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1. Introduction

The Castelnuovo-Mumford regularity (or regularity for short) is an important invari-
ant of graded algebras. It bounds the maximum degree of the syzygies and the maximum 
non-vanishing degree of the local cohomology modules. It is a celebrated result that the 
regularity of Is is asymptotically a linear function for any homogeneous ideal I in a 
polynomial ring S over a field (see [8,25]). It is a natural question then to ask whether a 
similar result holds for symbolic powers of I. In general, Cutkosky [6] gave an example 

of a homogeneous ideal I such that limt−→∞
reg(I(t))

t
is not rational. So reg(I(t)) is in 

general far from being asymptotically a linear function. For a monomial ideal Herzog, 
Hoa, and N. V. Trung [20] showed that the regularity of symbolic powers is bounded 
by a linear function. In recent work, Dung, Hien, Nguyen, and T. N. Trung [10] have 
constructed a class of squarefree monomial ideals for which reg(I(t)) is not asymptot-
ically a linear function. On the other hand, when I is the Stanley-Reisner ideal of a 
simplicial complex of dimension one or a matroid then reg(I(t)) is a linear function of t
(see [22,28]). It is not known whether the regularity of symbolic powers of edge ideals 
of graphs is asymptotically a linear function. More exactly, in this case, the first author 
raised the following conjecture.

Conjecture A. Let I(G) be the edge ideal of a simple graph G. Then for all s ≥ 1,

reg(I(G)(s)) = reg(I(G)s).

By [35, Theorem 5.9], the graph G is a bipartite graph if and only if I(G)(s) = I(G)s
for all s ≥ 1. Thus, the above conjecture is trivially true in this case. If G is not bipartite, 
then it must contain an odd cycle. Gu, Ha, O’Rourke, and Skelton [17] took the first step 
in verifying this conjecture for odd cycle graphs. Subsequently, the conjecture is verified 
for several other classes of graphs in [23,12–14,26,27,30]. The equality reg I(2) = reg I2

is known in some cases [2].
In this paper, we prove

Theorem 1.1. Let I(G) be the edge ideal of a simple graph G. Then

reg I(G)(s) = reg(I(G)s)

for s = 2, 3.

In other words, we establish Conjecture A for s = 2, 3. Note that in most cases where 
reg I(s) was computed, the main technical step was to bound the regularity of certain 
colon ideals. We do not know of any direct comparison between the regularity of powers 
and symbolic powers of ideals when the regularity of the corresponding symbolic/ordi-
nary power is unknown. We now outline the idea of proof of Theorem 1.1.
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(1) We reduce the problem of comparing the regularity of two monomial ideals to the 
problem of comparing radicals of the colon of these ideals by certain monomials, see 
Lemma 2.18 and Lemma 2.19.

(2) By Lemma 2.23 and induction, we further reduce to studying degree complexes 
of symbolic powers/ordinary powers of edge ideals of special exponents. We then 
analyse these degree complexes in detail via the Stanley-Reisner correspondence.

This procedure for comparing the regularity of monomial ideals is especially useful when 
the ideals are closely related; for example, an ideal versus its integral closure, various 
types of powers of an ideal. Furthermore, our study of degree complexes of symbolic/or-
dinary powers reveals interesting information on the extremal exponents of powers of 
edge ideals which will be exploited further in subsequent work to study the regularity of 
powers of edge ideals themselves.

The main obstructions to proceed the comparison further with higher powers are:

(1) Explicit description of symbolic powers of higher powers is unknown.
(2) Even in the case where an explicit description of symbolic powers is known, e.g. 

the case of perfect graphs, the number of critical exponents grows and the radical 
ideals of colon ideals of powers with respect to these critical exponents are difficult 
to compute.

By combining a recent result of Fakhari [15, Theorem 3.6], we establish a conjecture of 
Alilooee, Banerjee, Beyarslan, and Ha [1, Conjecture 1] for the second and third powers 
of edge ideals extending work of Banerjee and Nevo [5].

Theorem 1.2. Let I(G) be the edge ideal of a simple graph G. Then

reg(I(G)s) ≤ 2s− 2 + reg(I(G)),

for s = 2, 3.

For symbolic powers, we extend [15, Corollary 3.9] to prove

Theorem 1.3. Let I(G) be the edge ideal of a simple graph G. Then

reg(I(G)(s)) ≤ 2s− 2 + reg(I(G)),

for s = 2, 3, 4.

Finally, we obtain explicit values of the regularity of small symbolic powers of I(G)
for some new classes of graphs.

Now we explain the organization of the paper. In Section 2, we recall some notation 
and basic facts about the symbolic powers of a squarefree monomial ideal, the degree 
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complexes, and Castelnuovo-Mumford regularity. In Section 3, we prove Theorem 1.1 for 
s = 2. In Section 4, we prove Theorem 1.1 for s = 3. Finally, Section 5 contains some 
applications of the main results.

2. Castelnuovo-Mumford regularity, symbolic powers and degree complexes

In this section, we recall some definitions and properties concerning Castelnuovo-
Mumford regularity, the symbolic powers of a squarefree monomial ideal, and the degree 
complexes of a monomial ideal. The interested readers are referred to ([3,9,11,34]) for 
more details.

2.1. Simplicial complexes and Stanley-Reisner correspondence

Let Δ be a simplicial complex on [n] = {1, . . . , n} that is a collection of subsets of [n]
closed under taking subsets. We put dimF = |F | − 1, where |F | is the cardinality of F . 
The dimension of Δ is dim Δ = max{dimF | F ∈ Δ}. The set of its maximal elements 
under inclusion, called by facets, is denoted by F(Δ).

A simplicial complex Δ is called a cone over x ∈ [n] if x ∈ B for any B ∈ F(Δ).
For a face F ∈ Δ, the link of F in Δ is the subsimplicial complex of Δ defined by

lkΔ F = {G ∈ Δ | F ∪G ∈ Δ, F ∩G = ∅}.

For each subset F of [n], let xF =
∏

i∈F xi be a squarefree monomial in S. We now 
recall the Stanley-Reisner correspondence.

Definition 2.1. For a squarefree monomial ideal I, the Stanley-Reisner complex of I is 
defined by

Δ(I) = {F ⊆ [n] | xF /∈ I}.

For a simplicial complex Δ, the Stanley-Reisner ideal of Δ is defined by

IΔ = (xF | F /∈ Δ).

The Stanley-Reisner ring of Δ is K[Δ] = S/IΔ.

From the definition, it is easy to see the following:

Lemma 2.2. Let I, J be squarefree monomial ideals of S = K[x1, . . . , xn]. Then

(1) Δ(I) is a cone over t ∈ [n] if and only if xt does not divide any minimal generator 
of I.

(2) Δ(I + J) = Δ(I) ∩ Δ(J).
(3) Δ(I ∩ J) = Δ(I) ∪ Δ(J).
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2.2. Simplicial homology of simplicial complexes

Let Δ be a simplicial complex. An oriented q-simplex of Δ is a face F ∈ Δ, |F | =
q + 1, with an ordering of the vertices, with the rule that two orderings define the 
same orientation if and only if they differ by an even permutation. Let Cq(Δ) be the 
K-vector space with basis consisting of the oriented q-simplices of Δ. We define the 
homomorphisms ∂q : Cq(Δ) → Cq−1(Δ) for q ≥ 1 by defining them on the basis elements 
by

∂q[v0, . . . , vq] =
q∑

i=0
(−1)i[v0, . . . , v̂i, . . . , vq],

where v̂i denotes that vi is missing. It is easily verified that ∂q∂q+1 = 0. The chain 
complex C(Δ) = {Cq(Δ), ∂q} is the oriented chain complex of Δ. Let C−1(Δ) be the 
K-vector space with basis {∅}, and define an augmentation ε : C0(Δ) → C−1(Δ) by 
ε(x) = ∅ for every x ∈ [n]. The augmented chain complex (C(Δ), ε) is the augmented 
oriented chain complex of Δ.

Definition 2.3. The q-th reduced homology group of Δ with coefficients K, denoted 
H̃q(Δ; K) is defined to be the q-th homology group of the augmented oriented chain 
complex of Δ over K.

A simplicial complex Δ is called acyclic if H̃i(Δ; K) = 0 for all i.

Remark 2.4.

(1) If Δ is the empty complex (i.e., Δ = {∅}), then H̃i(Δ; K) 
= 0 if and only if i = −1.
(2) If Δ is a cone over some t ∈ [n] or Δ is the void complex (i.e., Δ = ∅), then it is 

acyclic.

The following lemma will be useful later on.

Lemma 2.5. Let Δ be a simplicial complex on [n] with H̃i−1(Δ; K) 
= 0 for some i ≥ 0. 
Assume that Δ = Γ1 ∪ Γ2 is a decomposition of Δ as the union of two subsimpli-
cial complexes. Then at least one of the homology groups H̃i−1(Γ1; K), H̃i−1(Γ2; K), 
H̃i−2(Γ1 ∩ Γ2; K) is non-zero.

Proof. Applying the Mayer-Vietoris sequence for the decomposition Δ = Γ1 ∪ Γ2, we 
have the following long exact sequence of homology groups

· · · → H̃i−1(Γ1;K) ⊕ H̃i−1(Γ2;K) → H̃i−1(Δ;K) → H̃i−2(Γ1 ∩ Γ2;K) → · · · .

The conclusion follows as the middle term is non-zero. �
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2.3. Castelnuovo-Mumford regularity

Let m = (x1, . . . , xn) be the maximal homogeneous ideal of S = K[x1, . . . , xn] a 
polynomial ring over a field K. For a finitely generated graded S-module L, let

ai(L) =
{

max{j ∈ Z | Hi
m(L)j 
= 0} if Hi

m(L) 
= 0
−∞ otherwise,

where Hi
m(L) denotes the i-th local cohomology module of L with respect to m. Then, 

the Castelnuovo-Mumford regularity (or regularity for short) of L is defined to be

reg(L) = max{ai(L) + i | i = 0, . . . ,dimL}.

The regularity of L can also be defined via the minimal graded free resolution. Assume 
that the minimal graded free resolution of L is

0 ←− L ←− F0 ←− F1 ←− · · · ←− Fp ←− 0.

Let ti(L) be the maximal degree of graded generators of Fi. Then,

reg(L) = max{ti(L) − i | i = 0, . . . , p}.

From the minimal graded free resolution of S/J , we obtain reg(J) = reg(S/J) + 1 for 
a non-zero and proper homogeneous ideal J of S.

2.4. Symbolic powers

Let I be a non-zero and proper homogeneous ideal of S. Let {P1, . . . , Pr} be the set 
of the minimal prime ideals of I. Given a positive integer s, the s-th symbolic power of 
I is defined by

I(s) =
r⋂

i=1
IsSPi

∩ S.

For f ∈ S and xa = xa1
1 · · ·xan

n , we denote ∂(f)
∂(xa) the partial derivative of f with 

respect to xa. For each s, we denote

I〈s〉 =
(
f ∈ S | ∂f

∂xa ∈ I, for all xa with |a| ≤ s− 1
)
,

the s-th differential power of I. When K is a field of characteristic 0 and I is a radical 
ideal, it is a well-known theorem of Nagata-Zariski that I(s) = I〈s〉.
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When f is a monomial, we denote ∂∗(f)
∂∗(xa) the ∗-partial derivative of f with respect 

to xa, which is derivative without coefficients. In general, ∂f/∂xa = c∂∗(f)/∂∗(xa) for 
some constant c. Similarly, we define

I [s] =
(
f ∈ S | ∂∗f

∂∗xa ∈ I, for all xa with |a| ≤ s− 1
)
,

the s-th ∗-differential power of I. When the characteristic of K is equal to 0, I〈s〉 = I [s]. 
In general, we only have I〈s〉 ⊆ I [s]. When I is a squarefree monomial ideal, we first 
prove that the symbolic powers of I are equal to the ∗-differential powers of I.

Lemma 2.6. Let I be a squarefree monomial ideal. Then I(s) = I [s].

Proof. This result is folkloric, though we could not find a reference. So we give a simple 
proof here. Let P1, . . . , Pr be the minimal prime ideals of I. By [18, Proposition 1.4.4], 
I(s) = P s

1 ∩ · · · ∩ P s
r . Let f be a monomial in I(s) and a ∈ Nn such that |a| ≤ s − 1. 

Since f ∈ P s
i for all i = 1, . . . , r, ∂∗f/∂∗xa ∈ Pi. Thus, ∂∗f/∂∗xa ∈ P1 ∩ · · · ∩ Pr = I. 

Therefore, f ∈ I [s].
Conversely, assume by contradiction that I [s] strictly contains I(s). Let f = xb be a 

minimal generator of I [s] of smallest degree that is not in I(s). In particular, f /∈ P s

for some minimal prime P of I. Since I is a squarefree monomial ideal, P is generated 
by variables. Without loss of generality, we assume that P = (x1, . . . , xt). Since f /∈
P s, b1 + · · · + bt < s. Take a = (b1, . . . , bt, 0, . . . , 0), then |a| ≤ s − 1. Now, we have 
∂∗(f)/∂∗(xa) | xbt+1

t+1 · · ·xbn
n , which is not contained in P . Thus, ∂∗(f)/∂∗(xa) /∈ I, a 

contradiction. �
For a monomial f in S, we denote the support of f by supp(f) = {i ∈ [n] |

xi divides f}. For an exponent a ∈ Zn, we denote the support of a by supp(a) =
{i ∈ [n] | ai 
= 0}. For a subset V ⊆ [n], the restriction of I to V is defined by

IV = (f | f is a monomial in I with supp(f) ⊆ V ).

We have

Corollary 2.7. Let I be a squarefree monomial ideal and f be a monomial in S. Denote 
V = supp(f). Then, f ∈ I(s) if and only if f ∈ I

(s)
V .

Proof. Since IV ⊆ I, if f ∈ I
(s)
V then f ∈ I(s). Conversely, assume that f ∈ I(s). 

By Lemma 2.6, for any exponent a in Nn such that suppa ⊆ V and |a| ≤ s − 1, 
we have ∂∗(f)/∂∗(xa) ∈ I. But supp(∂∗(f)/∂∗(xa)) ⊆ supp(f) = V . By definition, 
∂∗(f)/∂∗(xa) ∈ IV . By Lemma 2.6, f ∈ I

(s)
V . �

As a consequence of Corollary 2.7, we deduce a generalization of [17, Corollary 4.5]
for squarefree monomial ideals.



8 N.C. Minh et al. / Journal of Combinatorial Theory, Series A 190 (2022) 105621
Corollary 2.8. Let I be a squarefree monomial ideal in S. Let V be a subset of [n] and 
IV be the restriction of I to V . Then for all s ≥ 1,

reg I(s)
V ≤ reg I(s).

Proof. By Corollary 2.7, I(s)
V is the restriction of I(s) to V . The conclusion follows from 

Corollary 2.22. �
2.5. Edge ideals of graphs and their symbolic powers

Let G denote a finite simple graph over the vertex set V (G) = [n] = {1, 2, . . . , n}
and the edge set E(G). For a vertex x ∈ V (G), let the neighbours of x be the subset 
NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}, and set NG[x] = NG(x) ∪ {x}. For a subset U
of the vertex set V (G), NG(U) and NG[U ] are defined by NG(U) = ∪u∈UNG(u) and 
NG[U ] = ∪u∈UNG[u]. If G is fixed, we shall use N(U) or N [U ] for short.

A subgraph H is called an induced subgraph of G if for any vertices u, v ∈ V (H) ⊆
V (G) we have {u, v} ∈ E(H) if and only if {u, v} ∈ E(G).

An induced matching is a subset of the edges that do not share any vertices and it 
is an induced subgraph. The induced matching number of G, denoted by μ(G), is the 
largest size of an induced matching in G.

An m-cycle in G is a sequence of m distinct vertices 1, . . . , m ∈ V (G) such that 
{1, 2}, . . . , {m − 1, m}, {m, 1} are edges of G. We also use C = 12 . . .m to denote the 
m-cycle whose sequence of vertices is 1, . . . , m.

A clique in G is a complete subgraph of G. We also call a clique of size 3 a triangle.
The edge ideal of G is defined to be

I(G) = (xixj | {i, j} ∈ E(G)) ⊆ S.

Let J1(G) be the ideal generated by all squarefree monomials xixjxr where {i, j, r}
forms a triangle in G. Let J2(G) be the ideal generated by all squarefree monomials 
xixjxrxs where {i, j, r, s} forms a clique of size 4 in G and all squarefree monomials xC

where C is a 5-cycle of G.
We have the following expansion formulae of the second and third symbolic powers of 

an edge ideal. Note that the first formula is [36, Corollary 3.12].

Theorem 2.9. Let I be the edge ideal of a simple graph G. Then

I(2) = I2 + J1(G).

Proof. Using Lemma 2.6, it is easy to see that the left hand side contains the right hand 
side. Conversely, let f ∈ I(2) be a monomial generator. By Corollary 2.7, we may assume 
that supp f = V (G). If G contains a triangle, then f ∈ J1(G). If G contains a cycle of 



N.C. Minh et al. / Journal of Combinatorial Theory, Series A 190 (2022) 105621 9
length ≥ 4, then f ∈ I2. Thus we may assume that G does not contain any cycles. The 
conclusion follows from [35, Theorem 5.9]. �
Theorem 2.10. Let I be the edge ideal of a simple graph G. Then

I(3) = I3 + IJ1(G) + J2(G).

Proof. Using Lemma 2.6, it is easy to see that the left hand side contains the right hand 
side. Conversely, let f ∈ I(3) be a monomial generator. By Corollary 2.7, we may assume 
that supp(f) = V (G). If G contains a 5-cycle, then f ∈ J2(G). If the matching number 
of G is at least 3, then f ∈ I3. Thus, we may assume that G does not contain a cycle 
of length ≥ 5. If G does not contain a triangle, then G is bipartite, and the conclusion 
follows from [35, Theorem 5.9]. Thus, we may assume that G contains a triangle, say 123. 
Let f = xα1

1 · · ·xαn
n where αi ≥ 1. If two of the exponents α1, α2, α3 is at least 2, then 

f ∈ IJ1(G). Thus, we may assume that α2 = α3 = 1. By Lemma 2.6, ∂∗f/∂∗(x2x3) =
xα1

1 xα4
4 · · ·xαn

n ∈ I. If xα4
4 · · ·xαn

n ∈ I then f ∈ IJ1(G). Thus, we may assume that 
xα4

4 · · ·xαn
n /∈ I, and x1x4 ∈ I. If α1 > 1, then f ∈ IJ1(G) as (x1x4) · (x1x2x3)|f . Thus, 

we may assume that α1 = 1. Similarly, we deduce that x2xi and x3xj ∈ I for some 
i, j ≥ 4. If |{4, i, j}| = 3, then f ∈ I3. If |{4, i, j}| = 1, then f ∈ J2(G), as {1, 2, 3, 4}
forms a clique of size 4. Now, assume that i = 4, and j 
= 4. In this case x1x2x4 ∈ J1(G); 
hence, (x1x2x4)(x3xj) ∈ IJ1(G). This concludes our proof. �
2.6. Degree complexes

For a monomial ideal I in S, Takayama in [37] found a combinatorial formula for 
dimK Hi

m(S/I)a for all a ∈ Zn in terms of certain simplicial complexes which are called 
degree complexes. For every a = (a1, . . . , an) ∈ Zn we set Ga = {i | ai < 0} and 
write xa = Πn

j=1x
aj

j . Thus, Ga = ∅ whenever a ∈ Nn. The degree complex Δa(I) is 
the simplicial complex whose faces are F \ Ga, where Ga ⊆ F ⊆ [n], so that for every 
minimal generator xb of I there exists an index i /∈ F with ai < bi. It is noted that 
Δa(I) may be either the empty set or {∅} and its vertex set may be a proper subset of 
[n].

Example 2.11. Let I = (x1x2, x1x3, x2x3, x3x4, x4x5, x5x2) be an edge ideal in S =
K[x1, . . . , x5]. Let a = (2, 2, 0, −1, 0). Then, Δa(I3) is the simplicial complex with facets 
{1}, {2}.

The regularity of a monomial ideal can be computed in terms of its degree complexes 
as follows.

Lemma 2.12. Let I be a monomial ideal in S. Then
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reg(S/I) = max{|a| + i | a ∈ Nn, i ≥ 0, H̃i−1(lkΔa(I) F ;K) 
= 0

for some F ∈ Δa(I) with F ∩ suppa = ∅}.

In particular, if I = IΔ is the Stanley-Reisner ideal of a simplicial complex Δ then 
reg(K[Δ]) = max{i | i ≥ 0, H̃i−1(lkΔ F ; K) 
= 0 for some F ∈ Δ}.

Proof. By [7, Proposition 2.5],

reg(S/I) = max
{
|a| + |Ga| + i | a ∈ Zn, i ≥ 0, H̃i−1(Δa(I);K) 
= 0

}
.

Assume that reg(S/I) = |a| + |Ga| + i for some a ∈ Zn. By maximality, we may assume 
that aj = −1 for all j ∈ Ga. Let a+ ∈ Nn by a+

j = aj if j /∈ Ga and a+
j = 0 otherwise. 

Then Δa(I) = lkΔ
a
+ (I) Ga; reg(S/I) = |a+| + i and H̃i−1(lkΔ

a
+ (I) Ga; K) 
= 0. It implies 

that

reg(S/I) ≤ max{|a| + i | a ∈ Nn, i ≥ 0, H̃i−1(lkΔa(I) F ;K) 
= 0

for some F ∈ Δa(I) with F ∩ suppa = ∅}.

Conversely, assume that regS/I = |a| + i for some a ∈ Nn, i ≥ 0 such that 
H̃i−1(lkΔa(I) F ; K) 
= 0 for some F ∈ Δa(I) with F ∩suppa = ∅. Let b ∈ Zn by bj = −1
if j ∈ F and bj = aj otherwise. Then H̃i−1(Δb(I); K) 
= 0 and |b| + |Gb| + i = |a| + i. 
Using [7, Proposition 2.5] again, we obtain the reverse inequality.

Now assume that I = IΔ is the Stanley-Reisner ideal of a simplicial complex Δ. By 
the proof of [37, Theorem 1], for each a ∈ Nn, if aj ≥ 1, then Δa(I) is either a cone over 
j or the void complex. Hence, a = 0. Since Δ0(I) = Δ, this completes our proof. �
Remark 2.13. Let I be a monomial ideal in S and a be a vector in Zn. In the proof 
of Theorem 1 in [37], Takayama showed that if there exists j ∈ [n] \ Ga such that 
aj ≥ ρj = max{degxj

(u) | u is a minimal monomial generator of I} then Δa(I) is either 
a cone over j or the void complex. Thus, we only consider exponents a belonging to the 
finite set

Γ(I) = {a ∈ Nn | aj < ρj for all j = 1, . . . , n}.

By Lemma 2.12 and Remark 2.13, we obtain an upper bound for the regularity of a 
monomial ideal in terms of its degree complexes.

Corollary 2.14. Let I be a monomial ideal in S. Then

reg(S/I) ≤ max{|a| + reg(K[Δa(I)]) | a ∈ Γ(I)}.

One might expect that this inequality becomes equality. Unfortunately, this is not the 
case.
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Example 2.15. Let I = x1(x2, x3, x4, x5) be an edge ideal in S = K[x1, . . . , x5]. For each 
s ≥ 2, let xa = (x2x3x4x5)s−1. Then, a ∈ Γ(Is). Furthermore, we have reg(S/Is) = 2s −
1, |a| = 4s − 4, and reg(K[Δa(Is))] = 0. Thus, reg(S/Is) < max{|a| + reg(K[Δa(Is)]) |
a ∈ Γ(Is)}.

Definition 2.16. Let I be a monomial ideal in S. A pair (a, i) ∈ Nn × N is called an 
extremal exponent of I, if there exists a face F ∈ Δa(I) with F ∩ suppa = ∅ such that 
H̃i−1(lkΔa(I) F ; K) 
= 0 and reg(S/I) = |a| + i.

Remark 2.17. We sometimes call a instead of (a, i) an extremal exponent of I. Let a
be an extremal exponent of I. By Remark 2.13, a belongs to Γ(I) and Δa(I) is not a 
cone over t with t ∈ suppa. By Lemma 2.2, for each t ∈ suppa, there exists a minimal 
generator g of 

√
I : xa such that xt | g.

From the definition, it is easy to see the following

Lemma 2.18. Let I, J be proper monomial ideals of S. Let (a, i) be an extremal exponent 
of I. If Δa(I) = Δa(J), then reg I ≤ reg J . In particular, if J ⊆ I and Δa(I) = Δa(J)
for all exponent a ∈ Nn such that xa /∈ I then reg I ≤ reg J .

Proof. By definition, there exists a face F ∈ Δa(I) such that F ∩ suppa = ∅, 
H̃i−1(lkΔa(I) F ; K) 
= 0, and regS/I = |a| + i. By Lemma 2.12 and the assumption 
that Δa(I) = Δa(J), we have regS/J ≥ |a| + i as required. �

The degree complexes of a monomial ideal can be computed via the Stanley-Reisner 
correspondence as follows.

Lemma 2.19. Let I be a monomial ideal in S and a ∈ Nn. Then

IΔa(I) =
√
I : xa.

In particular, xa ∈ I if and only if Δa(I) is the void complex.

Proof. This lemma appeared in [29], we include an argument here for completeness. Let 
G(I) be the set of minimal monomial generators of I. For any F ⊆ [n], we have

xF ∈ IΔa(I) ⇐⇒ F /∈ Δa(I) ⇐⇒ ∃ xb ∈ G(I) such that ∀ i /∈ F, bi ≤ ai

⇐⇒ ∃ t ∈ N \{0}, (xF )txa ∈ I ⇐⇒ xF ∈
√
I : xa. �

We first deduce the following inequality on the regularity of restriction of a monomial 
ideal.
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Lemma 2.20. Let I be a monomial ideal and xj be a variable. Then

reg(I, xj) ≤ reg I.

Proof. This is [7, Corollary 4.8]. We give an alternative proof here. Let J = (I, xj) and 
(a, i) be an extremal exponent of J . Then j /∈ supp(a). By Lemma 2.24,

√
J : xa =

√
I : xa + (xj).

In other words, Δa(J) is the restriction of Δa(I) to [n] \ {j}. Let F be a face of Δa(I)
such that H̃i−1(lkΔa(J) F ; K) 
= 0. Denote Δ = lkΔa(I) F , Γ = lkΔa(J) F , and stΔ{j} =
lkΔ{j} ∗ {j} the star of {j} in Δ. We have

Δ = Γ ∪ stΔ{j} and lkΔ{j} = Γ ∩ stΔ{j}.

Applying the Mayer-Vietoris sequence, we get the following long exact sequence of ho-
mology groups

· · · −→ H̃i−1(lkΔ{j}) −→ H̃i−1(Γ) ⊕ H̃i(stΔ{j}) −→ H̃i−1(Δ) −→ · · ·

Since the middle term is non-zero, either the term on the left or the term on the right is 
non-zero. The conclusion follows from Lemma 2.12. �
Remark 2.21. As in the proof of [4, Lemma 4.2], we may use the upper Koszul complexes 
to deduce a stronger inequality on Betti numbers.

As a consequence, we have

Corollary 2.22. Let J be a monomial ideal in S. Let V ⊆ [n]. We have

reg(JV ) ≤ reg(J).

Proof. Let {t, . . . , n} = [n] \V . Then, JV +(xt, . . . , xn) = J+(xt, . . . , xn). The conclusion 
follows from Lemma 2.20 and the fact that xt, . . . , xn is a regular sequence with respect 
to S/JV . �

The following lemma is essential to using the induction method in studying the reg-
ularity of a monomial ideal.

Lemma 2.23. Let I be a monomial ideal and (a, i) ∈ Nn × N be an extremal exponent of 
I. Assume that xj is a variable that appears in 

√
I : xa and j /∈ suppa. Then

reg(I) = reg(I, xj) = reg IV ,

where V = [n] \ {j}.
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Proof. Let J = (I, xj) = I + (xj). Since IV + (xj) = I + (xj) and xj is a regular 
element of S/IV , we have regS/IV = regS/J . By Lemma 2.20, it suffices to prove that 
reg I ≤ reg J . Since j /∈ suppa, by Lemma 2.24, we have

√
J : xa =

√
I : xa + (xj) =

√
I : xa.

By Lemma 2.19, Δa(I) = Δa(J). The conclusion follows from Lemma 2.18. �
2.7. Radicals of colon ideals

For a monomial f in S, the radical of f is defined by 
√
f =

∏
i∈supp f xi. We start 

with a simple observation.

Lemma 2.24. Let I be a monomial ideal in S generated by the monomials f1, . . . , fr and 
a ∈ Nn. Then 

√
I : xa is generated by 

√
f1/ gcd(f1, xa), . . . , 

√
fr/ gcd(fr, xa).

Proof. Let g be a minimal generator of 
√
I : xa. Then there exists a natural number 

t > 0 such that gtxa ∈ I. We may assume that f1 | gtxa. Thus, f1/ gcd(f1, xa) | gt. 
Taking radicals, we deduce that 

√
f1/ gcd(f1, xa) | g. This concludes our proof. �

Assume that I = I(G) is the edge ideal of a simple graph G. We now recall the 
following description of generators of 

√
Is : xa given in [30, Lemma 2.18]. This helps to 

simplify our arguments later on. The I-order of f is defined by

ordI(f) = max(t | f ∈ It).

From the definition, it is clear that if g | f , then ordI(g) ≤ ordI(f). Let f be a monomial 
in S and a be an exponent in Nn. The a-term excluding f is defined by

Xa(f) =
∏

u/∈N [supp f ]

xau
u .

When f = xF , we also use Xa(F ) for Xa(xF ).

Lemma 2.25. Let F be an independent set of G and a be an exponent in Nn. Assume 
that ∑

j∈N(F )

aj + ordI(Xa(F )) ≥ s, (2.1)

then xF ∈
√
Is : xa. Conversely, if xF is a minimal generator of 

√
Is : xa then (2.1)

holds.

The following lemma is also useful for comparing radicals of two colon ideals.
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Lemma 2.26. Let J ⊆ L be two monomial ideals in S and a be an exponent such that 
xa /∈ L. Let P be a minimal generator of L and f =

√
P/ gcd(P, xa). Assume that f

belongs to 
√
J : P . Then f belongs to 

√
J : xa.

Proof. Since f =
√

P/ gcd(P, xa), there exists u > 0 such that P | fuxa. Since f ∈√
J : P , there exists v > 0 such that fvP ∈ J . Thus, fu+vxa which is divisible by fuP

belongs to J . Hence, f ∈
√
J : xa. �

3. Proof of Theorem 1.1 for s = 2

Let I = I(G) be the edge ideal of a simple graph G with vertex set [n]. In this section, 
we prove Theorem 1.1 for s = 2. First, we give a property of the degree complexes of the 
second symbolic/ordinary power of I.

Lemma 3.1. Let I = I(G) and a ∈ Nn such that xa /∈ I(2). Then,√
I(2) : xa =

√
I2 : xa.

In particular, Δa(I(2)) = Δa(I2).

Proof. Since I2 ⊆ I(2), it suffices to prove that if f is a minimal generator of √
I(2) : xa then f ∈

√
I2 : xa. By Theorem 2.9 and Lemma 2.24, we may assume that 

f =
√

xC/ gcd(xC , xa) where C is a triangle of G. Since f =
√

xC/ gcd(xC , xa) and 
xa /∈ I(2), we have ∅ 
= supp f ⊆ suppC. Since xjxC ∈ I2 for all j ∈ suppC, f · xC ∈ I2. 
By Lemma 2.26, f ∈

√
I2 : xa, as required.

The last part follows from Lemma 2.19. �
To avoid the repetition of arguments in the latter sections, we record the following 

situation, which occurs quite frequently.

Lemma 3.2. Assume that s ≥ 2 and reg I(H)s ≤ reg I(H)(s) for all simple graphs H
on at most n − 1 vertices. Let I = I(G) be the edge ideal of a simple graph G on n
vertices. Let a be an extremal exponent of Is. Assume that there exists an r ∈ [n] such 
that xr ∈

√
Is : xa and r /∈ suppa. Then reg I(G)s ≤ reg I(G)(s).

Proof. Let V = [n] \ {r} and J = IV . By Lemma 2.23, reg Is = reg Js. By assumption, 
reg Js ≤ reg J (s). By Corollary 2.7 and Corollary 2.22, reg J (s) ≤ reg I(s). The conclusion 
follows. �

We are now in a position to prove the main result of this section.

Theorem 3.3. Let I = I(G) be the edge ideal of a simple graph G. Then

reg(I(2)) = reg(I2).
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Proof. By Lemma 2.18 and Lemma 3.1, reg I(2) ≤ reg I2.
Conversely, we prove by induction on n = |V (G)| that reg(S/I2) ≤ reg(S/I(2)). The 

base case n = 2 is clear. By results of [21,33], we may assume that G is connected and 
has no isolated vertices.

Let (a, i) ∈ Nn × N be an extremal exponent of I2. By Lemma 3.1 and Lemma 2.18, 
we may assume that there exists a triangle of G, say C = 123 such that xa is divisible 
by xC .

If n = 3, then I = (x1x2, x2x3, x1x3). In this case, we have reg I2 = reg I(2) = 4. Thus, 
we may assume that n ≥ 4. Since G is connected and has no isolated vertices, there exists 
r ∈ N({1, 2, 3}) \{1, 2, 3}. Since xa /∈ I2, we must have r /∈ suppa. Since r ∈ N({1, 2, 3}), 
xr ∈

√
I2 : xa. By Lemma 3.2, reg I2 ≤ reg I(2). The conclusion follows. �

4. Proof of Theorem 1.1 for s = 3

Let I = I(G) be the edge ideal of a simple graph G with vertex set [n]. In this section, 
we prove Theorem 1.1 for s = 3. First, we prove a technical lemma for degree complexes 
of the third symbolic/ordinary power of I.

Lemma 4.1. Let a ∈ Nn be an exponent such that xa /∈ I(3). Assume that 
√
I(3) : xa 
=√

I3 : xa. Let f be a minimal monomial generator of 
√
I(3) : xa such that f /∈

√
I3 : xa. 

Then

(1) there exist a triangle 123 of G and v /∈ {1, 2, 3} such that x1x2x3xv | xa,
(2) deg f = 1 and supp f � suppa.

Proof. By Lemma 2.24, there exists a minimal generator P of I(3) such that f =√
P/ gcd(P, xa). Since xa /∈ I(3), we have

∅ 
= supp f ⊆ suppP ⊆ supp f ∪ suppa. (4.1)

By Theorem 2.10, there are three cases as follows.

Case 1. P = xC , where C is a clique of size 4 of G. By Eq. (4.1) and the fact that 
x2
jxC ∈ I3 for any j ∈ suppC, we have f ∈

√
I3 : xC . By Lemma 2.26, f ∈

√
I3 : xa, a 

contradiction.

Case 2. P = xC , where C is a 5-cycle of G. By Eq. (4.1) and the fact that xjxC ∈ I3 for 
any j ∈ suppC, we have f ∈

√
I3 : xC . By Lemma 2.26, f ∈

√
I3 : xa, a contradiction.

Case 3. P ∈ IJ1(G). We may assume that P = x1x2x3xuxv where 123 is a triangle and 
uv is an edge of G. Note that u, v might belong to {1, 2, 3}. By Lemma 2.26 and the fact 
that xjP ∈ I3 for any j ∈ N [{1, 2, 3}], we must have
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supp f ∩N [{1, 2, 3}] = ∅. (4.2)

By Eq. (4.1) and Eq. (4.2), we have supp f ⊆ {u, v}. Since f /∈
√
I3 : xa, f /∈ I. Thus, 

deg f = 1. We may assume that f = xu. By Eq. (4.1), Eq. (4.2), and the assumption 
that f =

√
P/ gcd(P, xa), we deduce that

v /∈ {1, 2, 3} and xvx1x2x3 | xa.

Since xa /∈ I(3), u /∈ suppa. The conclusion follows. �
Example 4.2. One might hope that in general we have for a ∈ Nn and xa /∈ I(s) then√

I(s) : xa =
√
Is : xa + (variables).

Unfortunately, this is not the case for s ≥ 4. Indeed, let

I = (x1x2, x2x3, x3x1, x1x4, x4x5, x2x6, x6x7) and xa = x1x2x3x4x6,

then x5x7 is a minimal generator of 
√
I(4) : xa but does not belong to 

√
I4 : xa.

We are now in a position to prove the first inequality of the main result of this section.

Theorem 4.3. Let I = I(G) be the edge ideal of a simple graph G. Then

reg(I(3)) ≤ reg(I3).

Proof. We prove by induction on n = |V (G)|. The base case n = 2 is obvious. Let (a, i) be 
an extremal exponent of I(3). By Lemma 2.18, we may assume that Δa(I(3)) 
= Δa(I3). 
By Lemma 2.19 and Lemma 4.1, there exists a variable xt such that xt ∈

√
I(3) : xa

and t /∈ suppa. Let V = [n] \ {t} and J = IV . By Lemma 2.23, reg I(3) = reg J (3). By 
induction, reg J (3) ≤ reg J3. By Corollary 2.22 and the fact that J3 is the restriction of 
I3 to V , reg J3 ≤ reg I3. The conclusion follows. �

To prove the reverse inequality reg(S/I3) ≤ reg(S/I(3)), we also use induction on 
n = |V (G)|. The base case n = 2 is obvious. By results of [21,33], we may assume that 
G is connected and has no isolated vertices. Throughout the rest of this section, we 
always assume that (a, i) ∈ Nn × N is an extremal exponent of I3, where I = I(G). It 
is clear that xa /∈ I3. Then, we fix a face F ∈ Δa(I3) such that F ∩ supp(a) = ∅ and 
H̃i−1(lkΔa(I3) F ; K) 
= 0. By Lemma 2.18, it suffices to consider the cases xa /∈ I(3) with 
Δa(I(3)) 
= Δa(I3) or xa ∈ I(3). We now proceed to each form of a.

Lemma 4.4. Assume that xa = xC · f , where C is a 5-cycle of G and f is a monomial in 
S. Then reg I3 ≤ reg I(3).
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Proof. Since xa /∈ I3, supp(f) ∩ N(C) = ∅ and supp(f) is an independent set of G. 
First, assume that [n] properly contains suppa. Since G is connected and has no isolated 
vertices, there exists an r such that r ∈ N(suppa) \suppa. It is clear that xr ∈

√
I3 : xa. 

By Lemma 3.2, we have reg I3 ≤ reg I(3). Thus, we may assume that [n] = suppa =
supp f∪suppC. Since supp f∩N(C) = ∅ and G is connected and has no isolated vertices, 
we must have f = 1, n = 5, and xa = xC . In this case, Δa(I3) = {∅}. Thus, i = 0 and 
regS/I3 = |a| + i = 5 ≤ regS/I(3). �
Lemma 4.5. Assume that xa ∈ IJ1(G). Then reg(I3) ≤ reg(I(3)).

Proof. Without loss of generality, we may assume that xa = x1x2x3xuxv · f , where 
C = 123 is a 3-cycle, uv is an edge of G, and f is a monomial in S. Since xa /∈ I3,

supp f is an independent set and supp(f) ∩N({1, 2, 3}) = ∅. (4.3)

First, assume that there exists an r in N({1, 2, 3} ∪ supp f) \ suppa. It is clear that 
xr ∈

√
I3 : xa. By Lemma 3.2, reg I3 ≤ reg I(3). Thus, we may assume that

N({1, 2, 3} ∪ supp f) ⊆ suppa = {1, 2, 3} ∪ {u, v} ∪ supp f. (4.4)

By Eq. (4.3), Eq. (4.4), and the assumption that G is connected and has no isolated 
vertices, we must have N({1, 2, 3}) ∩ {u, v} 
= ∅. We may assume that v ∈ N({1, 2, 3}). 
In particular, x1x2x3xv ∈ I2. Thus,

xj ∈
√
I3 : xa for all j ∈ N({1, 2, 3} ∪ {u} ∪ supp f). (4.5)

Since xa /∈ I3,

fxu /∈ I =⇒ N(supp f) ∩ {u} = ∅. (4.6)

We now claim that u ∈ N({1, 2, 3}). By Remark 2.17, there exists a minimal generator 
g of 

√
I3 : xa such that xu | g. By Lemma 2.24, there exists a minimal generator P of 

I3 such that g =
√

P/ gcd(P, xa). Since xu | g and u ∈ suppa, x2
u | P . Thus, there 

exists r, t ∈ N(u) such that x2
uxrxt | P . By Eq. (4.5) and the assumption that g =√

P/ gcd(P, xa) is a minimal generator of 
√
I3 : xa, we must have xrxt | xa. Since xa /∈

I3, we deduce that {r, t} ∩supp f = ∅. Hence, xrxt | x1x2x3xv. Thus, {r, t} ∩{1, 2, 3} 
= ∅. 
Since r, t ∈ N(u), we deduce that u ∈ N({1, 2, 3}).

Since xa /∈ I3, we have

N(supp f) ∩ ({1, 2, 3} ∪ {u, v}) = ∅. (4.7)

By Eq. (4.4), Eq. (4.7), and the assumption that G is connected and has no isolated 
vertices, we must have f = 1, xa = x1x2x3xuxv, and [n] = {1, 2, 3} ∪ {u, v}. Thus, 
Δa(I3) = {∅}. Hence, i = 0 and regS/I3 = |a| + i = 5 ≤ regS/I(3). �
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In the remainder of this section, we use the following notation. For a subset V ⊆ [n], 
(V ) denotes the ideal (xj | j ∈ V ). When V = ∅, by convention, (V ) denotes the zero 
ideal. The notation (V ) · (W ) means the product of two ideals (V ) and (W ). For a 
monomial ideal M , we denote by G(M) the set of minimal monomial generators of M
and

suppG(M) = ∪f∈G(M) supp f.

We have the following simple observation.

Lemma 4.6. Let L, M, N be monomial ideals of S. Assume that suppG(M) ∩suppG(N) =
∅. Then

L + M ·N = (L + M) ∩ (L + N).

Proof. Since suppG(M) ∩ suppG(N) = ∅, we have M ·N = M ∩N . The lemma follows 
from the fact that L + (M ∩N) = (L + M) ∩ (L + N). �
Lemma 4.7. Assume that xa = xC · f , where C is a clique of size 4 of G and f is a 
monomial in S. Then reg(I3) ≤ reg(I(3)).

Proof. Without loss of generality, we may assume that xa = x1x2x3x4 · f , where 1234
is a clique of size 4 of G and supp f is an independent set. Using Lemma 4.5, we may 
assume that N(supp(f)) ∩ {1, 2, 3, 4} = ∅.

First, assume that there exists an r in N(supp f) \suppa. It is clear that xr ∈
√
I3 : xa. 

By Lemma 3.2, reg I3 ≤ reg I(3). Thus, we may assume that N(supp f) ⊆ suppa =
{1, 2, 3, 4} ∪ supp f . Since N(supp f) ∩ {1, 2, 3, 4} = ∅ and the assumption that G is 
connected and has no isolated vertices, we have f = 1 and xa = x1x2x3x4.

If there exists an r in N(1) ∩N(2) \ {3, 4}, then xr ∈
√
I3 : xa and r /∈ supp(a). By 

Lemma 3.2, reg I3 ≤ reg I(3). Hence, we may assume that

N(j) ∩N(k) = {1, 2, 3, 4} \ {j, k} for all 1 ≤ j 
= k ≤ 4. (4.8)

For each V ⊆ {1, 2, 3, 4}, let N∗(V ) = N(V ) \ {1, 2, 3, 4}. We claim

√
I3 : xa = I +

∑
1≤j<k≤4

(N∗(j)) · (N∗(k)) + (x1, x2, x3, x4). (4.9)

Proof of Eq. (4.9). It is clear that the left hand side contains the right hand side. Now 
assume that xU /∈ I is a minimal generator of 

√
I3 : xa with U ∩ {1, 2, 3, 4} = ∅. By 

Lemma 2.25, we have

|N(U) ∩ suppa| + ordI(Xa(U)) ≥ 3.
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Since Xa(U) | xa has order at most 2, |N(U) ∩ suppa| ≥ 1. We may assume that 
1 ∈ N(U) ∩suppa. Then Xa(U) | x2x3x4 has order at most 1. Thus |N(U) ∩suppa| ≥ 2. 
By Eq. (4.8), the conclusion follows. �

Let L = I + (N∗({1, 2})) · (N∗(3)) + (N∗(1)) · (N∗(2)) + (x1, x2, x3, x4). By Eq. (4.8), 
Eq. (4.9), and Lemma 4.6,

√
I3 : xa = (L + (N∗({1, 2, 3}))) ∩ (L + (N∗(4))).

Let Δ = Δa(I3), Γ1 = Δ(L +(N∗({1, 2, 3}))), and Γ2 = Δ(L +(N∗(4))). By Lemma 2.2, 
Δ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 is the simplicial complex of

L + (N∗({1, 2, 3})) + L + (N∗(4)) = I + (xj | j ∈ N({1, 2, 3, 4})).

Note that lkΔ F = lkΓ1 F ∪ lkΓ2 F and lkΓ1 F ∩ lkΓ2 F = lkΓ1∩Γ2 F . By Lemma 2.5, there 
are three cases.

Case 1. H̃i−2(lkΓ1∩Γ2 F ; K) 
= 0. We have
√
I3 : xb = I + (xj | j ∈ N({1, 2, 3, 4})),

where xb = (x1x2)(x1x3x4). By Lemma 2.19, Δb(I3) = Γ1 ∩ Γ2. Thus, |b| + i − 1 ≤
reg(S/I3) = |a| + i = |b| + i − 1. It implies that (b; i − 1) is also an extremal exponent 
of I3. By Lemma 4.5, reg I3 ≤ reg I(3).

Case 2. H̃i−1(lkΓ1 F ; K) 
= 0. We have√
I3 : (x2

1x
2
2x3) = I + (xj | j ∈ N({1, 2, 3})) = L + (N∗({1, 2, 3})).

By Lemma 2.19, Γ1 = Δx2
1x

2
2x3(I3). By Lemma 2.12, reg(S/I3) ≥ |b| + i = 5 + i > |a| + i, 

a contradiction.

Case 3. H̃i−1(lkΓ2 F ; K) 
= 0. We have

L + (N∗(4)) = I + (N∗({1, 2})) · (N∗(3)) + (N∗(1)) · (N∗(2)) + (xj | j ∈ N [4]).

Let H = I + (N∗(1)) · (N∗(2)) + (xj | j ∈ N [4]). By Lemma 4.6 and Eq. (4.8),

L + (N∗(4)) = (H + (N∗({1, 2}))) ∩ (H + (N∗(3))).

Let γ1 = Δ(H + (N∗({1, 2}))) = Δ(I + (N({1, 2, 4}))) and γ2 = Δ(H + (N∗(3))) =
Δ(I + N∗(1) · N∗(2) + (N({3, 4}))). By Lemma 2.2, Γ2 = γ1 ∪ γ2 and γ1 ∩ γ2 is the 
simplicial complex of
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I + (N({1, 2, 4})) + I + (N∗(1)) · (N∗(2)) + (N({3, 4})) = I + (xj | j ∈ N({1, 2, 3, 4})).

Note that lkΓ2 F = lkγ1 F ∪ lkγ2 F and lkγ1 F ∩ lkγ2 F = lkγ1∩γ2 F . By Lemma 2.5, there 
are three subcases. The cases H̃i−2(lkγ1 F ∩ lkγ2 F ; K) 
= 0 and H̃i−1(lkγ1 F ; K) 
= 0 can 
be done similarly to Case 1 and Case 2, respectively. It remains to consider the case 
H̃i−1(lkγ2 F ; K) 
= 0. By Lemma 4.6 and Eq. (4.8),

I + (N∗(1)) · (N∗(2)) + (N({3, 4})) = (I + (N({1, 3, 4}))) ∩ (I + (N({2, 3, 4}))).

Let δ1 = Δ(I+(N({1, 3, 4}))) and δ2 = Δ(I+(N({2, 3, 4}))). By Lemma 2.2, γ2 = δ1∪δ2
and δ1 ∩ δ2 is the simplicial complex of I + (xj | j ∈ N({1, 2, 3, 4})). By Lemma 2.5, 
one of the homology groups H̃i−1(lkδ1 F ; K), H̃i−1(lkδ2 F ; K), H̃i−2(lkδ1 F ∩ lkδ2 F ; K)
is non-zero. The cases H̃i−1(lkδ1 F ; K) 
= 0, H̃i−1(lkδ2 F ; K) 
= 0 can be done similarly 
to Case 2. The case H̃i−2(lkδ1 F ∩ lkδ2 F ; K) 
= 0 can be done similarly to Case 1. �
Lemma 4.8. Assume that xa /∈ I(3) and Δa(I(3)) 
= Δa(I3). Then reg(I3) ≤ reg(I(3)).

Proof. We first have

Claim B. xa is squarefree.

Proof of Claim B. By Lemma 4.1, we may assume that xa = xa1
1 · · ·xat

t for some t ≥ 4. 
Fix j ∈ {1, . . . , t}. By Remark 2.17 there exists a minimal generator xU of 

√
I3 : xa

such that xj | xU . By Lemma 2.24, there exists a minimal generator P of I3 such that 
xU =

√
P/ gcd(P, xa). Assume by contradiction that x2

j | xa. Then

xr ∈
√
I3 : xa for all r ∈ N(j). (4.10)

Since xj | xU and x2
j | xa, it implies that x3

j | P . In other words, there exists u, v, w ∈
N(j) such that P = x3

jxuxvxw. By Eq. (4.10) and the minimality of xU , we must have 
xU = xj and xuxvxw | xa. First, assume that {u, v, w} \ {1, 2, 3} 
= ∅, say u /∈ {1, 2, 3}. 
Then (x1x2x3)(xjxu) | xa. Hence, xa ∈ I(3), a contradiction. Thus, we may assume that 
u, v, w ∈ {1, 2, 3}. There are two cases.

B. 1. j ∈ {1, 2, 3}. We may assume that j = 1. Since u, v, w 
= 1, we must have either 
x2

2 or x2
3 divides xa. In either cases, xa ∈ I(3), a contradiction.

B. 2. j /∈ {1, 2, 3}. First, assume that {u, v, w} is a proper subset of {1, 2, 3}. We may 
assume that u = v = 1. Then (x2

jx
2
1)(x2x3) | xa. Hence, xa ∈ I(3), a contradiction. 

Now, assume that {u, v, w} = {1, 2, 3} then {1, 2, 3, j} forms a clique of size 4. Hence, 
xa ∈ I(3), a contradiction. �
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By Lemma 4.1 and Claim B, we may assume that xa = x1x2x3 · f where 123 is a 
triangle of G and f = x4 · · ·xt for some t ≥ 4. Since xa /∈ I(3), supp f is an independent 
set.

First, assume that there exist r ∈ supp f ∩N({1, 2, 3}) and s ∈ supp f \N({1, 2, 3}). 
Since G is connected and has no isolated vertices, there exists a neighbour of s, say 
u. Since supp f is an independent set, u /∈ suppa. Furthermore, xu ∈

√
I3 : xa as 

xuxsx1x2x3xr ∈ I3. By Lemma 3.2, reg I3 ≤ reg I(3). Thus, we may assume that ei-
ther {4, . . . , t} ∩N({1, 2, 3}) = ∅ or {4, . . . , t} ⊆ N({1, 2, 3}).

Second, assume that there exists an r in one of the following sets (N(j) ∩ N(k)) \
{1, 2, 3} for some 4 ≤ j < k ≤ t, (N({1, 2, 3}) ∩N({4, . . . , t})) \ {1, 2, 3}, N(1) ∩N(2) ∩
N(3). Then, xr ∈

√
I3 : xa and r /∈ suppa. By Lemma 3.2, reg I3 ≤ reg I(3). Thus, we 

may assume that

N(j) ∩N(k) ⊆ {1, 2, 3} for all 4 ≤ j < k ≤ t. (4.11)

N({1, 2, 3}) ∩N({4, . . . , t}) ⊆ {1, 2, 3}. (4.12)

N(1) ∩N(2) ∩N(3) = ∅. (4.13)

Case 1. {4, . . . , t} ∩N({1, 2, 3}) = ∅. In this case, Eq. (4.11) and Eq. (4.12) become

N(j) ∩N(k) = ∅ for all 4 ≤ j < k ≤ t. (4.14)

N({1, 2, 3}) ∩N({4, . . . , t}) = ∅. (4.15)

For each j ∈ {1, 2, 3}, let N∗(j) = N(j) \ {1, 2, 3}. We have

Claim C.

√
I3 : xa = I +

∑
4≤j<k≤t

(N(j)) · (N(k)) + (N({1, 2, 3})) · (N({4, . . . , t}))

+ (N∗(1)) · (N∗(2)) · (N∗(3)).

Proof of Claim C. It is clear that the left hand side contains the right hand side. Let U
be an independent set of G such that xU is a minimal monomial generator of 

√
I3 : xa. 

It suffices to prove that xU belongs to the right hand side. By Lemma 2.25,

|N(U) ∩ suppa| + ordI(Xa(U)) ≥ 3.

Since ordI(Xa(U)) ≤ 1, |N(U) ∩ suppa| ≥ 2. By Eq. (4.14) and Eq. (4.15), if 
N(U) ∩ {4, . . . , t} 
= ∅ then xU belongs to 

∑
4≤j<k≤t(N∗(j)) · (N∗(k)) + (N({1, 2, 3})) ·

(N∗({4, . . . , t})). Thus, we may assume that N(U) ∩suppa ⊆ {1, 2, 3}. Hence, Xa(U) has 
order zero and |N(U) ∩ suppa| = 3. By Eq. (4.13), xU ∈ (N∗(1)) · (N∗(2)) · (N∗(3)). �
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First, assume that t ≥ 5. Let

H = I +
∑

4≤j<k≤t,(j,k) 
=(t−1,t)

(N(j)) · (N(k)) + (N({1, 2, 3})) · (N({4, . . . , t}))

+ N∗(1) ·N∗(2) ·N∗(3).

By Lemma 4.6, Claim C, and Eq. (4.14),
√
I3 : xa = (H + (N(t− 1))) ∩ (H + (N(t))).

Let Γ1 = Δ(H +(N(t − 1))) and Γ2 = Δ(H +(N(t))). By Lemma 2.2, Δa(I3) = Γ1 ∪Γ2
and Γ1 ∩ Γ2 = Δ(H + (N({t − 1, t}))). By Lemma 2.2, Γ1 is a cone over t − 1, Γ2 and 
Γ1 ∩ Γ2 are cones over t. Since F ∩ supp(a) = ∅, we have t − 1, t /∈ F . Thus, lkΓ1 F is 
a cone over t − 1, lkΓ2 F and lkΓ1 F ∩ lkΓ2 F are cones over t. By Lemma 2.5, this is a 
contradiction.

Thus, we must have t = 4. Let H = I+N∗(1) ·N∗(2) ·N∗(3). By Lemma 4.6, Claim C, 
and Eq. (4.15),

√
I3 : xa = (H + (N({1, 2, 3}))) ∩ (H + (N(4))).

Let Γ1 = Δ(H + (N({1, 2, 3}))) and Γ2 = Δ(H + (N(4))). By Lemma 2.2, Δa(I3) =
Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = Δ(H + (xj | j ∈ N({1, 2, 3, 4}))). By Lemma 2.2 and Eq. (4.15), 
Γ2 and Γ1 ∩ Γ2 are cones over 4. Since F ∩ supp(a) = ∅, we have 4 /∈ F . Thus, lkΓ2 F

and lkΓ1 F ∩ lkΓ2 F are cones over 4. By Lemma 2.5, H̃i−1(lkΓ1 F ; K) 
= 0. On the other 
hand,

H + (xj | j ∈ N({1, 2, 3}) = I + (xj | j ∈ N({1, 2, 3}).

Let b = x2
1x

2
2x3. Then 

√
I3 : xb = I + (xj | j ∈ N({1, 2, 3})). By Lemma 2.12 and 

Lemma 2.19,

5 + i = |b| + i ≤ reg(S/I3) = |a| + i = 4 + i,

which is a contradiction.

Case 2. {4, . . . , t} ⊆ N({1, 2, 3}). If t ≥ 5, we have a contradiction by

Claim D. Δa(I3) is a cone over 4.

Proof of Claim D. Since xa /∈ I(3), |N(4) ∩ {1, 2, 3}| ≤ 2. Assume by contradiction that 
there exists a minimal generator g of 

√
I3 : xa such that x4 | g. By Lemma 2.24, there 

exists a minimal generator P of I3 such that g =
√

P/ gcd(P, xa). Since x4 | g, x2
4 | P . 

Hence, we may write P = x2
4xsxuxvxw where s, u ∈ N(4) and xvxw ∈ I. Since t ≥
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5 and t ∈ N({1, 2, 3}), we have xs, xu ∈
√
I3 : xa. By the minimality of g, we must 

have xsxu | xa. Since xa = x1 · · ·xt and |N(4) ∩ {1, 2, 3}| ≤ 2, we may assume that 
s = 1, u = 2 and x4x3 /∈ I. Since xa /∈ I(3) and 412 is a triangle of G, we must have 
x3x5 · · ·xt /∈ I. Furthermore, g = x4

√
xvxw/ gcd(xvxw, x3x5 · · ·xt). Since g is minimal, 

|{v, w} ∩{3, 5, . . . , t}| = 1. We may assume that v ∈ {3, 5, . . . , t}. Then g = x4xw. There 
are two cases.

D. 1. v = 3. Since x3x5 /∈ I and 5 ∈ N({1, 2, 3}), we may assume that x5x1 ∈ I. Since 
(x1x5)(x2x4)(x3xw) ∈ I3, xw ∈

√
I3 : xa.

D. 2. v ∈ {5, . . . , t}. Since (x1x4)(x2x3)(xvxw) ∈ I3, xw ∈
√
I3 : xa.

Hence, g is not minimal, a contradiction. �
Thus, t = 4. Since xa /∈ I(3), |N(4) ∩ {1, 2, 3}| ≤ 2. There are two subcases:

Subcase 2.1. |N(4) ∩ {1, 2, 3}| = 1. Assume that x1x4 ∈ I and x2x4, x3x4 /∈ I. For 
each V ⊆ {1, 2, 3, 4}, let N∗(V ) = N(V ) \ {1}. First, assume that there exists r ∈
N∗(2) ∩N∗(3). Then xr ∈

√
I3 : xa as x2

rx2x3(x1x4) ∈ I3. Furthermore, r /∈ suppa. By 
Lemma 3.2, reg I3 ≤ reg I(3). Thus, we may assume that

N∗(2) ∩N∗(3) = ∅. (4.16)

Since 2, 3 /∈ N(4), Eq. (4.12) becomes

N∗({1, 2, 3}) ∩N∗(4) = ∅. (4.17)

We have

√
I3 : xa = I + (N∗(2)) · (N∗(3)) + (N∗({1, 2, 3})) · (N∗(4)) + (x1). (4.18)

Proof of Eq. (4.18). It is clear that the left hand side contains the right hand side. It 
suffices to prove that if U is an independent set of G with 1 /∈ U and xU is a minimal 
generator of 

√
I3 : xa then xU belongs to the right hand side. By Lemma 2.25,

|N(U) ∩ suppa| + ordI(Xa(U)) ≥ 3.

Since Xa(U) | xa has order at most 2, |N(U) ∩ suppa| ≥ 1. Let j be an element of 
N(U) ∩ suppa. Then Xa(U), which is a divisor of xa/xj has order at most 1. Thus, 
|N(U) ∩ suppa| ≥ 2. If N(U) ∩ suppa = {1, 2} or {1, 3}, then Xa(U) has order zero. 
Hence, |N(U) ∩ suppa| ≥ 3. Therefore, N(U) ∩ suppa must contain j 
= k, j, k ∈
{1, 2, 3, 4} such that {j, k} 
= {1, 2}, {1, 3}. By Eq. (4.16) and Eq. (4.17), xU belongs to 
the right hand side. �



24 N.C. Minh et al. / Journal of Combinatorial Theory, Series A 190 (2022) 105621
Let J = I + (x1) + (N∗(2)) · (N∗(3)). By Lemma 4.6, Eq. (4.18), and Eq. (4.17),
√
I3 : xa = (J + (N∗(4))) ∩ (J + (N∗({1, 2, 3}))).

Let Γ1 = Δ(J + (N∗(4))) and Γ2 = Δ(J + (N∗({1, 2, 3}))). By Lemma 2.2, Δa(I3) =
Γ1∪Γ2 and Γ1∩Γ2 = Δ(J+(N∗({1, 2, 3, 4}))) = Δ(I+(N({1, 2, 3, 4}))). By Lemma 2.2, 
Γ1 is a cone over 4. Since F ∩ suppa = ∅, we have 4 /∈ F . Thus, lkΓ1 F is a cone over 4. 
By Lemma 2.5, either H̃i−1(lkΓ2 F ; K) 
= 0 or H̃i−2(lkΓ1∩Γ2 F ; K) 
= 0.

Subcase 2.1.1. H̃i−1(lkΓ2 F ; K) 
= 0. Let b = x2
1x

2
2x3. Then

√
I3 : xb = I + (xj | j ∈ N({1, 2, 3})) = J + (xj | j ∈ N∗({1, 2, 3})).

By Lemma 2.12 and Lemma 2.19, 5 + i = |b| + i ≤ reg(S/I3) = |a| + i = 4 + i, which is 
a contradiction.

Subcase 2.1.2. H̃i−2(lkΓ1∩Γ2 F ; K) 
= 0. Let b = x2
1x2x3x4 = (x1x4)(x1x2x3). Then

√
I3 : xb = I + (xj | j ∈ N({1, 2, 3, 4})) = J + (xj | j ∈ N∗({1, 2, 3, 4})).

By Lemma 2.12 and Lemma 2.19, |b| + i − 1 ≤ reg(S/I3) = |a| + i = |b| + i − 1. Hence, 
(b, i − 1) is also an extremal exponent of I3. By Lemma 4.5, reg I3 ≤ reg I(3).

Subcase 2.2. |N(4) ∩ {1, 2, 3}| = 2. Assume that x1x4, x4x2 ∈ I and x3x4 /∈ I. For 
each V ⊆ {1, 2, 3, 4}, let N∗(V ) = N(V ) \ {1, 2}. First, assume that there exists r ∈
N∗(3) ∩N∗({1, 2}). Then xr ∈

√
I3 : xa and r /∈ suppa. By Lemma 3.2, reg I3 ≤ reg I(3). 

Thus, we may assume that

N∗(3) ∩N∗({1, 2}) = ∅. (4.19)

Since 3 /∈ N(4), Eq. (4.12) becomes

N∗({1, 2, 3}) ∩N∗(4) = ∅. (4.20)

We have
√
I3 : xa = I + (N∗(4)) · (N∗({1, 2, 3})) + (N∗(3)) · (N∗({1, 2})) + (x1, x2). (4.21)

Proof of Eq. (4.21). It is clear that the left hand side contains the right hand side. Now 
assume that U is an independent set of G with 1, 2 /∈ suppU and xU is a minimal 
generator of 

√
I3 : xa. By Lemma 2.25,

|N(U) ∩ suppa| + ordI(Xa(U)) ≥ 3.

Since Xa(U) | xa has order at most 2, |N(U) ∩ suppa| ≥ 1. Let j be an element of 
N(U) ∩ suppa. Then Xa(U), which is a divisor of xa/xj has order at most 1. Thus, 
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|N(U) ∩ suppa| ≥ 2. If N(U) ∩ suppa = {1, 2}, then Xa(U) has order zero. Hence 
|N(U) ∩ suppa| ≥ 3. Therefore, N(U) ∩ suppa must contain j 
= k, j, k ∈ {1, 2, 3, 4}
such that {j, k} 
= {1, 2}. By Eq. (4.19) and Eq. (4.20), xU belongs to the right hand 
side. �

Let H = I + (x1, x2) + (N∗(3)) · (N∗({1, 2})). By Lemma 4.6, Eq. (4.21), and Eq. 
(4.20), we have

√
I3 : xa = (H + (N∗(4))) ∩ (H + (N∗({1, 2, 3}))).

Let δ1 = Δ(H + (N∗(4))) and δ2 = Δ(H + (N∗({1, 2, 3}))). By Lemma 2.2, Δa(I3) =
δ1 ∪ δ2 and δ1 ∩ δ2 = Δ(H + (N∗({1, 2, 3, 4}))). By Lemma 2.5, there are three subcases. 
Since H + (N∗({1, 2, 3})) = I + (xj | j ∈ N({1, 2, 3})), and H + (N∗({1, 2, 3, 4})) =
I + (xj | j ∈ N({1, 2, 3, 4})), these cases can be done similarly to cases 2.1.1 and 2.1.2, 
respectively.

Thus, we assume that H̃i−1(lkδ1 F ; K) 
= 0. We have H + (N∗(4)) = I + (N(4)) +
(N∗(3)) · (N∗({1, 2})). Let L = I + (N(4)). By Lemma 4.6 and Eq. (4.19),

H + (N(4)) = L + (N∗(3)) · (N∗({1, 2})) = (L + (N∗(3))) ∩ (L + (N∗({1, 2}))).

Note that L + N∗(3) = I + (N({3, 4})) and L + N∗({1, 2}) = I + (N({1, 2, 4})). Let 
γ1 = Δ(I + (N({3, 4}))) and γ2 = Δ(I + (N({1, 2, 4}))). By Lemma 2.2, δ1 = γ1 ∪ γ2
and γ1∩γ2 = Δ(I +(N({1, 2, 3, 4}))). By Lemma 2.2 and the assumption that x3x4 /∈ I, 
γ1 is a cone over 4. Since F ∩ suppa = ∅, we have 4 /∈ F . Thus, lkγ1 F is a cone over 4. 
By Lemma 2.5, either H̃i−1(lkγ2 F ; K) 
= 0 or H̃i−2(lkγ1∩γ2 F ; K) 
= 0. These cases can 
be done similarly to cases 2.1.1 and 2.1.2, respectively. �

We are now ready for the main result of this section.

Theorem 4.9. Let I = I(G) be the edge ideal of a simple graph G. Then

reg I(3) = reg I3.

Proof. By Theorem 4.3, it suffices to prove that reg I3 ≤ reg I(3). Let (a, i) be an ex-
tremal exponent of I3. Then xa /∈ I3. We have the following cases.

Case 1. xa /∈ I(3) and Δa(I3) = Δa(I(3)). The conclusion follows from Lemma 2.18.

Case 2. xa /∈ I(3) and Δa(I3) 
= Δa(I(3)). The conclusion follows from Lemma 4.8.

Case 3. xa ∈ I(3). The conclusion follows from Theorem 2.10, and Lemmas 4.4, 4.5, and 
4.7. �
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5. Applications

In this section, we give some applications of our main results. First, we establish 
Alilooee-Banerjee-Beyarslan-Ha Conjecture [1, Conjecture 1] for s = 2 and s = 3, which 
extends work of Banerjee and Nevo [5].

Theorem 5.1. Let I = I(G) be the edge ideal of a simple graph G. Then

reg Is ≤ reg I + 2s− 2

for s = 2, 3.

Proof. By [15, Theorem 3.6], we have

reg I(s) ≤ max{reg(I(s) + Is−1), reg I + 2s− 2}.

For s = 2, 3, note that I(s) ⊆ Is−1. Thus, for s = 2, by Theorem 3.3,

reg I2 = reg I(2) ≤ max{reg I, reg I + 2} = reg I + 2.

For s = 3, by Theorem 4.9,

reg I3 = reg I(3) ≤ max{reg I2, reg I + 4} = reg I + 4.

This completes our proof. �
Remark 5.2. Theorem 5.1 shows that bounds for regularity of edge ideals generalize to 
bounds for regularity of second and third powers of edge ideals. For example, combi-
natorial bound given by Woodroofe [38] carries over to bounds for regularity of the 
second/third powers of an edge ideal.

For symbolic powers, we prove

Theorem 5.3. Let I = I(G) be the edge ideal of a simple graph G. Then

reg I(s) ≤ reg I + 2s− 2

for s = 2, 3, 4.

The case s ≤ 3 was already proved in Theorem 5.1. Let s = 4. Using [15, Theorem 
3.6], we need to bound reg(I(4) + I3). First, we have

Lemma 5.4. Let J3(G) be the ideal of S generated by all squarefree monomials xC where 
C is a clique of size 5 of G. Then
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I(4) + I3 = I3 + J1(G)J1(G) + J3(G).

Proof. Using Lemma 2.6, it is easy to see that the left hand side contains the right hand 
side. Conversely, let f be a minimal generator of I(4). By Corollary 2.7, we may assume 
that supp f = V (G) = [n] and G has no isolated vertices. If the matching number of G
is at least 3, then f ∈ I3. Thus, we may assume that the matching number of G is at 
most 2. There are two cases:

Case 1. G contains an induced 5-cycle, say 12345. Write f = x1x2x3x4x5g. By 
Lemma 2.6, ∂∗(f)/∂∗(x2x4x5) = x1x3g ∈ I. Since 12345 is an induced 5-cycle, x1x3 /∈ I. 
Thus, either x1g or x3g belongs to I. We may assume that x1g ∈ I. This implies that 
f = (x1g)(x2x3)(x4x5) ∈ I3.

Case 2. G does not contain any induced 5-cycle. Since the matching number of G is at 
most 2, by [9, Theorem 5.5.3], G is a perfect graph. The conclusion follows from [36, 
Theorem 3.10]. �

We are now ready for

Proof of Theorem 5.3. By Theorem 5.1, we may assume that s = 4. By [15, Theorem 
3.6], we have

reg I(4) ≤ max{reg(I(4) + I3), reg I + 6}.

Let H = I(4) + I3. By Lemma 5.4, H = I3 +J1(G)J1(G) +J3(G). Fix a ∈ Nn such that 
xa /∈ H. We first prove that Δa(H) = Δa(I3). Since I3 ⊆ H, by Lemma 2.19, it suffices 
to prove that if f is a minimal monomial generator of 

√
H : xa then f ∈

√
I3 : xa. By 

Lemma 2.24, there are two cases.

Case 1. f =
√
xC/ gcd(xC , xa), where C is a clique of size 5 of G. Since f 
= 1, ∅ 
=

supp f ⊆ suppC. Since xjxC ∈ I3 for all j ∈ suppC, we deduce that fxC ∈ I3. By 
Lemma 2.26, f ∈

√
I3 : xa.

Case 2. f =
√

xCxD/ gcd(xCxD, xa), where C and D are triangles of G. Since f 
= 1, 
∅ 
= supp f ⊆ suppC ∪ suppD. Since xjxCxD ∈ I3 for all j ∈ suppC ∪ suppD, we 
deduce that fxCxD ∈ I3. By Lemma 2.26, f ∈

√
I3 : xa.

Thus, Δa(H) = Δa(I3). By Lemma 2.18, regH ≤ reg I3 ≤ reg I + 4, where the last 
inequality follows from Theorem 5.1. This concludes our proof. �
Remark 5.5. Theorem 5.3 implies that bounds for regularity of edge ideals generalize 
to bounds for regularity of s-th symbolic powers of edge ideals (s ≤ 4). In particular, 
upper bounds given by Herzog and Hibi [19], and Fakhari and Yassemi [16] hold for s-th 
symbolic powers of edge ideals (s ≤ 4).
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By Theorem 1.1 and Theorem 5.3, we obtain a formula of the regularity of small 
symbolic powers of edge ideals of some new classes of graphs.

Corollary 5.6. Let I = I(G) be the edge ideal of a simple graph G.

(1) If Is has a linear resolution (for s = 2 or 3) then reg(I(s)) = 2s.
(2) If reg I = μ(G) +1, where μ(G) is the induced matching number of G, then reg I(s) =

2s + μ(G) − 1 for s = 2, 3, 4.

Proof. The first statement is a direct consequence of Theorem 1.1. The second statement 
follows from Theorem 5.3 and Corollary 2.8. �
Remark 5.7.

(1) There is an infinite family of graphs G with the property that although each edge 
ideal I(G) does not have a linear resolution, a higher power does (see [31]).

(2) There are classes of graphs for which reg I = μ(G) + 1, while regularity of their 
symbolic powers was not known. Such examples include the class of very-well covered 
graphs [24] and weakly chordal graphs [32].

We end the paper with the following remark.

Remark 5.8. From the proof of Theorem 5.3, we see that

reg(I3 + J1(G)J1(G)) ≤ reg I3.

Note that I3 + J1(G)J1(G) = I3 is the integral closure of I3. The regularity of integral 
closure of powers of edge ideals will be studied in detail in subsequent work.
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