̅̅̅̅̅̅

g(k
⃗
)

√

+ νh(k
⃗
), (2)  

with 

g(k
⃗
) = n2 + δ2 +ℳ2

z + v2
1k2

x + v2
2k2

y , (3a)  

h(k
⃗
) = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n2 + δ2)v2
1k2

x + n2
(

v2
2k2

y +ℳ2
z

)√

, (3b)  

where μ = + 1(− 1) and ν = + 1(− 1) refer to the conduction (valence) 
band and Λx (Λx

′) point, respectively [see Fig. 1]. 
Let us assume n = 0, δ = 0 and ℳz = 0. Immediately, one obtains 

ℰ
μ
X1
(k

⃗
) = μ(v2

1k2
x + v2

2k2
y)

1/2 
[if one sets v2 = v1 it is similar to the 

Fig. 1. Electronic band structure of Dirac fermions of the SnTe(001) in the vicinity of the X1 point along (a) x- and (b) y-direction. Gapless and gapped phase along x- 
and y-direction introduce an anisotropy feature. In (a), the exchange fields with different strengths ℳz = 0.02 eV and 0.04 eV convert two massless Dirac points 
Λx = (+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1,0) and Λ′

x = (−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1,0) to massive ones as well as shift their position to the lower momenta. In (b), two saddle points S1 = (0, + n/v2) 

and S2 = (0, − n/v2) with energies ± δ are shifting slightly to the lower momenta as well. Also, the gap opens at Dirac cones at k
⃗
= 0 with energies ℰ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
. 
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graphene dispersion energy]. This, in turn, means that two copies of 
Dirac cones appear at the Fermi level ℰ = 0 and there is no separation 
between them. The parameter n shifts two copies of Dirac cones to cross 
another one. Switching on δ separates the Dirac cones, resulting in the 
band structure shown in Fig. 1(a). Thus, Dirac cones appear at 
Λx = (+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1, 0) and Λ′

x = (−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1, 0) points. Further, 

at k
⃗
= 0, energies ℰ = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
appear. At kx = 0, two saddle points S1 

= (0, + n/v2) and S2 = (0, − n/v2) come up along the y direction, con-
firming the anisotropy property around X1 point. These saddle points 
correspond to a Lifshitz transition at energies ℰ = ±δ [21,24,25,30,31]. 

The electronic band structure of exchange field-induced Dirac fer-
mions in SnTe(001) along the x- and y-direction is plotted in Fig. 1(a) 
and (b), respectively. When the exchange field is present, i.e. ℳz = 0.02 
eV and 0.04 eV [there is no physical reason behind these values, how-
ever, we intend to set the exchange field strength comparable with and 
close to the intervalley scattering parameters n and δ such that our re-
sults are valid for the applied models], two new kx points slightly away 
from Λx and Λ′

x emerge with a gap [see blue and red bands in Fig. 1(a)]. 
Thus, the system is not gapless in the proximity coupling to the ferro-
magnet and Dirac fermions on the SnTe(001) surface are massive, 
beneficial for the topological optoelectronics. However, since the system 
along the y-direction is gapped inherently with the value of 2 δ, the gap 
size does not change significantly with ℳz, but the saddle points shift to 
the lower momenta. So far for the low-energy behaviors, however; for 
the high-energy crossed bands, a direction-independent gap opens, 
which increases with increasing exchange field strength. Although this 
figure is nice to deduce the physics of proximity coupling effects, to 
order its effect systematically, the energy gap of both low- and high- 
energy Dirac points as a function of ℳz are plotted in the next figure. 

The direction-independent band gap of high-energy Dirac points is 
zero for ℳz = 0 eV. This is also the case for Dirac cones at low-energy 
along the x-direction only, while along the y-direction, the energy gap 
is 2 δ, as explained before. All these are confirmed in Fig. 2. Therefore, 

ℰhigh− energy
g is the energy gap corresponding to the Dirac cones at k

⃗
= 0, 

while ℰlow− energy
g is the energy gap of Dirac cones at Λx and Λ′

x as well as 
saddle points at S1 and S2 points. The magnitude of the low-energy gap 
increases with ℳz along the x-direction and it is symmetric concerning 
the sign of ferromagnet magnetization (the direction of the magnetiza-
tion vector), while the gap remains unchanged along y-direction up to 
ℳz = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
. Unless noted otherwise we take − 0.1 eV ≤ ℳz ≤ +

0.1 eV. So, there is an anisotropy property up to this critical exchange 

potential. Interestingly, the low-energy gaps become isotropic for ℳz <

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
and ℳz > +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
and both directions get the same gaps. 

However, this is not the case for high-energy gaps. They increase with 
the exchange field and are almost anisotropic for ℳz ∈ [− 0.1,+0.1] eV. 
There are two more points, where the gaps are the same. First, the point 
ℳz ≃ ±3δ/2 in which the high-energy gap along the x-direction be-
comes the same as the low-energy gap along the y-direction. Second, the 
point ℳz ≃ ±(2 δ+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
)/2 for which the low- and high-energy 

gaps along y-direction show the same values. These reconfirm the 
anisotropy feature of the system. 

It should be pointed out that we restrict ourselves to the conduction 
bands of the band structure only in the following, since there exists 
electron-hole symmetry. From this point, blue and red curves in 
Figs. 3–6 show the lower and upper conduction band behaviors for the 
energy range 0 < ℰ ≤ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
and ℰ ≥ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
, respectively. 

3. Group velocity calculations 

To understand the electronic transport phenomena in TCIs in the 

proximity coupling to a ferromagnet, Bloch waves with wave vectors k
⃗ 

are needed [46,47], which needs fundamental group velocity. Here, we 
focus on this quantity and derive its analytical expression which is 
strongly momentum-dependent. Ad well-known, dispersive wave packet 
are built from the Bloch waves, describing by the group velocity. It is 

generally calculated through the relation vμ,ν
α (k

⃗
) = ∂kαℰ

μ,ν
X1
(k

⃗
), where μ =

+ 1 and ν = + 1 (− 1) refer to the conduction band and lower (upper) 

conduction band, respectively. Substituting Eq. (2) into vμ,ν
α (k

⃗
) =

∂kαℰ
μ,ν
X1
(k

⃗
) leads to 

vμ,ν
x (k

⃗
) =

v2
1kx

ℰ
μ,ν
X (k

⃗
)

(

1 + 2ν n2 + δ2

h(k
⃗
)

)

, vμ,ν
y (k

⃗
) =

v2
2ky

ℰ
μ,ν
X (k

⃗
)

(

1 + 2ν n2

h(k
⃗
)

)

(4)  

Near and away from the Dirac points at kx = ky = 0, vx and vy behave 
differently for both lower and upper conduction bands, coinciding with 
the v1 and v2, respectively. It is clear that the intervalley scattering pa-
rameters n and δ play important roles in the real-space motion of fer-
mions. If we assume that n = 0, δ = 0 and ℳz = 0, we obtain 

vμ
x(k

⃗
) = v2

1kx/μ(v2
1k2

x + v2
2k2

y)
1/2 

and vμ
y(k

⃗
) = v2

2ky/μ(v2
1k2

x + v2
2k2

y)
1/2

. If we 

Fig. 2. Low- and high-energy gap of surface fermions 
in TCI SnTe(001) as a function of exchange field ℳz. 
The solid blue (dashed red) curve is for the x (y) di-
rection. In the absence of ℳz, the high-energy gaps 
are zero in both directions, while the low-energy gap 
is zero and 2 δ along the x- and y- direction, respec-
tively. Both low- and high-energy gaps are modulated 
with the exchange field. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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switch on n and δ only, not ℳz, we have 

vν
x(kx)

=
v1

ℰν
X(kx, 0)

(
v1 kx + ν

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√ )
, vν

y(ky)

=
v2

ℰν
X(0, ky)

(
v2 ky + νn

)

(5)  

The direction-dependent group velocity of Dirac fermions is plotted in 

Fig. 3 without and with proximity coupling. Fig. 3(a) illustrates that in 
the absence of exchange field, ℳz = 0 eV, the group velocity of upper 
conduction band [solid red curves] along the x-direction is + v1 (− v1) for 
the momenta kx ≥ 0 (kx ≤ 0), while the group velocity of the lower 
conduction band [solid blue curves] is + v1 (− v1) for the range of 
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 < kx ≤ 0 (0≤ kx <+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1) and at kx =

±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1, it is zero. These trends can be confirmed by the slope of 

the bands in Fig. 1 because from zero to the Dirac points as well as after 
the Dirac points opposite slopes can be seen for the lower conduction 

Fig. 3. The group velocity of Dirac fermions in gapless and gapped SnTe(001) 
TCI along the (a) x- and (b) y-direction. The Fermi velocities and critical 
momenta corresponding to the Dirac points and saddle points are labeled in 
the axes. 

Fig. 4. group velocity of surface fermions in SnTe(001) as a function of ex-
change field ℳz along both the x- and y-direction. For the x-direction, we fix ky 

= 0 and kx = +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 and for the y-direction we fix kx = 0 and ky = +

n/v2. 

Fig. 5. Effective mass of surface massless and massive Dirac fermions in SnTe 
(001) TCI along the (a) x- and (b) y-direction. 

Fig. 6. Effective mass of Dirac fermions in SnTe(001) as a function of exchange 
field ℳz along both x- and y-direction. For the x-direction, we fix ky = 0 and 
kx = +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 and for the y-direction we fix kx = 0 and ky = + n/v2. 
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band. And opposite slopes from zero to the Dirac points and after them 
are evident for the upper conduction band as well. Similarly, Fig. 3(b) 
shows that for ℳz = 0 eV, for the momentum ky < − n/v2 and ky > + n/ 
v2, the group velocity of Dirac fermions along the y-direction is − v2 and 
+ v2, respectively for the upper conduction band (the red curves). 
However, it is slightly away from these Fermi velocities when the mo-
mentum takes the value in the range of − n/v2 ≤ ky ≤ 0 and 0 ≤ ky ≤+ n/ 
v2, due to the parabolic bands at saddle points. It is expected from Fig. 1 
that vy for the lower conduction band is zero at saddle points ky = ±n/v2 
[see blue curves]. Interestingly, the curves approach the Fermi veloc-
ities ± v2 before and after these saddle points. So, no significant change 
can be observed in the group velocity of upper conduction band, 
implying that at kx = 0 Dirac fermions have the same velocities, inde-
pendent of the ky momentum, while the lower band of the conduction 
band (blue band) changes significantly with ± ky. 

Let us turn to the presence of the exchange field ℳz. For non-zero 
exchange fields, we again have Eq. (4) for group velocity along the x- 
and y-direction, respectively. Two exchange fields 0.02 eV and 0.04 eV 
are examined to understand the proximity coupling effects on vx and vy. 
We see that the directions of the velocities are not identical if the sign of 
momenta switches as well as the continuous group velocities come up in 
contrast to the discrete group velocities in the pristine case. In Fig. 3(a), 
the velocities for the lower conduction band are not zero at Dirac points 
for ℳz ∕= 0 because of the band gap opening in the band structure, 
which leads to the extrema with vx∕= ± v1. For the upper conduction 
band, the same behaviors appear without extrema. However, the group 
velocity of conduction bands converges to the ± v1 at high momenta, in 
agreement with Fig. 1. As for the y-direction, the group velocity versus ky 
indicates the same curves, as illustrated in Fig. 3(b). There are still two 
extrema ky-points for the lower conduction band, but in different co-
ordinates, for which the group velocity is close to ± v2. Also, vy is not 
zero at saddle points due to the shifted ky [see Fig. 1]. As expected, the 
upper conduction band should behave as the x-direction because of the 
same opening band gap trends discussed before. 

It is a fact that the magnitudes of the group velocity of conduction 
bands depend on the exchange field strength. Let us to systematically 
study v1x, v2x, v1y, and v2y, respectively, corresponding to the lower 
conduction band, upper conduction band along the x-direction, lower 
conduction band, and upper conduction band along the y-direction as a 
function of ℳz. To do so, ky = 0 and kx = +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 as well as kx =

0 and ky = + n/v2 are considered along the x- and y-direction, respec-
tively. We illustrate them in Fig. 4. The group velocities are found to 
exhibit opposite behaviors when the magnetization vector of the ferro-
magnet is parallel or antiparallel to the host spin directions, which 
corresponds to the sign of ℳz; + for parallel magnetization and − for 
antiparallel one. In the absence of proximity coupling, ℳz = 0, as ex-
pected from Fig. 3, both v1x and v1y are zero while v2x =+ v1 and v2y =+

v2. Once the proximity coupling is considered, {v1x, v1y} ({v2x, v2y}) 
increase (decrease) with ℳz > 0 (ℳz < 0). However, it is necessary to 
report that after the critical exchange fields ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
, the group ve-

locity of lower conduction bands along both directions starts to decrease 
slightly. 

4. Effective mass calculations 

It is the time to study the concept of effective mass, which has many 
different definitions [48–51]. In a nutshell, to understand the funda-
mental electro-optical properties of a system, effective mass comes into 
play role. However, to design and develop the heterostructured ferro-
magnet/SnTe(001), the synergy of effective mass in quantum transport 
of the system is needed to be investigated and has not been reported to 

date. It is common to use the second derivative of ℰμ,ν
X1
(k

⃗
) along the α ∈{x, 

y} direction, 1/m*μ,ν

α (k
⃗
) = ∂2

kα
ℰ

μ,ν
X1
(k

⃗
). Substituting Eq. (2) into the above 

equation leads to the following expression along the x-direction 

1

m*μ,ν

x (k
⃗
)
= −

v4
1k2

x
[
ℰ

μ,ν
X (k

⃗
)
]3

(

1 − 2ν n2 + δ2

h(k
⃗
)

)2

−
v2

1

ℰ
μ,ν
X (k

⃗
)

(

1 + 8ν
v2

1k2
x

(
n2 + δ2)2

h3(k
⃗
)

− 2ν n2 + δ2

h(k
⃗
)

)

,

(6)  

as well as along the y-direction, we obtain 

1

m*μ,ν
y (k

⃗
)

=

−
v4

2k2
y

[
ℰ

μ,ν
X (k

⃗
)
]3

(

1 − 2ν n2

h(k
⃗
)

)2

−
v2

2

ℰ
μ,ν
X (k

⃗
)

(

1+ 8ν
v2

2k2
y n4

h3(k
⃗
)

− 2ν n2

h(k
⃗
)

)

(7)  

Since the electron-hole symmetry is present, similar to the group ve-
locity case, herein we focus on the conduction bands only. Again, 1/m∗

x 
and 1/m∗

y are anisotropic and the intervalley scattering parameters n and 
δ play key roles in the effective mass of fermions. If we assume that n = 0, 
δ = 0 and ℳz = 0, we obtain 

1/m*μ

x (k
⃗
) = − (v2

1 /ℰ
μ
X(k

⃗
))[1+(v2

1k2
x /ℰ

2,μ
X (k

⃗
))] and 1/m*μ

y (k
⃗
) = −

(v2
2 /ℰ

μ
X(k

⃗
))[1 + (v2

2k2
y /ℰ

2,μ
X (k

⃗
))]. 

Let us explain the physical meaning of the effective mass. Theoreti-
cally, the concavity up and down of bands can be understood from the 
sign of effective mass. On the one hand, the concavity of energy bands in 
the band structure determines the degeneracy of them in the density of 
states diagram. On the other hand, the concavity of a band demonstrates 
the EM of fermions in the band with a special wave-vector. As can be 
seen in Fig. 1, one finds m∗

x < m∗
y [the heavy (light)-mass along the y (x)- 

direction] for the lower conduction bands should be valid independent 
of the momenta or exchange field ℳz, implying that the energy sepa-
ration between band edges along the y-direction is considerably greater 
than the x-direction. 

The results are plotted in Fig. 5(a) and (b) for two typical wave- 
vectors ky = 0 and kx = 0. Let us assume that ℳz = 0 eV. In this case, 
Eq. (6) gives rise to two singularities at Dirac points as well as Eq. (7) 
shows two humps at saddle points. Similar to the group velocity, for kx 
= ky = 0 values, the effective mass of both conduction bands along each 
direction is isotropic, while for non-zero momenta, 1/m∗

x of the lower 

conduction band [solid blue curve] increases up to kx = |
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
| and 

decreases after that. However, 1/m∗
x of the upper conduction band [solid 

red curve] decreases with kx [see Fig. 5(a)]. The maximum value of 
effective mass takes place at kx = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 along the x-direction 

for the lower conduction band, whilst it is (on average) the case at ky =

±n/v2 for effective mass along the y-direction. 
Let us focus on the exchange field-induced effective mass of surface 

Dirac fermions in SnTe(001). We analyze the particular cases of ex-
change fields 0.02 eV and 0.04 eV along both x- and y-direction, as 
shown in Fig. 5(a) and (b). It can be observed from Fig. 5(a) that when 
ℳz appears, the positive 1/m∗

x of the lower conduction band decreases 
with exchange field at Dirac points with a factor of 250 due to the band 
gap opening and becomes negative at kx = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/4v1 and kx = ±

3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/8v1 for ℳz = 0.02 eV and 0.04 eV, respectively. This can be 

understood from the concavity of curves at small momenta in the band 
structure easily. Such effective mass sign switching does not occur for 
the upper conduction band [see red curves] and the effective mass is 
positive for both exchange fields. However, in contrast to the lower 
conduction band, 1/m∗

x of the upper conduction band increases first with 
a factor of 2 and then comes back to close to the initial concavity when 
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ℳz becomes stronger [see the inset panel in Fig. 5(a)]. 
For the Fig. 5(b), which describes the 1/m∗

y versus ky at kx = 0, the 
effects caused by the proximity coupling in the effective mass are 
different than the one along the x-direction because of the inherent 
anisotropy feature in SnTe(001) Dirac cones. The trend is decreasing for 
lower conduction band with a factor of 0.5 and again the effective mass 
sign changes with exchange field 0.02 eV and 0.04 eV at ky =±n/4v2 and 
ky =±3n/8v2, respectively. Interestingly, the effective mass of the upper 
conduction band does not show any sign switching with the exchange 
field ℳz and increases with the exchange field first with a factor of 2 and 
gets the initial value as the proximity coupling is increased. The changes 
are for the small momenta and for large momenta, the effective masses 
behave similarly independent of the exchange field strength. 

The systematic study of 1/m∗
1x, 1/m∗

2x, 1/m∗
1y, and 1/m∗

2y corre-
sponding to the lower conduction band, upper conduction band along 
the x-direction, lower conduction band, and upper conduction band 
along the y-direction, respectively, as a function of ℳz is plotted in 
Fig. 6. It is clear from Fig. 6 that m∗

1x has the minimum value (because 1/

m∗
1x has the maximum value) at ky = 0 and kx = +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + δ2

√
/v1 and 

decreases with |ℳz|, while m∗
2x possesses the maximum value (because 

1/m∗
2x has the minimum value) and it is almost constant and indepen-

dent of the exchange field strength. The most dramatic sign of the upper 
conduction band is that the behavior near the neutrality point changes 
with a few orders of magnitude difference when the ferromagnet is in 
the proximity with SnTe(001) surface. This is the same for the y-direc-
tion, meaning that both conduction bands along the y-direction decrease 
with the exchange field with a symmetry property. 

5. Summary 

In summary, the proximity effects in a ferromagnet/SnTe(001) het-
erostructure on the surface Dirac fermions protected by the mirror 

symmetry have been investigated. The surface allows the use of k
⃗
⋅p
⃗ 

theory and traditional semi-classical approach. We have obtained the 
exchange field-dependence of the band gap, group velocity and effective 
mass. In their evaluation, we have incorporated effects from momentum 
and intervalley scattering processes. Our findings indicated that the 
electronic properties including the electronic band structure, group ve-
locity and effective mass are anisotropic. We found that while the 
induced exchange field does suppress the TCI phase, the band gap opens. 
In addition, we found that while the exchange field-induced group ve-
locity and effective mass may be enhanced near the Dirac points and 
saddle points along the x- and y-direction, respectively, they can be 
tuned through the magnetization direction and module with the sym-
metry feature. Our work reveals an interesting link between proximity 
effect and topological features to heterostructures based on TCI and may 
find applications in topological optoelectronics. 
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