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A B S T R A C T

An analysis of the strain-induced group velocity (GV) and effective mass (EM) of massless topological Dirac fermions on the SnTe (001) surface, protected by
crystalline symmetry, is presented. Using the traditional semi-classical �⃗� ⋅ 𝑝 approach by associating fermions with wave-packets, we find that the expression for
the energy dispersion surface as well as both GV and EM are anisotropic in the absence and presence of strain. The band structure calculations indicate that the
massive Dirac fermions emerge for strained SnTe (001) surface. However, under strong strains, GVs and EMs of all branches of conduction and valence bands are
the same quantitatively, but still anisotropic along different directions. On the other hand, depending on the special critical compressive and/or tensile strains, the
direction of the fermionic waves is reversed. Further, the behavior of heavy and light masses are characterized qualitatively with strain modulus and direction.
Our results are favorable for the thermoelectric properties of SnTe semiconductor since electronic features are coupled to the heat transports.

1. Introduction

The ‘‘non-trivial’’ band structure including gapless states in HgTe
quantum well [1,2] opened a new window for finding gapless critical
phases in novel quantum materials both theoretically and experimen-
tally in both two-dimensional (2D) and three-dimensional (3D) [3–12].
Previously, the researchers were dealing with the gapless states in 2D
materials such as graphene [pristine state], silicene and related group-
IV materials [in the presence of electric field equal to the intrinsic
spin–orbit coupling], etc. [13–24]. Topological insulator (TI) is a name
for such novel quantum systems characterized by topological invariants
such as Z2 time-reversal symmetry, particle–hole symmetry, chiral
symmetry, and a gapped bulk state [3–6,25,26]. An insulating bulk
and metallic surface states come into play role in determining novel
topological features in TIs [27–29]. However, it has been demonstrated
that the topological classification of band structures is not restricted to
these symmetries only and ‘‘spatial symmetries’’ indicate topological
phases as well [30–32,28,27].

Theoretically, a new class of topological band structures, so-called
topological crystalline insulators (TCIs) [27,30,33], has been predicted
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considering the crystal point-group symmetries such as mirror, rotation
or glide. The first experimentally realization of TCIs belong to the
lead thin salt family in IV–VI semiconductors, SnTe, Pb1−𝑥Sn𝑥Se (𝑥 ≥
0.2) and Pb1−𝑥Sn𝑥Te (𝑥 ≥ 0.4) [30–32]. The non-trivial topology of
electronic bands in TCIs originates from the reflection symmetry with
respect to the (110) mirror plane [30–32,28,34]. In TCIs, there are
two types of metallic gapless states, which depend strongly on the
crystal face orientation. First one is the (111) surface state (four Dirac
cones centered at time-reversal-invariant 𝛤 and 𝑀 points) for which
𝐿1 ({𝐿2, 𝐿3, 𝐿4}) point of bulk Brillouin zone of rock salt lattice is
projected to 𝛤 (𝑀) point of the surface Brillouin zone, while for the
second {(110),(001)} surface states the {𝐿1, 𝐿2} ({𝐿3, 𝐿4}) points of
bulk Brillouin zone are projected to 𝑋1 (𝑋2) and 𝑋 (𝑅) point of surface
Brillouin zone in the (001) and (110) plane, respectively [35]. In the
case of (001) surface states, four Dirac cones centered at non-time-
reversal-invariant 𝑋1 and 𝑋2 points are included [35,31,32,28,36,37]
and demonstrate robust surface states in TCI SnTe and related al-
loys [35,38–48]. This is one of the reasons why we will focus on such
a surface in the present work.
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In contrast to robust TI surface states, the electronic features of
TCI materials can be easily tuned with external perturbations [33],
changing in the topological invariants [49,50,30,51–56]. A mechanical
strain leads to a shift in the Dirac point positions and eventually the
band gap opening [52,53,57]. This, in turn, implies that the physical
features of the system can be controlled. In addition to the mechanical
perturbations, in Ref. [58], the Dirac mass generation using a magnetic
dopant breaks down the time-reversal-symmetry and a Zeeman gap
opens at four Dirac points of (001) surface, offering a large quantized
Hall conductance [30,59]. Or, a perpendicular electric field opens up
gap energy [54], introducing a topological transistor with tunable ON
and OFF states. Thus, TCIs based on IV–VI semiconductors are ex-
tremely versatile platforms for novel device applications, however; the
investigation of fundamental physical properties of perturbed gapless
Dirac fermions in such systems is still of great interest.

In this paper, we adopt the strain effects stemming from the com-
pressive and tensile strains to study the group velocity and effective
mass of Dirac fermions on the SnTe (001) surface. It has been shown
that the structural distortion from a relative displacement of the cation
and anion sublattices in IV–VI semiconductors leads to a net ferro-
electric polarization and eventually massive Dirac fermions on (001)
surface [30,60]. Since both the electronic properties of semiconductors
and thermoelectrics, in particular, are typically understood using band
models, transport is then understood in terms of band expressions
with a varying group velocity and effective mass. To the best of our
knowledge, such a study has not yet been reported to date and it is the
first time to do so theoretically. We add the strain-induced momenta
term to the effective �⃗� ⋅ 𝑝 model to get into the goal.

The paper is organized as follows. In Section 2, we briefly review
the effective �⃗� ⋅ 𝑝 Hamiltonian model of SnTe (001) surface states,
which is strongly needed to address the iso-energy and electronic band
structures along different high-symmetry points in the surface Brillouin
zone (SBZ). Also, the ‘‘pristine’’ group velocity (GV) and effective
mass (EM) calculations are included in this section. In Section 3, we
present and discuss manipulated GV and EM by the above-mentioned
strain effects. To do so, the traditional semi-classical approach by
associating particles with wave-packets is used for calculations of the
fermionic transport properties. The paper ends in Section 4.

2. Theory and method

In this section, the basic theoretical background of the SnTe (001)
surface Dirac fermions, as well as related alloys, is presented. We set the
physical constant ℏ = 1 for simplicity throughout the paper. To confirm
the experimental observations for the band structure of the SnTe (001)
surface states, the following ‘‘clean’’ �⃗�⋅𝑝 Hamiltonian near both 𝑋1 and
𝑋2 points of the SBZ is proposed [31,32,28]:

̂𝑋1
(�⃗�) =𝜂𝑥𝑘𝑥�̂�𝑦 − 𝜂𝑦𝑘𝑦�̂�𝑥 + 𝑛𝜏𝑥 + 𝛿�̂�𝑦𝜏𝑦 , (1a)

̂𝑋2
(�⃗�) =𝜂𝑦𝑘𝑥�̂�𝑦 − 𝜂𝑥𝑘𝑦�̂�𝑥 + 𝑛𝜏𝑥 + 𝛿�̂�𝑥𝜏𝑦 , (1b)

where 𝜂𝑥 = 1.3 eVÅ and 𝜂𝑦 = 2.4 eVÅ are typical values obtained from
numerical ab initio computations [30,35,60]. While ̂⃗𝜎 = (�̂�𝑥, �̂�𝑦) are the
Pauli matrices for two spin components, so-called Kramer’s doublet, the
Pauli matrices for the pseudospin describing the cation–anion degree of
freedom are given by ̂⃗𝜏 = (𝜏𝑥, 𝜏𝑦). As for the intervalley scattering at the
lattice scale, two parameters 𝑛 = 70 meV and 𝛿 = 26 meV are introduced
having only three allowed symmetry operators 𝜏𝑥, �̂�𝑥𝜏𝑦 and �̂�𝑦𝜏𝑦 up to
zeroth order momenta �⃗� = (𝑘𝑥, 𝑘𝑦) [30].

From Eqs. (1a) and (1b), the transformation of ̂𝑋1
(�⃗�) ⇔ ̂𝑋2

(�⃗�)
is evident due to four-fold 𝐶4 discrete rotation symmetry described by
�̂�𝑥 ↦ �̂�𝑦, �̂�𝑦 ↦ −�̂�𝑥, 𝑘𝑥 ↦ 𝑘𝑦, and 𝑘𝑦 ↦ −𝑘𝑥. From this point, we
will focus on the dynamics near one of the 𝑋1 and 𝑋2 points in what

Fig. 1. Three-dimensional electronic dispersion energy of Dirac fermions on the
SnTe (001) surface near the 𝑋1 point of the SBZ. Two saddle points contribute
to the carrier dynamics with the coordinates 𝑆1 = (0,+𝑛∕𝜂𝑦) and 𝑆2 = (0,−𝑛∕𝜂𝑦).
Also, the Dirac cones at �⃗� = 0 are located at energies  = ±

√

𝑛2 + 𝛿2, while two
Dirac cones at  = 0 have the wave-vector coordinates 𝛬𝑥 = (+

√

𝑛2 + 𝛿2∕𝜂𝑥 , 0) and
𝛬′

𝑥 = (−
√

𝑛2 + 𝛿2∕𝜂𝑥 , 0). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

follows. Thus, simply, the matrix form of Eq. (1a) can be written as


𝑋1

(�⃗�) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑛 𝑓 (�⃗�) −𝛿

𝑛 0 𝛿 𝑓 (�⃗�)

𝑓 ∗(�⃗�) 𝛿 0 𝑛

−𝛿 𝑓 ∗(�⃗�) 𝑛 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

in which 𝑓 (�⃗�) = −𝚒𝜂𝑥𝑘𝑥 − 𝜂𝑦𝑘𝑦. The Dirac energy–momentum disper-
sions for four gapless states above-mentioned can be easily obtained
via diagonalizing the above Hamiltonian, given by

𝜇,𝜈
𝑋1

(�⃗�) = 𝜇
√

𝑔(�⃗�) + 𝜈ℎ(�⃗�) , (3a)

𝑔(�⃗�) = 𝑛2 + 𝛿2 + 𝜂21𝑘
2
𝑥 + 𝜂22𝑘

2
𝑦 , (3b)

ℎ(�⃗�) = 2
√

(𝑛2 + 𝛿2)𝜂21𝑘
2
𝑥 + 𝑛2𝜂22𝑘

2
𝑦 , (3c)

where 𝜇 = +(−) and 𝜈 = +(−) stand for the conduction (valence) band
and 𝛬𝑥 (𝛬′

𝑥) point, respectively [see Fig. 1]. From this equation, one
obtains various information about the direction-dependent dispersing.
At �⃗� = 0, energies  = ±

√

𝑛2 + 𝛿2 and at  = 0, the momenta
𝛬𝑥 = (+

√

𝑛2 + 𝛿2∕𝜂𝑥, 0) and 𝛬′
𝑥 = (−

√

𝑛2 + 𝛿2∕𝜂𝑥, 0) at 𝑘𝑦 = 0, referring
to the metallic gapless SnTe (001) surface states, are obtained. In
addition, at 𝑘𝑥 = 0, one achieves two saddle points 𝑆1 = (0,+𝑛∕𝜂𝑦)
and 𝑆2 = (0,−𝑛∕𝜂𝑦) along the 𝑦 direction. At these saddle points, two
disconnected electron packets at low-energy Dirac cones suffer from a
Lifshitz transition at energy  = ±𝛿 = ±26 meV.

It should be mentioned that in Fig. 1, the lowest valence band is
the gray band, the highest valence band is the green band, the lowest
conduction band is the blue band, and the highest conduction band is
the red band. These colors are the characterizations for the following
curves of both GV and EM plots. However, we restrict ourselves to
the conduction bands only, since there exists electron–hole symmetry
between valence and conduction bands. For this reason, blue and red
ones are illustrated in Figs. 2–5. Let us focus on ‘‘clean’’ GV and EM of
Dirac fermions on the SnTe (001) surface.
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Fig. 2. Direction-dependent group velocity of Dirac fermions on the SnTe (001) surface for (a) 𝑘𝑦 = 0, (b) 𝑘𝑥 = 0, (c) 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥, and (d) 𝑘𝑦 = +𝑛∕𝜂𝑦. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Direction-dependent effective mass of Dirac fermions on the SnTe (001) surface for (a) 𝑘𝑦 = 0, (b) 𝑘𝑥 = 0, (c) 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥, and (d) 𝑘𝑦 = +𝑛∕𝜂𝑦. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.1. Pristine group velocity of Dirac fermions on the SnTe (001) surface

As well-known, the basic properties of electron transport phenom-
ena in a solid crystal lattice are described in terms of Bloch electronic
waves with wave vectors �⃗� [61,62]. The �⃗�-dependent GV is the certain
velocity of built dispersive wave packet from these Bloch waves, which
for the flavor 𝛼 ∈ {𝑥, 𝑦} can be shown quite generally that

𝑣𝜇,𝜈𝛼 (�⃗�) = 𝜕𝑘𝛼
𝜇,𝜈
𝑋1

(�⃗�) . (4)

This equation gives rise to the real-space motion of the fermions. As
mentioned before, here we have 𝜇 = + and 𝜈 = ± only and the results

for 𝜇 = − are the same with a different sign. Thus, by substituting
Eq. (3a) into Eq. (4) we obtain

𝑣𝜇,𝜈𝑥 (�⃗�) =
𝜂21𝑘𝑥

𝜇,𝜈
𝑋 (�⃗�)

(

1 + 2𝜈 𝑛
2 + 𝛿2

𝑔(�⃗�)

)

, (5a)

𝑣𝜇,𝜈𝑦 (�⃗�) =
𝜂22𝑘𝑦

𝜇,𝜈
𝑋 (�⃗�)

(

1 + 2𝜈 𝑛2

𝑔(�⃗�)

)

. (5b)
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Fig. 4. Strained two-dimensional electronic dispersion energy of Dirac fermions on the SnTe (001) surface near the 𝑋1 point of the SBZ for (a) {𝑘𝑦 = 0, 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04}, (b)
{𝑘𝑦 = 0, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, (c) {𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04}, (d) {𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, (e) {𝑘𝑥 = 0, 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04}, (f) {𝑘𝑥 = 0, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, (g)
{𝑘𝑥 = +

√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04}, (h) {𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Of course, the GV norm can be also calculated using |𝑣𝜇,𝜈 (�⃗�)| =
√

[𝑣𝜇,𝜈𝑥 (�⃗�)]2 + [𝑣𝜇,𝜈𝑦 (�⃗�)]2, however; we are interested in details of com-
ponents in the absence and presence of external strain perturbation.
This helps us to confirm our claim on the anisotropic properties of
SnTe (001) surface.

In Fig. 2, we plot the orientation-dependent GV of Dirac fermions
for pure SnTe (001) surface. Using Fig. 1, we have set four cases for the
velocities including 𝑘𝑦 = 0, 𝑘𝑥 = 0, 𝑘𝑥 =

√

𝑛2 + 𝛿2∕𝜂𝑥, and 𝑘𝑦 = 𝑛∕𝜂𝑦,
as shown in Fig. 2. For first two cases, we purely are along the 𝑥 and 𝑦
direction, respectively, while in second two cases the critical momenta
at saddle point 𝛬𝑥 and 𝑆1 are chosen, supporting the role of intervalley
scattering parameters 𝑛 and 𝛿. For 𝑘𝑦 = 0, we have the GV

𝑣𝜈𝑥(𝑘𝑥) =
𝜂𝑥

𝜈
𝑋 (𝑘𝑥, 0)

(

𝜂𝑥 𝑘𝑥 + 𝜈
√

𝑛2 + 𝛿2
)

,

leading to the panel (a) in Fig. 2. It is clear that at 𝑣𝑥 = ±𝜂𝑥, the Dirac
fermions behave linearly with 𝑘𝑥 and at 𝑘𝑥 = ±

√

𝑛2 + 𝛿2∕𝜂𝑥, it is zero.
That can be understood from the slope of bands in Fig. 1 as well. For
the case of 𝑘𝑥 = 0, i.e. Fig. 2(b), we obtain

𝑣𝜈𝑦(𝑘𝑦) =
𝜂𝑦

𝜈
𝑋 (𝑘𝑦, 0)

(

𝜂𝑦 𝑘𝑦 + 𝜈𝑛
)

.

The GV of upper band of the conduction band (red band) shows almost
a plateau with the value of 𝑣𝑦 = 𝜂𝑦, implying that at 𝑘𝑥 = 0 Dirac
fermions propagate independent of the 𝑘𝑦 momentum, while the lower
band of the conduction band (blue band) shows an increasing behavior
with ±𝑘𝑦.

As for the case of 𝑘𝑥 =
√

𝑛2 + 𝛿2∕𝜂𝑥, the GV versus 𝑘𝑦 indicates
a symmetric plot with respect to the 𝑘𝑦, as illustrated in Fig. 2(c).
This stems from the mirror symmetry of the dispersing branches of the
band structure. To avoid confusion with many equations, the analytical
relations are not presented anymore. At 𝑘𝑦 = 0, while 𝑣𝑥 is zero for blue
conduction band, it is maximum (𝜂𝑥) for the red conduction band. In
addition, there are two extremum 𝑘𝑦-points for which the GV along
𝑥-direction is maximized to 𝜂𝑥∕2 and those points are exactly equal to
the saddle points |𝑛∕𝜂𝑦|. The last case, Fig. 2(d), shows 𝑣𝑦 versus 𝑘𝑥
when the momentum along the 𝑦-direction is fixed at 𝑘𝑦 = 𝑛∕𝜂𝑦. The
same behavior as Fig. 2(c) can be seen. The maximum value of 𝑣𝑦 at
𝑘𝑥 = 0 is 𝜂𝑦 for the lowest conduction band, while at the Dirac points
|

√

𝑛2 + 𝛿2∕𝜂𝑥|, the maximum value of around 1.6 is obtained.
It is important to note that at low momenta, in the vicinity of Dirac

points 𝑘𝑥 = 𝑘𝑦 = 0, near 𝑘𝑥 ≠ 0 and 𝑘𝑦 = 0 as well as near 𝑘𝑦 ≠ 0
and 𝑘𝑥 = 0, 𝑣𝑥 and 𝑣𝑦 are isotropic for all bands, coinciding with the
𝜂𝑥 and 𝜂𝑦, respectively. However, as we add strain corrections to the
Dirac cones (moving away from the Dirac points), they are anisotropic.
In general, a strong anisotropic feature is seen for 𝑣𝑥 and 𝑣𝑦 themselves.
From these results, it is obvious that strain corrections and directions

should be considered in the calculations of physical quantities, since
perturbation effects enhance these features, as we discuss in the next
section. As a quick comparison with the Dirac cones in graphene and
other 2D systems, one stress that these results do not appear when
the Dirac theory is used only. By this, we mean that in the absence
of intervalley scattering parameters 𝑛 and 𝛿, the same behaviors (but
doubled) appear for SnTe (001) surface Dirac fermions. Let us turn to
another fundamental electronic transport property, EM.

2.2. Pristine effective mass of Dirac fermions on the SnTe (001) surface

In theoretical physics, the concept of mass has a long history and
there are many different EM definitions [63–66]. To motivate the
reader about the EM calculations, it is worth noting that EM treatment
gives rise to an in-depth understanding of the fundamental electro-
optical properties, which is yet to be established for the design and
development of functional SnTe (001) surface-based devices. In doing
so, it is common to use an alternative definition, i.e. the second deriva-
tive of the energy dispersion, which is generally energy and momentum
dependent. It should be noted that this definition is sometimes referred
to as the optical EM [64]. So, for the flavor 𝛼 ∈ {𝑥, 𝑦}, the EM can be
calculated straightforwardly

1
𝑚∗𝜇,𝜈
𝛼 (�⃗�)

= 𝜕2𝑘𝛼
𝜇,𝜈
𝑋1

(�⃗�) . (6)

Simply, the following expressions are derived using the implicit second
derivative of the Eq. (3a)

1
𝑚∗𝜇,𝜈
𝑥 (�⃗�)

= −
𝜂41𝑘

2
𝑥

[

𝜇,𝜈
𝑋 (�⃗�)

]3

(

1 − 2𝜈 𝑛
2 + 𝛿2

𝑔(�⃗�)

)2

−
𝜂21

𝜇,𝜈
𝑋 (�⃗�)

⎛

⎜

⎜

⎝

1 + 8𝜈
𝜂21𝑘

2
𝑥
(

𝑛2 + 𝛿2
)2

𝑔3(�⃗�)
− 2𝜈 𝑛

2 + 𝛿2

𝑔(�⃗�)

⎞

⎟

⎟

⎠

, (7a)

1
𝑚∗𝜇,𝜈
𝑦 (�⃗�)

= −
𝜂42𝑘

2
𝑦

[

𝜇,𝜈
𝑋 (�⃗�)

]3

(

1 − 2𝜈 𝑛2

𝑔(�⃗�)

)2

−
𝜂22

𝜇,𝜈
𝑋 (�⃗�)

(

1 + 8𝜈
𝜂22𝑘

2
𝑦 𝑛

2

𝑔3(�⃗�)
− 2𝜈 𝑛2

𝑔(�⃗�)

)

. (7b)

Generally, an increase or decrease of the EM with wave-vector or
even the external physical perturbations is related to those density of
states that is larger or smaller than that of the principal one. This
implies that the concavity of energy bands is directly concentrated on
the degeneracy of those bands, characterizing the density of states.
From Fig. 1, it would seem that the energy separation between band
edges along the 𝑦-direction is considerably greater compared to the 𝑥-
direction, and the principal band edge effective mass along 𝑥-direction
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is much smaller than the 𝑦-direction. This is confirmed in Fig. 3 for
which 1∕𝑚∗

𝑥 > 1∕𝑚∗
𝑦 or 𝑚∗

𝑥 < 𝑚∗
𝑦 independent of the momenta.

This, in turn, means that the state associated with the heavy-mass
band is related to the 𝑦-direction and the transport is faster along the
𝑥-direction.

Our plotted results in Fig. 3 (a), (b), (c), and (d) are, respectively,
shown for four typical wave-vectors 𝑘𝑦 = 0, 𝑘𝑥 = 0, 𝑘𝑥 = +

√

𝑛2 + 𝛿2∕𝜂𝑥,
and 𝑘𝑦 = +𝑛∕𝜂𝑦. Similar to the GV, for 𝑘𝑥 = 𝑘𝑦 = 0 values, the
EM of both conduction bands are isotopic, while when one of them
is zero only, there is an anisotropic so that EM is maximum for the
lowest conduction band (blue band) and it is minimum for the highest
conduction band (red band). Again, the maximum value of EM in
panel (a), i.e. when 𝑘𝑦 = 0, is taken place at 𝑘𝑥 = ±

√

𝑛2 + 𝛿2∕𝜂𝑥, whilst
it is (on average) the case at 𝑘𝑦 = ±𝑛∕𝜂𝑦 for EM in panel (b). Due
to the concavity of the bands at these critical momenta, a minimum
and maximum EM was expected clearly, as confirmed by the inverse of
EMs in panels (a) and (b). That is also the case in panels (c) and (d)
for which the concavity is small and large, respectively, leading to
the minimum and maximum EM. To ensure a fair comparison with
the specific momenta examined here, we are also able to calculate the
EM over the whole SBZ, however, the corresponding results are not
presented here and need to be investigated in another way.

3. Strain effects

In this section, we apply the strain theory to evaluate the nature of
the impact of the theory on electronic band structure as well as on both
GV and EM of Dirac fermions on the SnTe (001) surface. Considering
the strain modulus in the band model, we derive a tractable expression
for the bands and their GV and EM. We wish to make it clear that while
the theory considers the shift in momenta and energy, the electronic
transport properties are enhanced significantly.

The strain is one of the effective ways of moving the mirror symme-
try protected Dirac points of SnTe (001) surface, leading to the so-called
crystal mirror symmetry breaking phenomenon. It is noteworthy to
mention that the real-space wave functions corresponding to the bands
become compressed and tensioned in the presence of compressive
and tensile strain, respectively, leading to bonding and non-bonding
states. These quantum effects manifest themselves in transport and
accordingly GV and EM as well. In the presence of strain, it is simple
to state that the Dirac points surface suffer from a displacement 𝑢 with
components 𝑢𝑖𝑗 = (𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗 )∕2, which can be addressed by a strain-
induced gauge field vector potential 𝐴 = ̃⃗𝛬𝑥 − 𝛬𝑥, where ̃⃗𝛬𝑥 are the
momenta in the presence of strain. The linear relationship between the
spatial displacement 𝑢 and 𝐴 is given by [53,67,68]

𝐴 = (𝛼1𝑢𝑥𝑥 + 𝛼2𝑢𝑦𝑦, 𝛼1𝑢𝑦𝑦 + 𝛼2𝑢𝑥𝑥) , (8)

where 𝛼{1,2} are the independent coupling constants. Note that the
shear terms {𝑢𝑥𝑦, 𝑢𝑦𝑥} are neglected for simplicity. As for the non-linear
terms, there is no explicit analytical expression yet and to have a stable
system, it can be neglected simply. By this, the shift in the momenta can
be written as

𝑘𝑥 ⟼ 𝑘𝑥 + 𝛼1𝑢𝑥𝑥 + 𝛼2𝑢𝑦𝑦 , (9a)

𝑘𝑦 ⟼ 𝑘𝑦 + 𝛼1𝑢𝑦𝑦 + 𝛼2𝑢𝑥𝑥 . (9b)

for 𝛼1 = 0.3 Å−1 and 𝛼2 = 1.4 Å−1 [69]. Although we restrict ourselves
to the 𝑋1 point, the statements are similar for the 𝑋2 point applying the
transformations mentioned above the Eq. (2). We label the tensile and
compressive strains with the signs + and −, respectively. Depending
on the strain modulus 𝑢𝑥𝑥 and 𝑢𝑦𝑦, the dispersion energy of the system
is illustrated in Fig. 4 for two arbitrary strains ±0.04 and different
momenta configurations. There is no physical reason for such a strain
modulus and it can be examined with other strengths as well. While
there is an advantage in the made approximation in its easiness to work
with, there is also a disadvantage in the sense it is not exact in some

sense and its region of validity if any is unclear. However, we leave
further investigations for our future research to come.

As can be seen from Fig. 4(a) and (b) with {𝑘𝑦 = 0, 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 =
±0.04} and {𝑘𝑦 = 0, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, respectively, while the
system is gapped in the presence of both 𝑢𝑥𝑥 and 𝑢𝑦𝑦, the electronic
transport properties are anisotropic with respect to the strain direction.
The variation of the gaps in both 𝑘𝑥 = 0 and 𝑘𝑥 = ±

√

𝑛2 + 𝛿2∕𝜂𝑥 is
exactly the variation of Dirac points, which clearly alters the GV and
EM quantities. However, if we consider a non-zero momentum along
the 𝑦-direction, we have Fig. 4(c) and (d) with {𝑘𝑦 = +𝑛∕𝜂𝑦, 𝑢𝑥𝑥 =
0, 𝑢𝑦𝑦 = ±0.04} and {𝑘𝑦 = +𝑛∕𝜂𝑦, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, respectively.
At first glance, parabolic dispersions emerge for the 𝑢𝑦𝑦, while the
same behavior as the case of 𝑘𝑥 = 0 and 𝑢𝑥𝑥 = 0 appears for the 𝑢𝑥𝑥
and the gaps for both time-reversal and mirror symmetry points are
increased with the presence of non-zero 𝑘𝑦. Shortly, the Dirac cones at
zero energy change less than those with non-zero energies ±

√

𝑛2 + 𝛿2,
implying that the strain-tuned intervalley 𝛿 parameter is more than
important in the formation of TCI phase as well as in the topological
phase transitions.

The anisotropic result along different directions shown in Fig. 1
alerts to consider the same behaviors for the band structure versus 𝑘𝑦.
In Fig. 4(e)–(h), we anticipate some results for 𝑋1

(�⃗�) in terms of 𝑘𝑦
when uniaxial strains along both directions are applied in the case of
zero and non-zero 𝑘𝑥 as (e) {𝑘𝑥 = 0, 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04}, (f) {𝑘𝑥 =
0, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}, (g) {𝑘𝑥 = +

√

𝑛2 + 𝛿2∕𝜂𝑥, 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = ±0.04},
and (h) {𝑘𝑥 = +

√

𝑛2 + 𝛿2∕𝜂𝑥, 𝑢𝑥𝑥 = ±0.04, 𝑢𝑦𝑦 = 0}. From Fig. 1, one sees
that at 𝑘𝑥 = 𝑘𝑦 = 0, the band dispersion possesses two Dirac cones with
non-zero energies only. On the other hand, Fig. 4(e) and (f) show that
while those Dirac cones are gapped when 𝑢𝑦𝑦 or 𝑢𝑥𝑥 is turned on, the
band gap opening process is anisotropic for the case of 𝑢𝑥𝑥 and/or 𝑢𝑦𝑦.
This implies that in the case of 𝑢𝑥𝑥 = ±0.04, purely parabolic curves
appear, whilst this is not the case for 𝑢𝑦𝑦 = ±0.04. Furthermore, it
is clear from Fig. 4(g) and (h) that the Dirac points at 𝑋1 point gets
anticrossed phase faster, if one applies the strain along the 𝑥 edge,
than the 𝑦 edge independent of the strain sign. Moreover, the parabolic-
shape curve holds with strain similar to the panel (c). The results are
in agreement with Refs. [52,55,49,67,68].

Let us focus on the main goal of the present paper, i.e. strain-
induced GV and EM of surface Dirac fermions on the SnTe(001). Unless
noted otherwise we take −10% ≤ 𝑢𝑥𝑥∕𝑦𝑦 ≤ +10% to avoid misjudging
situations where no isotropic behavior occurs later. We analyze the
particular cases of pure uniaxial strains along the 𝑥- and 𝑦-direction,
as shown in Figs. 5 and 6. To validate the following results, we stress
that the band structure changes under strain are only needed for
understanding and confirming the GV and EM results. Since in the
previous parts, we confirmed that the results are correct and valid,
the GV and EM results must be valid as well because they are the
counterparts of the band structure and all the changes made in the band
structure manifest itself in the GV and EM automatically.

It can be observed from Fig. 5(a) that in the directions where the
compressive strains appear, 𝑣𝑥 independent of the conduction bands is
negative and increases slightly with 𝑢𝑥𝑥 at 𝑢𝑦𝑦 = −0.04. The negative
sign of GV means that the direction of spatial wave-function propa-
gation is along the −𝑥-direction. In tensile strains, however, 𝑣𝑥 of the
lowest (highest) conduction band increases (decreases) drastically with
positive (negative) sign. Finally, at 𝑢𝑥𝑥 = 𝑘𝑥 = +

√

𝑛2 + 𝛿2∕𝜂𝑥, both
GVs of conduction bands converge to a positive sign. It seems that
the net electronic wave-functions propagate along the +𝑥-direction for
𝑢𝑥𝑥 > +

√

𝑛2 + 𝛿2∕𝜂𝑥. Also, 𝑣𝑥 is no longer isotropic with respect to the
𝑢𝑥𝑥. For Fig. 5(b), which describes the GV 𝑣𝑥 versus 𝑢𝑦𝑦 at the same 𝑘𝑥
as panel (a) and 𝑢𝑥𝑥 = +0.04, the effects caused by the deformation in
the wave-function surfaces are increasing trends for both compressive
and tensile strains. Interestingly, there is a direction switching for the
orientation of propagation at the critical 𝑢𝑦𝑦 = −𝑘𝑥 with a zero value for
𝑣𝑥, while both GVs of conduction bands converge again to the positive
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Fig. 5. Direction-dependent group velocity of Dirac fermions on the SnTe (001) surface for (a) {𝑘𝑦 = 0, 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑦𝑦 = −0.04}, (b) {𝑘𝑦 = 0, 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑥𝑥 = +0.04}
𝑘𝑥 = 0, (c) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑦𝑦 = −0.04}, and (d) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑥𝑥 = +0.04}. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

values and propagate along the +𝑥-direction. It should be mentioned
that the maximum and converged values of 𝑣𝑥 in the above-mentioned
cases are the value of 𝜂𝑥.

Plots of the GV 𝑣𝑦 along the 𝑦-direction for a uniaxial uniform
strain given by 𝑢𝑥𝑥 and 𝑢𝑦𝑦 at 𝑘𝑦 = +𝑛∕𝜂𝑦 are shown in Fig. 5(c)
and (d), respectively. The increase of 𝑣𝑦 with 𝑢𝑥𝑥 is visible for both
conduction bands and it gets zero at a critical compressive strain
𝑢𝑥𝑥 = −0.02. Moreover, although both bands behave similarly with
𝑢𝑥𝑥 at 𝑢𝑦𝑦 = −0.04, it becomes anisotropic again beside the direction
switching of propagation caused by the sign of GVs. For anisotropic
behaviors of 𝑣𝑦 with 𝑢𝑦𝑦 strain, the results are not similar. As seen in
Fig. 5(d), the critical momenta 𝑢𝑦𝑦 < 0 emerge with maximum 𝑣𝑦 and
an increasing (decreasing) behavior appears before (after) these strains.
On the other hand, both GVs of conduction bands show the same values
at another critical strain 𝑢𝑦𝑦 = −0.02. In these cases, the maximum and
converged values of 𝑣𝑦 in the above-mentioned cases are the typical
value of 𝜂𝑦.

One may also notice significant anisotropies in the EM for both the
subbands. It is expected because of strong deviations in GV of these
subbands. While 𝑚∗

𝑦 is much larger than 𝑚∗
𝑥 for both the lowest and

highest branches of the conduction band in the absence of strain [see
Fig. 3], in the presence of strain, the difference is by a few orders of
magnitude. However as the strain increases this difference is reduced

to only an order of magnitude. For example, for 𝑢𝑥𝑥 = 0, 𝑢𝑦𝑦 = −0.04
and (+

√

𝑛2 + 𝛿2∕𝜂𝑥, 0), 1∕𝑚∗
𝑥 of both conduction branches is larger than

its 1∕𝑚∗
𝑦 with a factor of 6 for 𝑢𝑦𝑦 = 0, 𝑢𝑥𝑥 = 0.04 and (+

√

𝑛2 + 𝛿2∕𝜂𝑥, 0),
whereas for a higher strain, 𝑢𝑥𝑥 = 𝑢𝑦𝑦 = 0.1, the ratio is around 1 for
(+

√

𝑛2 + 𝛿2∕𝜂𝑥, 0) point [See Fig. 6(a) and (b)]. Nevertheless, the same
ratios are not maintained for other curves of Fig. 6(c) and (d). In other
words, the momentum-dependent transport affects the anisotropy ratio
as well. The rations above-mentioned are around 3 and 1, respectively,
for low and high strains.

Theoretically, the positive and negative sign of EM refers to the
concavity up and down of bands, respectively. Thus the band edge
concavities have significant effects on the EMs and their signs. To
understand the sign changes in Fig. 6(a) and (d), see Fig. 4(g) and (d),
respectively. The blue and red bands show opposite concavities and
different corresponding EM signs are expected to emerge. Fig. 6(a)
and (d) show the detailed analysis performed for the above concavities.
However, in all cases, strong anisotropy is evident.

The EMs are plotted as a function of strains to construct an identity
of the critical strains. It is clear from Fig. 6(a) that the 1∕𝑚∗

𝑥 has two
maxima (for the highest conduction band) and minima (for the lowest
conduction band) values at 𝑢𝑥𝑥 = +0.01 and +0.02, while it is the
same for both bands when +

√

𝑛2 + 𝛿2∕𝜂𝑥 < 𝑢𝑥𝑥 < −
√

𝑛2 + 𝛿2∕𝜂𝑥. In
other words, 1∕𝑚∗

𝑥 of the red conduction band increases with 𝑢𝑥𝑥 up to
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Fig. 6. Direction-dependent effective mass of Dirac fermions on the SnTe (001) surface for (a) {𝑘𝑦 = 0, 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑦𝑦 = −0.04}, (b) {𝑘𝑦 = 0, 𝑘𝑥 = +
√

𝑛2 + 𝛿2∕𝜂𝑥 , 𝑢𝑥𝑥 = +0.04}
𝑘𝑥 = 0, (c) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑦𝑦 = −0.04}, and (d) {𝑘𝑥 = 0, 𝑘𝑦 = +𝑛∕𝜂𝑦 , 𝑢𝑥𝑥 = +0.04}. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

𝑢𝑥𝑥 = +0.01, decreases up to 𝑢𝑥𝑥 = +0.015, increases up to 𝑢𝑥𝑥 = +0.02,
and decreases for 𝑢𝑥𝑥 > +0.02. This is reversed for the blue conduction
band. Also, both bands become the same at 𝑢𝑥𝑥 = +0.015. This is more
noticeable in the case of 1∕𝑚∗

𝑥 as a function of 𝑢𝑦𝑦. Note that there is still
two critical 𝑢𝑦𝑦 = −𝑘𝑥 − 𝑢𝑥𝑥 and 𝑢𝑦𝑦 = −(𝑛∕𝜂𝑦) + 3𝑢𝑥𝑥 for which 1∕𝑚∗

𝑥 of
red and blue bands demonstrates a peak, respectively, as illustrated in
Fig. 6(b). Additionally, at 𝑢𝑦𝑦 ≃ −𝑘𝑥, the blue band becomes minimum,
i.e. 1∕𝑚∗

𝑥 of the blue band decreases with 𝑢𝑦𝑦 up to 𝑢𝑦𝑦 ≃ −𝑘𝑥, increases
up to 𝑢𝑦𝑦 = −(𝑛∕𝜂𝑦)+3𝑢𝑥𝑥 and decreases forever for 𝑢𝑦𝑦 > −(𝑛∕𝜂𝑦)+3𝑢𝑥𝑥,
whereas 1∕𝑚∗

𝑥 of the red band increases with 𝑢𝑦𝑦 up to 𝑢𝑦𝑦 = 𝑘𝑥 and
decreases for 𝑢𝑦𝑦 > 𝑘𝑥.

Briefly, the effect of the 𝑢𝑥𝑥 is to increase 1∕𝑚∗
𝑦 for both bands up to

𝑢𝑥𝑥 = −0.02, while is to decrease (oscillate) it for red (blue) conduction
band when 𝑢𝑥𝑥 > −0.02, as shown in Fig. 6(c). Actually, 1∕𝑚∗

𝑦 decreases
first for −0.02 < 𝑢𝑥𝑥 < −0.01, increases slightly for −0.01 < 𝑢𝑥𝑥 < 0
and decreases similar to the red band for 𝑢𝑥𝑥 > 0. Note, however, that
this behavior is quite different for 1∕𝑚∗

𝑦 versus 𝑢𝑦𝑦, as occurs in the
simple case of an increase (decrease) up to 𝑢𝑦𝑦 = −𝑘𝑥 − 2𝑢𝑥𝑥 (𝑢𝑦𝑦 =
−(𝑛∕𝜂𝑦) + 2𝑢𝑥𝑥) for the red (blue) band, while a decrease (increase) for
𝑢𝑦𝑦 > −𝑘𝑥 − 2𝑢𝑥𝑥 (𝑢𝑦𝑦 > −(𝑛∕𝜂𝑦) + 2𝑢𝑥𝑥), as represented in Fig. 6(d). The
anisotropic EM is clear from the coefficients of the critical strains.

4. Summary

In summary, the significant effects of compressive and tensile strain
on the GV and EM of the SnTe (001) surface Dirac fermions, as a TCI
protected by the mirror symmetry, are investigated theoretically by
applying the �⃗� ⋅ 𝑝 theory. By deriving the pristine and strain-induced
energy dispersion surface, the fermion GV and EM for SnTe (001)
surface are obtained. Our results indicate that the band structure, GV
and EM are strongly anisotropic. As strain increases, the surface does
not display the mirror symmetry independent of the direction. We
understood how to tune the GV and EM of SnTe (001) surface Dirac
fermions for special purposes with the aid of strain. We emphasize that
the GVs as well as EMs occurring in the results depend on both train
modulus and direction. Furthermore, the difference in the evolution
of heavy and light masses with strain contributes to improved both
electronic and thermoelectric types of transport in this material.
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