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A B S T R A C T

Rashba effect has become important in the realization of exotic topological features. Herein, we theoretically investigate the Rashba spin–orbit coupling (RSOC)
effects on the dispersion energy, group velocity (GV) and effective mass (EM) of Dirac fermions in the topological crystalline insulator SnTe (001) surface. We
found that different classes of RSOCs do not change the qualitative behavior of the band structure; its main effect is to break the symmetry of the gapless
bands down to a group of discrete rotations and to slightly shift the phase boundaries. Moreover, the inherent anisotropic surface features hold with RSOC. The
modulation mechanism of RSOC effects is further analyzed from the orientation-dependent GV and EM at different RSOC values. It is found that the GV and EM
of fermions are band-dependent and symmetric concerning the RSOC sign, which plays a decisive role in modifying the optical properties. Our study provides
new insight into the designing nanodevices for electric-field-controllable topological electronics.

1. Introduction

The recent discovery of gapless critical phases in novel quantum ma-
terials, so-called topological insulators (TIs) has revived interest both
theoretically and experimentally in the band topology of insulators [1–
10]. The first gapless states in 2D materials have been observed in
graphene [pristine state], silicene and related group-IV materials [in
the presence of electric field equal to the intrinsic spin–orbit coupling],
etc [11–22]. In 2011, Fu [23] extended the topological classification of
band structures to include certain spatial symmetries in addition to the
time-reversal symmetry, particle–hole symmetry and chiral symmetry
in TIs [1–4,24,25]. The new class is called topological crystalline insu-
lators (TCIs), which have metallic surface states with quadratic band
degeneracy on high symmetry crystal surfaces. An insulating bulk and
metallic surface states determine the novel topological features in both
TCIs and TIs.

The comparison between TIs and TCIs shows that a common TI
supports an odd number of metallic surface states, while a TCI has
an even number of surface states. On the other hand, TI surface
states are robust enough against the external perturbations, while
TCI metallic surface states can be tuned easily by various types of
perturbations [26], implying that the physical features of TCI can be
easily controlled. The first search for fascinating features of TCIs in
real materials was measurable in experimental observations by angle-
resolved photoemission spectroscopy (ARPES), which reported a lead
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thin salt family in IV-VI semiconductors mainly SnTe, Pb1−𝑥Sn𝑥Se (𝑥 ≥
0.2) and Pb1−𝑥Sn𝑥Te (𝑥 ≥ 0.4) [27–29]. Reflection symmetry is the
origin of the non-trivial topology of electronic bands in these TCIs [27–
31]. However, reduction of spatial crystal symmetry is in challenge [27,
32–39].

Recently, much attention has been focused on the effect of the
Rashba spin–orbit coupling (RSOC) in low-dimensional topological and
non-topological materials [40–44], which it has been established that
the RSOC can be controlled through a gate voltage [45–48]. By this, in
turn, one can control the band gap externally by applying an electric
field. The Rashba induced effects by the gate voltage or electric field
act as mirror symmetry breaking terms. As a result of this crystal
symmetry breaking, the edge states disappear in the presence of the
external Rashba effect, introducing a topological transistor with tunable
ON and OFF states [37]. Although there are two types of metallic
gapless states in TCIs, (111) and {(110), (001)} surface states, we
are interested in the (001) one, since it has been observed exper-
imentally a lot as well as confirmed theoretically [49–60]. On the
SnTe/Pb1−𝑥Sn𝑥Se/Pb1−𝑥Sn𝑥Te (001) surface states, four robust Dirac
cones are centered at mirror-symmetry-invariant 𝑋 and 𝑌 points [28–
30,49,61,62].

Thus, IV–VI semiconductors are extremely versatile platforms for
novel topological device applications, however; the investigation of
fundamental physical properties of Dirac fermions on the SnTe (001)
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surface in the presence of RSOC is still of great interest. In this paper,
we study the group velocity and effective mass quantities, in which the
Rashba effects on their evolution have not been reported well theoret-
ically to date. Since both the electronic properties of semiconductors
and thermoelectrics, in particular, are typically understood using band
models, transport is then understood in terms of band expressions
with a varying group velocity and effective mass. For this reason, it
is expected to have new physical insights when the Rashba effects
are considered in real transport. One may ask that why RSOC? The
answer can be understood from the fact that the magnetic field and
the exchange field are hard to control precisely, while a precise control
of the electric field is possible within current techniques [43,44].

The rest of the paper is organized as follows. In Section 2, we review
the effective �⃗� ⋅ 𝑝 Hamiltonian model of SnTe (001) surface states for
the momenta projected to the surface BZ (SBZ) in the absence and
presence of RSOC. Two-dimensional (2D) and three-dimensional (3D)
band structures are also printed in this section to discuss the alterations
of RSOC-dependent bands. The ‘‘Rashba-induced’’ group velocity (GV)
and effective mass (EM) calculations are presented in Sections 3 and 4.
We use the traditional semi-classical approach by associating particles
with wave-packets to calculate these transport properties. In Section 5
the paper is summarized.

2. Theory

2.1. Model Hamiltonian

The surface states of the SnTe (001) TCI and related alloys around
the 𝑋 and 𝑌 point can be described by the effective 2D Hamiltonian,
respectively, [28–30]

̂0
𝑋 (�⃗�) =𝜂1𝑘𝑥�̂�𝑦 − 𝜂2𝑘𝑦�̂�𝑥 + 𝑛𝜏𝑥 + 𝛿�̂�𝑦𝜏𝑦 , (1a)

̂0
𝑌 (�⃗�) =𝜂2𝑘𝑥�̂�𝑦 − 𝜂1𝑘𝑦�̂�𝑥 + 𝑛𝜏𝑥 + 𝛿�̂�𝑥𝜏𝑦 , (1b)

where ̂⃗𝜎 = (�̂�𝑥, �̂�𝑦) and ̂⃗𝜏 = (𝜏𝑥, 𝜏𝑦) are the Pauli matrices in spin
and surface space (pseudospin describing the cation–anion degree of
freedom), respectively, 𝜂1 = 1.3 eVÅ and 𝜂2 = 2.4 eVÅ are typical
values obtained from numerical ab initio computations [27,49,63], and
two parameters 𝑛 = 70 meV and 𝛿 = 26 meV are the intervalley
scattering at the lattice scale [27]. We have set the physical constant
ℏ = 1 for simplicity. Note that the model is the same for SnTe (001)
surface and related alloys, not all IV-VI semiconductors. However, the
Fermi velocities 𝜂1 and 𝜂2 are not the same in all of the alloys and
should be fitted numerically to the experimental or DFT theoretical
works on each compound.

Using the replacements �̂�𝑥 ↦ �̂�𝑦, �̂�𝑦 ↦ −�̂�𝑥, 𝑘𝑥 ↦ 𝑘𝑦, and 𝑘𝑦 ↦ −𝑘𝑥
in Eq. (1a), Eq. (1b) can be obtained. This reminds the four-fold 𝐶4
discrete rotation symmetry and allows us to focus on one of them
only. Here, we will consider 𝑋 point. As well-known, via diagonalizing
the Hamiltonian in Eq. (1a), the direction-dependent dispersion energy
relation of four gapless surface states can be easily obtained as

0𝜇,𝜈
𝑋 (�⃗�) = 𝜇

√

2 + 𝜂21𝑘
2
𝑥 + 𝜂22𝑘

2
𝑦 + 2𝜈

√

2𝜂21𝑘
2
𝑥 + 𝑛2𝜂22𝑘

2
𝑦 , (2)

where 2 = 𝑛2 + 𝛿2 is the reduced intervalley scattering parameter.
𝜇 = +(−) and 𝜈 = +(−) refer to the conduction (valence) band and
Dirac point 𝛬𝑥 (𝛬′

𝑥) point, respectively.
A schematic contour plot of the SBZ for different Fermi surface

energies is depicted in Fig. 1. In this figure, the horizontal and vertical
dashed line shows the wave-vectors 𝑘𝑥 and 𝑘𝑦, respectively, which are
tunable parameters of the system. Consider the right panel for wave
pockets around the 𝑋 point. At 𝑘𝑥 = 𝑘𝑦 = 0 coordinate, i.e. exactly the
position of 𝑋 point, fermions have the energies  = ± , while at  = 0,
the points 𝛬𝑥 = (+∕𝜂1, 0) and 𝛬′

𝑥 = (−∕𝜂1, 0) appear, i.e. two Dirac
points characterizing the metallic gapless SnTe (001) surface states. In
addition to these points, at 𝑘𝑥 = 0, two saddle points 𝑆1 = (0,+𝑛∕𝜂2)

Fig. 1. (Color online) Bounded isoenergy SBZs by the 𝑋∕𝑌 points. Low-energy Dirac
cones, i.e. metallic gapless SnTe (001) surface states, are located at {𝛬𝑥, 𝛬′

𝑥} and {𝛬𝑦,
𝛬′

𝑦} points near the 𝑋 and 𝑌 point, respectively. The horizontal (vertical) dashed line
shows the wave-vector 𝑘𝑥 (𝑘𝑦). Two disconnected electron pockets at low-energy suffer
from a Lifshitz transition at energy  = ±𝛿 = ±26 meV, leading to two saddle points
𝑆1 and 𝑆2.

and 𝑆2 = (0,−𝑛∕𝜂2) along the 𝑦 direction are appeared. Moreover,
the touched orange colors show the criteria that two disconnected
electronic wave pockets suffer from a Fermi surface shape change,
so-called the Lifshitz transition [a change in the topology of a Fermi
surface, which involve the appearance of zeros in the energy spectrum
of a many-body fermion system, excluding the normal Fermi surface, of
course] at energy  = ±𝛿 = ±26 meV. For the contribution of bands to
these spatial distributions, one can look at the band dispersions directly.

2.2. Rashba spin–orbit coupling effects on the dispersion energy of Dirac
fermions on the SnTe (001) surface

In this subsection, we introduce the RSOC Hamiltonian. Experimen-
tally, RSOC is inevitably introduced by gating. By considering the RSOC
term on the SnTe (001) surfaces, the Hamiltonian around the 𝑋 point
is modified to

̂𝑋 (�⃗�) = ̂0
𝑋 (�⃗�) + ̂RSOC(�⃗�) , (3)

The result of a combination of spin–orbit interaction and asymmetry
of the crystal is a momentum-dependent splitting of spin bands and
an inversion symmetry breaking perpendicular to the SnTe (001) sur-
face [64]. The RSOC term in the momentum space is given by [43,44]

̂RSOC (�⃗�) = 𝚒
∑

𝑙
𝜆𝑙

𝑁𝑙
∑

𝑛=1
�⃗� ⋅ 𝑑 𝑙

𝑛𝑒
𝚒𝑑 𝑙

𝑛 ⋅�⃗� , (4)

where 𝑑 𝑙
𝑛 = |𝑑 𝑙

𝑛 | (cos 𝑛 𝜋∕2, sin 𝑛 𝜋∕2) connects a pair of the 𝑙th-nearest
neighbor sites (between 𝑁𝑙 ones) in the real space and 𝜆𝑙 stands for the
corresponding RSOC strengths. The rotation angle 𝑛 𝜋∕2 is restricted to
the four-fold crystal group of the SnTe (001) surface symmetry. Since
the SnTe (001) surface is a squared lattice, we take the contributions of
the nearest-neighbor (𝑙 = 1) and next-nearest-neighbor (𝑙 = 2) sites into
account only. The coupling strengths 𝜆1 and 𝜆2 tune the quantum phase
of SnTe (001) surface states such as band gap opening [43,44,65,66].
By inserting this RSOC Hamiltonian into the Eq. (1a), in the vicinity
of 𝑋 point, the full model Hamiltonian of the present work can be
obtained. The best advantage of this RSOC model is that it can be easily
expanded to a triangular lattice with the 𝐶6 symmetry or even a square
lattice with the 𝐶2 symmetry.

Diagonalizing the RSOC-induced Hamiltonian results in the RSOC-
induced direction-dependent dispersion energy. We consider two cases
(i) 𝜆2 = 𝜆1 and (ii) 𝜆2 = −2𝜆1. Note that we considered all possible
configurations of these two RSOCs, but these two are the cases that
show almost the same behaviors as other cases. For this reason, we
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Fig. 2. (Color online) Schematic figure shows the dispersion of Dirac fermions on
the SnTe (001) surface near the 𝑋 point in the absence and presence of RSOC
(𝜆2 = 𝜆1 = 0.75 eV and 𝜆2 = −2𝜆1 = 1.0 eV) for (a) 𝑘𝑦 = 0, (b) 𝑘𝑥 = 0, (c) 3D
band structure for 𝜆2 = 𝜆1 = 0.75 eV along both 𝑥- and 𝑦-directions, (d) 𝑘𝑦 = +𝑛∕𝜂2,
(e) 𝑘𝑥 = +∕𝜂1, and (f) 3D band structure for 𝜆2 = −2𝜆1 = 1.0 eV along both 𝑥- and
𝑦-directions.

focus on these two only in the present paper. For the first case, we
obtain

𝜇,𝜈
𝑋 (�⃗�) = 𝜇

√

𝑓 (�⃗�) + 𝜈�̃�(�⃗�) , (5)

where 𝑓 (�⃗�) = 2+
(

𝜂21 + 4𝜆21
)

𝑘2𝑥+4 𝜆1
(

𝜂1 − 𝜂2
)

𝑘𝑥 𝑘𝑦+
(

𝜂22 + 4 𝜆21
)

𝑘2𝑦 and
�̃�(�⃗�) = 2

[

(

2 𝜂21 + 4 𝑛2 𝜆21
)

𝑘2𝑥 +
(

𝑛2 𝜂22 + 4 𝜆21 
2 𝑘2𝑦

)

+ 4 𝜆1
(

2𝜂1 − 𝑛2𝜂2
)

𝑘𝑥 𝑘𝑦
]1∕2

. As for the second case, we have the same relations by
substituting 2 𝜆1 ↦ 𝜆1 only.

The band structure diagram of pristine surface Dirac fermions in
SnTe (001) as well as in terms of these two different Rashba couplings
𝜆2 = 𝜆1 and 𝜆2 = −2𝜆1 are plotted in Fig. 2. Also, we have considered
four different momenta (a) 𝑘𝑦 = 0, (b) 𝑘𝑥 = 0, (c) 𝑘𝑦 = +𝑛𝑛∕𝜂2, and
(d) 𝑘𝑥 = +∕𝜂1. When the RSOC is absent, i.e. 𝜆2 = 𝜆1 = 0 eV,
energies  = ± appear at 𝑘𝑥 = 𝑘𝑦 = 0, while at 𝛬𝑥 = (+∕𝜂1, 0) and
𝛬′
𝑥 = (−∕𝜂1, 0), the Fermi surface is located at the energy  = 0 eV [see

solid black bands in Fig. 2(a)]. These two gapless points determine the
metallic phase of SnTe (001) surface states. However, in the presence
of RSOC, for the case of 𝜆2 = 𝜆1 = 0.75 eV, two new 𝑘𝑥 points with a
gapped phase emerge [see dashed blue bands in Fig. 2(a)]. Since the
coordinates of these new points are not the same with the pristine Dirac
points, one concludes that the Dirac cones are not in the same positions
anymore and there is a change in the spatial distribution wave-packets.
To this end, Fig. 2(c) shows that for 𝑘𝑦 = 0, the 𝛬𝑥 and 𝛬′

𝑥 points
shown in Fig. 1 are not at the pristine 𝑘𝑥 coordinates and the mirror
symmetry is broken absolutely. This implies that the rotational band
structure occurs, which is a characteristic fingerprint of the presence of
RSOC. For this reason, the system is not gapless in the presence of RSOC
and massive Dirac fermions on the SnTe (001) surface are responsible
for the system dynamics, beneficial for the topological optoelectronics.
This, in turn, alters the GV and EM of principle Dirac fermions, since
the slope and concavity of all bands change, which will be discussed
later in detail.

Physically point of view, the surface states projected by the bulk
states need to introduce a new surface orientation for the topological
Dirac cones because the Dirac cones are still there with new Cartesian
coordinates and great potential is evident for a direction-dependent
topological phase transition. Of course, the real strength of the RSOCs is
important for such a report, which has yet to be reported. For stronger
RSOCs, i.e. the case of 𝜆2 = −2𝜆1 = 1.0 eV [see dotted red bands in
Fig. 2(a)], smaller new 𝑘𝑥 appear but the gap size is increased with
RSOC, as expected from the dispersion energy relation Eq. (5). This
can be understood from the different rotational band structure than
the case of 𝜆2 = 𝜆1 = 0.75 eV, as demonstrated in Fig. 2(f). Also,
as a result of this, different GV and EMs are expected to appear in
these RSOCs compared to the previous same ones. We would like to
stress that the high-energy Dirac-like points with energies  = ± are
not changed both energetically and locally. Thus, the RSOC affects the
low-energy dynamics, not high-energy ones. As for the pure 𝑦-direction,
in Fig. 2(b), two points 𝑆1 = (0,+𝑛∕𝜂2) and 𝑆2 = (0,−𝑛∕𝜂2) occurs at
𝑘𝑥 = 0, which are those saddle points mentioned before, leading to the
Lifshitz transition at energy  = ±𝛿. When the RSOCs take the same
signs and the same absolute values, i.e. the first competition, we see
that the gap 2𝛿 decreases at new 𝑘𝑦 < |𝑆1∕2| points and the system
remains in its initial gapped phase. As the RSOC strength increases,
almost the same 𝑆1∕2 points appears, but Fig. 2(f) tells us that these
points are not the previous saddle points, however; the same slopes and
concavities along the 𝑦-direction as the saddle points emerge. It will be
confirmed later using the GV and EM plots.

Let us focus on non-pure directions, i.e. when 𝑘𝑦 ≠ 0 (𝑘𝑥 ≠ 0)
along the 𝑥-direction (𝑦-direction). As the main critical points for
topological features of surface Dirac fermions in SnTe (001), we have
set 𝑘𝑦 = +𝑛∕𝜂2 and 𝑘𝑥 = +∕𝜂1, respectively. Two weak saddle points
at 𝑘𝑥 = ±∕2𝜂1 with energies || < 𝛿 as well as one extremum
at 𝑘𝑥 = 0 with energies || = 𝛿 are observed in the case of 𝜆2 =
𝜆1 = 0 eV, as shown in Fig. 2(d). As soon as the RSOC is turned on,
one of the weak saddle points becomes stronger, resulting in mirror
symmetry breaking. The gap between these new saddle points in the
valence and conduction bands decreases with RSOC slightly. In this
case, the slope and concavity of bands change drastically compared
to the pure directions. Finally, the non-pure 𝑦-direction gives rise to
a massless-to-massive Dirac fermion transition, as the gap opens with
RSOC. However, as Fig. 2(e) shows, the Dirac cones are not located at
the same positions, confirming Fig. 2(a), (c) and (f). Note that in both
Fig. 2(d) and (e), the changes are shifted to the 𝑘𝑥 > 0 and 𝑘𝑦 > 0,
because of the choices 𝑘𝑦 > 0 and 𝑘𝑥 > 0, respectively.

3. RSOC-induced group velocity

Bloch electronic waves describe clearly the basic properties of elec-
tronic transport properties of a condensed matter system [67,68]. If we
consider wave vectors �⃗�, the 𝛼 ∈ {𝑥, 𝑦} component of the momenta-
dependent GV is the certain velocity of dispersive wave packets, given
by

𝑣𝜇,𝜈𝛼 (�⃗�) = 𝜕𝑘𝛼
𝜇,𝜈
𝑋 (�⃗�) , (6)

which is a first derivative of the dispersion energy concerning the 𝛼
component of the momentum. From this relation, the real-space motion
of the surface fermions in SnTe (001) can be easily obtained. Thus, by
substituting the respective dispersion energy into Eq. (8) we obtain the
GV components. However, we restrict ourselves to the pure directions
to study the RSOC effects on the GV along the 𝑥- and 𝑦-direction. By
this, for the case of 𝑘𝑦 = 0 and 𝑘𝑥 = 0, we obtain, respectively,

𝑣𝜇,𝜈𝑥 (𝑘𝑥) =
𝑘𝑥

𝜇,𝜈
𝑋 (𝑘𝑥)

⎛

⎜

⎜

⎜

⎝

4𝜆21 + 𝜂21 + 𝜈

√

2𝜂21 + 4 𝑛2 𝜆21
𝑘𝑥

⎞

⎟

⎟

⎟

⎠

, (7a)
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Fig. 3. (Color online) The RSOC-induced anisotropic group velocity of surface Dirac
fermion in topological crystalline insulator SnTe (001) for {(a),(b)} lowest conduction
band and {(c),(d)} highest conduction band.

𝑣𝜇,𝜈𝑦 (𝑘𝑦) =
𝑘𝑦

𝜇,𝜈
𝑋 (𝑘𝑦)

⎛

⎜

⎜

⎜

⎝

4𝜆21 + 𝜂22 + 𝜈

√

42𝜆21 + 𝑛2 𝜂22
𝑘𝑦

⎞

⎟

⎟

⎟

⎠

, (7b)

when 𝜆2 = 𝜆1 = 0.75 eV. The relations for the case of 𝜆2 = −2𝜆1 are the
same if one substitutes 2 𝜆1 ↦ 𝜆1 only. These orientation-dependent
equations help us to confirm our claim on the anisotropic transport
properties of SnTe (001) surface. Note that, at 𝑘𝑥 = 0 and/or 𝑘𝑦 = 0, the
energy 𝜇,𝜈

𝑋 (0, 0) is equal to ± in the presence of RSOC [see Fig. 2(a)
and (b)], and independent of the momentum. For this reason, 𝑣𝜇,𝜈𝑥 (𝑘𝑥, 0)
as well as 𝑣𝜇,𝜈𝑦 (0, 𝑘𝑦) are not zero because of the second momentum-
independent terms. However, for 𝑘𝑦 = +𝑛∕𝜂2 and/or 𝑘𝑥 = +∕𝜂1,
the energy 𝜇,𝜈

𝑋 (0, 0) is ±𝛿 and non-zero (depending on the competition
between 𝜆1 and 𝜆2), respectively [see Fig. 2(d) and (e)].

We begin the analysis with some notes on the plots in the following.
First, we will focus on the GV of two bands among four bands only,
since there is symmetry between the valence and conduction bands.
From this point, we divide the conduction band along the 𝑥-direction
into two subbands, one dispersing from  = 0 eV to  = + eV and
another one for  > + eV. For the 𝑦-direction, we have two subbands
as well dispersing from  = +𝛿 eV to  = + eV and  > + eV.
Thereby, the blue 𝑣1𝑥∕1𝑦 and red 𝑣2𝑥∕2𝑦 curves in the following stand
for the lowest and highest conduction subband, respectively.

In Fig. 3, we plot the orientation-dependent GV of Dirac fermions on
the SnTe (001) surface in the absence and presence of RSOCs. It should
be noted that the 𝑥-axis in all panels are half of the SBZ, i.e. −0.1 ≤
𝑘𝑥 ≤ 0 [Å−1] and 0 ≤ 𝑘𝑦 ≤ 0.1 [Å−1] in order to see clearly the changes
of the conduction bands with the RSOC. In this figure, we consider two
discussed RSOCs 𝜆2 = 𝜆1 = 0.75 eV as well as 𝜆2 = −2𝜆1 = 1.0 eV
only and will present a systematic study to cover all possible values of
competitions 𝜆2 = 𝜆1 ≠ 0 as well as 𝜆2 ≠ 𝜆1 ≠ 0 later. As mentioned
already, we set two pure directions for the velocities including 𝑘𝑦 = 0
and 𝑘𝑥 = 0 in Fig. 3{(a),(c)} and {(b),(d)} for the lowest and highest
conduction band, respectively. For 𝜆2 = 𝜆1 = 0 eV, we have the
GV 𝑣𝜈𝑥(𝑘𝑥) = 𝜂1

(

𝜂1 𝑘𝑥 + 𝜈
)

∕𝜈
𝑋 (𝑘𝑥, 0), leading to the black curves in

panels {(a),(c)} for the 𝑥-direction. At 𝑣𝑥 = ±𝜂1, the Dirac fermions
behave linearly with 𝑘𝑥 and at 𝑘𝑥 = ±∕𝜂1, it becomes zero. That can
be understood from the slope of surface gapless bands in Fig. 2 as well.
The negative and positive values of 𝑣1𝑥 and 𝑣2𝑥 refer to the direction
of spatial distribution of waves originating from the slope up or down
of the bands. However, once the RSOC is switched on with strengths
𝜆2 = 𝜆1 = 0.75 eV (the solid curves), the GVs decrease (increase) at
non-zero (zero) 𝑘𝑥, since the system is gapped with the gap of 1.5𝛿
[see dashed blue curves in Fig. 2(a)] and the slopes are far away from
the pristine bands. It is clear that the high-energy GV 𝑣2𝑥 should not
change significantly, since the Dirac-like bands with energies ± are

Fig. 4. (Color online) Anisotropic group velocity of surface Dirac fermion in topological
crystalline insulator SnTe (001) as a function of RSOC for (upper panels) 𝜆2 = 𝜆1 at (a)
{𝑘𝑦 = 0, 𝑘𝑥 = +∕𝜂1} and (b) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂2} and for (lower panels) 𝜆2 = −2𝜆1
at (c) {𝑘𝑦 = 0, 𝑘𝑥 = +∕𝜂1} and (d) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂2}.

not changed with RSOC, neither at non-zero nor zero 𝑘𝑥. Thereby, a
plateau for the case of 𝜆2 = −2𝜆1 = 1.0 eV is expected as well for 𝑣2𝑥,
while the gapped phase allows a stronger change for the 𝑣1𝑥 [see dashed
curves in Fig. 3{(a),(c)}]. As the dispersion energy bands say, the slopes
at non-zero and zero 𝑘𝑥 seem to be the same as the pristine case, leading
to 𝑣1𝑥 ≃ ±𝜂1.

Now, we turn to the 𝑦-direction GVs 𝑣1𝑦 and 𝑣2𝑦. For the case of
𝑘𝑥 = 0, i.e. Fig. 3(b), we obtain 𝑣𝜈𝑦(𝑘𝑦) = 𝜂2

(

𝜂2 𝑘𝑦 + 𝜈𝑛
)

∕𝜈
𝑋 (𝑘𝑦, 0). The

GV of pristine lower conduction band is zero at 𝑘𝑦 = +𝑛∕𝜂2 ≃ +0.03 and
opposite signs for 𝑣1𝑦 is expected to emerge before and after this critical
point, as confirmed in Fig. 3(b), however; for the upper conduction
band [Fig. 3(d)] a positive or negative sign for 𝑣2𝑦 appears with a
slightly increasing trend with 𝑘𝑦. Note that we cannot say anything
about the values of 𝑣2𝑦 at the critical momentum 𝑘𝑦 = +𝑛∕𝜂2 ≃ +0.03.
However, after this point, the plot shows almost a plateau with the
value of ≃ +𝜂2. That is also the case for the maximum value of 𝑣1𝑦.
For the RSOC-induced velocities, i.e. blue and red curves in Fig. 3(b)
and (d), 𝑣1𝑦 indicates a smaller 𝑘𝑦 for which it becomes zero with
the opposite signs before and after that but with smaller and larger
velocities, respectively, since the 𝑦-direction gap is decreased with 𝜆2 =
𝜆1 = 0.75 eV. The corresponding 𝑣2𝑦 also illustrate a different value
compared to the pristine case, but with the same slightly increasing
trend and the same sign. As the last analysis for this figure, the case of
𝜆2 = −2𝜆1 = 1.0 eV, as Fig. 2(b) says, both 𝑣1𝑦 and 𝑣2𝑦 should not show
any big differences in comparison with the pristine SnTe (001) surface,
as shown in red curves of Fig. 3(b) and (d).

Technically, the GVs as a systematic function of 𝜆1 and 𝜆2 at spacing
of 0.01 across both 𝜆2 = 𝜆1 and 𝜆2 = −2𝜆1. By this, we might as well
get everything beyond what explained before for only two cases. This
information will make the analysis much easier to construct the text.
For the case of 𝑘𝑦 = 0.0 and 𝑘𝑥 = +∕𝜂1, the GV versus 𝜆2 = 𝜆1
indicates a symmetric plot, as illustrated in Fig. 4(a). This stems from
the mirror symmetry of the dispersing branches of the band structure
at these coordinates. There are different behaviors for the conduction
bands when the RSOCs are not strong enough, while they converge and
become the same when RSOCs are strong. First of all, the zero and
non-zero (𝜂1) values of GV of the lowest and highest conduction band,
respectively, are observed at 𝜆2 = 𝜆1 = 0 eV. The GV of both bands
decreases with 𝜆2 = 𝜆1 < 0, whereas it increases with 𝜆2 = 𝜆1 > 0. While
from |𝜆2 = 𝜆1| = 1.5 eV to 1 eV there is no difference between the slope
of conduction bands, their slope becomes different from |𝜆2 = 𝜆1| =
1.0 eV to 0 eV significantly. At 𝑘𝑥 = 0 and 𝑘𝑦 = +𝑛∕𝜂2, while 𝑣𝑦 is
zero for blue conduction band at 𝜆2 = 𝜆1 = 0 eV, it is equal to 𝜂2 for
the red conduction band at the same RSOCs, as shown in Fig. 4(b). In
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contrast to the 𝑣𝑥, both conduction bands show different slopes over
the considered RSOC range. It is still a symmetric plot and shows a
decreasing and increasing behavior for 𝜆2 = 𝜆1 < 0 and 𝜆2 = 𝜆1 > 0,
respectively. From the curves of 𝑣𝑥 and 𝑣𝑦, it is clear that GVs are
anisotropic, which is the main message of the present work.

Let us turn to the second RSOCs configuration 𝜆2 = −2𝜆1. At first
glance, the GV values are reduced around one order of magnitude com-
pared to the previous case, leading to a bigger difference between the
GVs of lower and upper conduction bands, as represented in Fig. 4(c)
and (d). The anisotropic behavior for both 𝑣𝑥 and 𝑣𝑦 can be seen.
Also, the decreasing and increasing curves with 𝜆2 = −2𝜆1 < 0 and
𝜆2 = −2𝜆1 > 0 appear. Besides, neither in 𝑣𝑥 nor 𝑣𝑦, there are no
points for which the GVs are converged to the same values, in contrast
to Fig. 4(a). It is important to note that at low RSOCs, near 𝑘𝑥 ≠ 0 and
𝑘𝑦 = 0 as well as near 𝑘𝑦 ≠ 0 and 𝑘𝑥 = 0, 𝑣𝑥 and 𝑣𝑦 are isotropic for
both bands, coinciding with the 𝜂1 and 𝜂2, respectively. However, as
we add non-zero larger RSOCs to the Dirac cones (moving away from
the Dirac points), they are anisotropic. From these results, it is obvious
that RSOCs and directions should be considered in the calculations of
physical quantities since perturbation effects enhance these features.
As a quick comparison with the Dirac cones in graphene and other
2D systems, one stress that these results do not appear when the Dirac
theory is used only. By this, we mean that in the absence of intervalley
scattering parameters 𝑛 and 𝛿 and eventually  , the same behaviors
(but doubled) appear for SnTe (001) surface Dirac fermions.

4. RSOC-induced effective mass

Let us turn to another fundamental electronic transport property,
EM. It is expected to have the same trends for both pristine and RSOC-
induced EM as GV because the concavity of bands originates from
the slope of the bands. Similar to GV plots, we will focus on the EM
of two bands among four bands only as well with the same divided
energies described before. Thus, the blue 𝑚∗

1𝑥∕1𝑦 and red 𝑚∗
2𝑥∕2𝑦 curves

in the following stand for the lowest and highest conduction subband,
respectively. Studying EM is useful to understand the fundamental
electro-optical properties of materials, however, due to the long history
of a mass in physics, there are many different EM definitions [69–
72]. The mass term in an energy dispersion, leading to the band
gap opening, is necessary for the valley-selective optical absorption to
occur [73]. For the design and development of functional SnTe (001)
surface-based devices, one needs to address the EM of Dirac fermions.
In doing so, it is common to use an alternative definition, i.e. the
second derivative of the energy dispersion, which is generally energy
and momentum dependent. So, for the flavor 𝛼 ∈ {𝑥, 𝑦}, the EM can be
calculated straightforwardly

1
𝑚∗𝜇,𝜈
𝛼 (�⃗�)

= 𝜕2𝑘𝛼
𝜇,𝜈
𝑋1

(�⃗�) . (8)

Using the implicit second derivative of the Eq. (5), simply, the following
expressions can be derived for the pure 𝑥- and 𝑦-direction, respectively,

1
𝑚∗𝜇,𝜈
𝑥 (𝑘𝑥)

=

−
𝑘2𝑥

[

𝜇,𝜈
𝑋 (𝑘𝑥)

]3

(

𝜂21 + 4𝜆21 − 2𝜈
2𝜂21 + 4𝑛2𝜆21

𝑔(𝑘𝑥)

)2

− 1
𝜇,𝜈
𝑋 (𝑘𝑥)

⎛

⎜

⎜

⎝

𝜂21 + 4𝜆21 + 8𝜈
𝑘2𝑦

(

2𝜂21 + 4𝑛2𝜆21
)2

𝑔3(𝑘𝑥)

⎞

⎟

⎟

⎠

+ 1
𝜇,𝜈
𝑋 (𝑘𝑥)

(

2𝜈
2𝜂21 + 4𝑛2𝜆21

𝑔(𝑘𝑥)

)

, (9a)

1
𝑚∗𝜇,𝜈
𝑦 (𝑘𝑦)

=

Fig. 5. (Color online) The RSOC-induced anisotropic effective mass of surface Dirac
fermion in topological crystalline insulator SnTe (001) for {(a), (b)} lowest conduction
band and {(c), (d)} highest conduction band.

−
𝑘2𝑥

[

𝜇,𝜈
𝑋 (𝑘𝑦)

]3

(

𝜂21 + 4𝜆21 − 2𝜈
42𝜆21 + 𝑛2𝜂22

𝑔(𝑘𝑦)

)2

− 1
𝜇,𝜈
𝑋 (𝑘𝑦)

⎛

⎜

⎜

⎝

𝜂21 + 4𝜆21 + 8𝜈
𝑘2𝑦

(

42𝜆21 + 𝑛2𝜂22
)2

𝑔3(𝑘𝑦)

⎞

⎟

⎟

⎠

+ 1
𝜇,𝜈
𝑋 (𝑘𝑦)

(

2𝜈
42𝜆21 + 𝑛2𝜂22

𝑔(𝑘𝑦)

)

. (9b)

Similarly, for the case of 𝜆2 = −2𝜆1, by substituting 2 𝜆1 ↦ 𝜆1 in the
above equations, one achieves the corresponding EM relations.

The highlight may be an increase or decrease of the EM with
wave-vector or even the RSOC in the following. This is fundamentally
related to the degeneracy of bands, implying that the curvature of
energy bands characterizes the corresponding density of states. From
the pristine bands of Fig. 1, it seems that the energy separation between
band edges along the 𝑦-direction is considerably greater than the 𝑥-
direction, meaning that the principal band edge effective mass along
the 𝑥-direction is much smaller than the 𝑦-direction. This is confirmed
in Fig. 5 for which 1∕𝑚∗

𝑦 ≪ 1∕𝑚∗
𝑥 or 𝑚∗

𝑥 ≪ 𝑚∗
𝑦 independent of the

momenta. This, in turn, means that the state associated with the heavy-
mass band is related to the 𝑦-direction and the transport is faster
along the 𝑥-direction. However, this is the case for the pristine surface
and in the presence of RSOC, the value of 𝑚∗

𝑥 or 𝑚∗
𝑦 depends on the

magnitude of the RSOC. As the GV calculations, we choose the most
favorable configurations for 𝜆1 and 𝜆2. To estimate the role of RSOC,
we have performed numerical calculations for two constant cases first.
The resulting EMs are presented in Fig. 5.

Our results for (upper panels) the upper conduction band and (lower
panels) the lower conduction band are shown in Fig. 5(a), (b), (c),
and (d), respectively, for pure directions along the 𝑥- and 𝑦-direction.
Similar to the GV, for 𝑘𝑥 = 𝑘𝑦 = 0 values, the EM of both conduction
bands shows the same values and as expected EM along both directions
are isotopic. Again, the maximum value of EM in panel (a), i.e. when
𝑘𝑦 = 0, is taken place at 𝑘𝑥 = ±∕𝜂1, whilst it is the case (on average)
at 𝑘𝑦 = ±𝑛∕𝜂2 for EM in panel (b). Due to the curvature of the bands
at these critical momenta, a minimum and maximum EF was expected
clearly, as confirmed by the inverse of EMs in panels (a) and (b).
The most dramatic signature of the upper conduction band, detectable
in transport, is that the behavior near the neutrality point changes
with a few orders of magnitude difference when the same RSOCs are
considered, i.e. the solid blue and red curves. This means that the
EM of both conduction bands decreases with RSOC. Following this
decrease, the position of maximum EM is shifted forward or upward
depending on the RSOC magnitude. This is valid for both directions.
In contrast, the dashed curves correspond to the almost initial state
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Fig. 6. (Color online) Anisotropic effective mass of surface Dirac fermions in topolog-
ical crystalline insulator SnTe (001) as a function of RSOC for (upper panels) 𝜆2 = 𝜆1
at (a) {𝑘𝑦 = 0, 𝑘𝑥 = +∕𝜂1} and (b) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂2} and for (lower panels)
𝜆2 = −2𝜆1 at (c) {𝑘𝑦 = 0, 𝑘𝑥 = +∕𝜂1} and (d) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂2}.

of the Dirac fermions; different RSOC 𝜆2 = −2𝜆1 = 1.0 eV leads
to appearing the same curve near the pristine curve. We conjecture
that the transport, in this case, remains metallic. The above-mentioned
analysis is independent of the direction and for both EMs, they are
valid. Nevertheless, these may change slightly or drastically when 𝑘𝑦
or 𝑘𝑥 is non-zero along each direction because of the dispersing bands
presented in Fig. 2(c) and (d).

An important consequence of RSOC in the EM of spectrum Dirac
fermions is studied systematically in Fig. 6. From the upper and lower
panels, it is clear that the case of 𝜆2 = 𝜆1 as well as 𝜆2 = −2𝜆1 of RSOCs
do not change the qualitative behavior of the EM curves; its main effect
is to make the difference between the EM of branches in the conduction
band wider. This, in turn, means that there is a symmetry breaking of
the gapless bands [see Fig. 2] down to a shift the gap boundaries. This
is a direct consequence of oblique valleys associated with carriers in
the band structure.

The detailed analysis performed for 1∕𝑚∗
𝑥 and 1∕𝑚∗

𝑦 as a function
of RSOCs, whereby EM minima and maxima are identified is plotted
in Fig. 6. Taking the zero RSOC at the plots, both 1∕𝑚∗

𝑥 and 1∕𝑚∗
𝑦

are expected to show the values corresponding to the black curves
in Fig. 5, but since we are located at 𝑘𝑥 = +∕𝜂1 and 𝑘𝑦 = +𝑛∕𝜂2,
the EM along both directions is not isotropic. The EMs are mirror-
symmetric with respect to RSOC sign independent of the upper or lower
conduction band, evidencing that the SnTe (001) surface is tunable by
the RSOC to construct the phase transition. While 1∕𝑚∗

𝑥 of the upper
conduction bands increases with 𝜆2 = 𝜆1 < 0 as well as with 𝜆2 =
−2𝜆1 < 0 and decreases with their opposite sign, it happens for the
lower conduction band vice versa. However, for 1∕𝑚∗

𝑦 this is not the
case and both conduction bands decrease and increase, respectively,
with {𝜆2 = 𝜆1 < 0, 𝜆2 = −2𝜆1 < 0} and {𝜆2 = 𝜆1 > 0, 𝜆2 = −2𝜆1 > 0}.
This can be another confirmation for the intrinsic anisotropic feature
of SnTe (001) surface Dirac fermions.

5. Summary

Using the framework of the semi-classical �⃗� ⋅ 𝑝 theory, we have
addressed a question of how RSOC affects the fundamental surface
topological physics of SnTe (001). Particularly, dispersion energy, GV
and EM quantities are studied. The rotational band structures as a
characteristic fingerprint of the RSOC-induced topological phase tran-
sition is observed. Regarding the RSOC magnitude, massless-to-massive
Dirac fermion transition takes place at gapless states. We have shown
that the RSOC modifies the critical values of direction-dependent GV
and EM at which the transition occurs. Besides, we found out that the

surface denotes the symmetric results for dispersion energy, GV and EM
with RSOC sign independent of the direction. A possible application of
our results can be anticipated in the field of optoelectronics using the
TCI-based facilities.
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