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Koszul Determinantal Rings and
2 × e Matrices of Linear Forms

Hop D. Nguyen, Phong Dinh Thieu, & Thanh Vu

Abstract. Let k be an algebraically closed field of characteristic 0.
Let X be a 2 × e matrix of linear forms over a polynomial ring
k[x1, . . . , xn] (where e,n ≥ 1). We prove that the determinantal ring
R = k[x1, . . . , xn]/I2(X) is Koszul if and only if in any Kronecker–
Weierstrass normal form of X, the largest length of a nilpotent block is
at most twice the smallest length of a scroll block. As an application,
we classify rational normal scrolls whose all section rings by natural
coordinates are Koszul. This result settles a conjecture of Conca.

1. Introduction

Let k be an algebraically closed field of characteristic 0, R a commutative, stan-
dard graded k-algebra. The last condition means that R is Z-graded, R0 = k, and
R is generated as a k-algebra by finitely many elements of degree 1. We say that R

is a Koszul algebra if k has linear resolution as an R-module. Denote by regR M

the Castelnuovo–Mumford regularity of a finitely generated graded R-module M .
An equivalent way to express the Koszulness of R is the condition regR k = 0.
Effective techniques to prove Koszulness include Gröbner deformation, Koszul
filtrations, computation of the Betti numbers of k for toric rings, among others.
For some survey articles on Koszul algebras, we refer to [11; 16].

In this paper, we study the Koszul property of linear sections of rational nor-
mal scrolls. By abuse of terminology, we use “rational normal scrolls” to refer to
the homogeneous coordinate rings of the corresponding varieties. These graded
algebras are defined by the ideals of 2-minors of some 2 × e matrices of linear
forms, where e ≥ 1. The homogeneous coordinate rings of the Segre embedding
P

1 ×P
e → P

2e+1 and the Veronese embedding P
1 → P

e are among the examples;
in fact, they are special instances of rational normal scrolls. The rational normal
scrolls are a classical and widely studied class of varieties with minimal multiplic-
ity, whose classification is known from works of Del Pezzo and Bertini; see [14].
See also, for example, [2; 3] for some recent works on this topic.

Let X be a 2 × e matrix of linear forms over a polynomial ring S =
k[x1, . . . , xn]. Let R = k[x1, . . . , xn]/I2(X) be the determinantal ring of X. Al-
gebraic properties of such determinantal rings R were studied in the literature;
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see [7; 5], and [23]. The Kronecker–Weierstrass theory of matrix pencils (see
Section 2) played an important role in these works.

Concerning the Koszul property, any rational normal scroll is Koszul since it
has regularity 1. In fact, any rational normal scroll is also G-quadratic, namely its
defining ideal has a quadratic Gröbner basis with respect to a suitable term order;
see [23] for a generalization. In this paper, we are able to classify the Koszul deter-
minantal rings of 2 × e matrices of linear forms using the Kronecker–Weierstrass
theory. The main technical result of the paper is the following:

Theorem 1.1. Let X be a 2 × e matrix of linear forms (where e ≥ 1), and R =
k[X]/I2(X) the determinantal ring of X. Then R is Koszul if and only if m ≤ 2n,
where m is length of the longest nilpotent block, and n is length of the shortest
scroll block in any Kronecker–Weierstrass normal form of X. (The last condition
holds if there is either no such nilpotent block or no such scroll block.)

Since k is algebraically closed and chark = 0, we may assume that X is already
in the Kronecker–Weierstrass normal form. Denote m the length of the longest
nilpotent block and n the length of the shortest scroll block of X. We deduce the
sufficient condition in Theorem 1.1 by constructing a Koszul filtration for R given
that X satisfies the length condition m ≤ 2n (Construction 4.13). The construction
supplies new information even for rational normal scrolls.

As applications, we are able to characterize the rational normal scrolls that “be-
have like” algebras defined by quadratic monomial ideals. Let us introduce some
more notation. Let S = k[x1, . . . , xn] be a standard graded polynomial algebra
that surjects onto the k-algebra R (not necessarily a determinantal ring). For any
finitely generated graded R-module M , we use regM to denote regS M , which is
an invariant of M . Koszul algebras defined by quadratic monomial relations (see
Fröberg [15]) have very strong resolution-theoretic properties. If R = S/I where
I is a quadratic monomial ideal of S, then for any set of variables Y ⊆ {x1, . . . , xn}
of S, we have:

(i) regR R/(Y ) ≤ regR;
(ii) R/(Y ) is a Koszul algebra;

(iii) (see [20]) regR R/(Y ) = 0.

Thus, all the linear sections by natural coordinates of R have a linear resolution
over R and are Koszul algebras. In fact, (i) and (ii) are consequences of (iii) by
Lemma 2.3.

For R being a rational normal scroll of type (n1, . . . ,nt) where t ≥ 1, 1 ≤ n1 ≤
· · · ≤ nt, R is defined by the ideal of maximal minors of the matrix(

y1,1 y1,2 . . . y1,n1

y1,2 y1,3 . . . y1,n1+1 ��
�� y2,1 y2,2 . . . y2,n2

y2,2 y2,3 . . . y2,n2+1 ��
��

· · ·

��
�� yt,1 yt,2 . . . yt,nt

yt,2 yt,3 . . . yt,nt+1

)
,
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where y1,1, y1,2, . . . , y1,n1+1, y2,1, . . . , yt,nt+1 are distinct variables. By the set of
natural coordinates of R we mean {y1,1, y1,2, . . . , y1,n1+1, y2,1, . . . , yt,nt+1}. The
main application of Theorem 1.1 is the following:

Theorem 1.2. Let R be a rational normal scroll of type (n1, . . . ,nt) where 1 ≤
n1 ≤ · · · ≤ nt. Let Y be a subset of the set of natural coordinates of R.

(i) regR/(Y ) ≤ regR for every possible choice of Y if and only if R is balanced,
that is, nt ≤ n1 + 1.

(ii) R/(Y ) is a Koszul algebra for every possible choice of Y if and only if nt ≤
2n1.

Note that, under the same assumptions, we also have

(iii) (Conca [8]) regR R/(Y ) = 0 for every possible choice of Y if and only if
nt = n1. Moreover, in that case, R is strongly Koszul in the sense of [20].

The last result was mentioned by Conca [8] without proof; we give an argument
here. Part (i) is proved by using a formula of Castelnuovo–Mumford regularity
of linear sections of R by Catalano-Johnson [5] and Zaare-Nahandi and Zaare-
Nahandi [23]. This was conjectured in [8]. Part (ii) confirms a conjecture proposed
by Conca [8], which was made based on numerical evidences. Note that arguing
a little bit further, we do not have to put any restriction on k in Theorem 1.2;
see Remark 2.2. Studying Conca’s conjecture was the original motivation of this
project.

The paper is structured as follow. In Section 2, we recall Kronecker–
Weierstrass theory of matrix pencils, results about determinantal rings of [5; 7;
23], and the notion of Koszul filtration [13]. In Section 3, particularly in Proposi-
tion 3.2 and Lemma 3.3, we describe the changes in the Kronecker–Weierstrass
normal forms after going modulo certain linear forms. Section 4 is devoted to
the proof of the sufficiency part in Theorem 1.1 using a Koszul filtration (Con-
struction 4.13). To verify the validity of our Koszul filtration, we use the Hilbert
series formula of 2 × e matrices of linear forms discovered by Chun and a Gröb-
ner basis formula for such matrices due to Rahim Zaare-Nahandi and Rashid
Zaare-Nahandi. In Section 5, the necessity part in Theorem 1.1 is established
by using the monoid presentation of a rational normal scroll and a formula of
Herzog, Reiner, and Welker [21] for multigraded Betti numbers of k. We prove
Theorem 1.2 in Section 6. As another application of Theorem 1.1, we classify
completely the rational normal scrolls whose all quotients by linear ideals are
Koszul algebras (Theorem 6.12).

2. Background

2.1. Kronecker–Weierstrass Normal Forms

Let k be an algebraically closed field of characteristic zero. In this section, we
review the theory of Kronecker–Weierstrass normal forms. For a detailed discus-
sion, we refer to [17, Chapter XII]. For more recent treatment and algorithms
for finding the Kronecker–Weierstrass normal forms, we refer to [1; 22]. Let
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S = k[x1, . . . , xn] be a polynomial ring over a field k (where n ≥ 1). Let x∗
1, . . . , x∗

n

be the basis for the dual vector space of the k-vector space V with basis x1, . . . , xn.
Let X be a 2 × e matrix of linear forms in S (where to avoid triviality, we assume
that e ≥ 2).

Each row of X can be identified with a matrix in Me×n in the following way:
let r = (l1, . . . , le) be a row, then for i = 1, . . . , n, the ith column of the matrix Mr

is given by (x∗
i (l1), . . . , x∗

i (le))
T . Thus,

Mr =

⎛
⎜⎜⎝

x∗
1(l1) x∗

2(l1) . . . x∗
n(l1)

x∗
1(l2) x∗

2(l2) . . . x∗
n(l2)

. . . . . . . . . . . .

x∗
1(le) x∗

2(le) . . . x∗
n(le)

⎞
⎟⎟⎠ ∈ Me×n.

Now X can be identified with the vector subspace of Ve generated by two rows
r1, r2 of X. In turn, this vector subspace of Ve can be identified with the vector
subspace VX generated by two matrices Mr1 , Mr2 of Me×n.

If dim VX ≤ 1, then r1, r2 are linearly dependent, and I2(X) = 0. So let us as-
sume that dim VX = 2. From the Kronecker–Weierstrass theory of matrix pencils,
there exist invertible matrices C ∈ GL(ke), C′ ∈ GL(V) such that

C(Mr1 + vMr2)C
′

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LT
m1−1

. . .

LT
mc−1

Ln1

. . .

Lnd

Jp1,λ1

. . .

Jpg,λg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where v is a variable,

Lm−1 =

⎛
⎜⎜⎝

1 v · · · 0 0
0 1 v · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 v

⎞
⎟⎟⎠ ∈ M(m−1)×m,

and

Jp,λ =

⎛
⎜⎜⎜⎜⎝

λv + 1 v · · · 0 0
0 λv + 1 v · · · 0
...

...
. . .

. . .
...

0 0 · · · λv + 1 v

0 0 · · · 0 λv + 1

⎞
⎟⎟⎟⎟⎠ ∈ Mp×p.

Since C and C′ are invertible, X defines the same determinantal ideal as the matrix
with rows corresponding to the matrices CMr1C

′, CMr2C
′. Concretely, the last
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matrix is a concatenation of the following three types of matrices:(
xi,1 xi,2 . . . xi,mi−1 0
0 xi,1 . . . xi,mi−2 xi,mi−1

)
,(

yj,1 yj,2 . . . yj,nj

yj,2 yj,3 . . . yj,nj +1

)
,

and (
zl,1 zl,2 . . . zl,pl−1 zl,pl

zl,2 + λlzl,1 zl,3 + λlzl,2 . . . zl,pl
+ λlzl,pl−1 λlzl,pl

)
,

where x, y, z are independent linear forms of S, 1 ≤ i ≤ c, 1 ≤ j ≤ d , and 1 ≤
l ≤ g for some c, d, g ≥ 0. We call these matrices nilpotent block, scroll block,
and Jordan block with eigenvalue λl , respectively. By definition, the length of
these blocks are mi , nj , and pl , respectively. The numbers c, d and the lengths of
nilpotent and scroll blocks mi , nj , where 1 ≤ i ≤ c and 1 ≤ j ≤ d , are invariants
of X, but λl are not. See [17], [5, Section 3] for more details.

For the convenience of our arguments, we write the columns of nilpotent
blocks with the reverse order and reindex. Hence, in our notation, nilpotent blocks
are of the form (

0 xi,1 xi,2 . . . xi,mi−2 xi,mi−1
xi,1 xi,2 xi,3 . . . xi,mi−1 0

)
.

We call concatenation of such scroll blocks, nilpotent blocks (in our notation),
and Jordan blocks obtained from CMr1C

′ and CMr2C
′ a Kronecker–Weierstrass

normal form of X.
Fix a Kronecker–Weierstrass normal form of X. For our purpose, Jordan

blocks with different eigenvalues behave differently, so we will refine our no-
tation. We assume that the Jordan blocks of X are divided into gi Jordan blocks
with eigenvalues λi for i = 1, . . . , t . Here, the eigenvalues λ1, λ2, . . . , λt are pair-
wise distinct. Concretely,

X =
(

Xnil ��
��Xsc ��
��X1

1 X1
2 · · · X1

g1 ��
�� · · ·

��
��Xt

1 Xt
2 · · · Xt

gt

)
,

where

Xi
j =

(
zi
j,1 zi

j,2 . . . zi
j,pij

zi
j,2 + λiz

i
j,1 zi

j,3 + λiz
i
j,2 . . . λiz

i
j,pij

)
.

Here Xnil, Xsc denote the submatrices of X consisting of nilpotent blocks and
scroll blocks, respectively. In addition, we assume that pi1 ≥ pi2 ≥ · · · ≥ pigi

for
1 ≤ i ≤ t .

We call the sequence (m1 ≤ m2 ≤ · · · ≤ mc , n1 ≤ n2 ≤ · · · ≤ nd , p11 ≥ · · · ≥
p1g1, . . . , pt1 ≥ · · · ≥ ptgt ) the length sequence of X. We write the length se-
quence of (the given Kronecker–Weierstrass normal form of) X as follows:

(m1, . . . ,mc︸ ︷︷ ︸
N

, n1, . . . , nd︸ ︷︷ ︸
S

,p11, . . . , p1g1,p21, . . . , ptgt︸ ︷︷ ︸
J

).
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Example 2.1. Let R be the (2,4) scroll defined by the matrix(
y11 y12
y12 y13 ��

�� y21 y22 y23 y24
y22 y23 y24 y25

)
.

We show that R/(y23) is defined by two Jordan blocks with eigenvalues 0 and 1
and a scroll block of length 2.

Changing variables for simplicity, clearly, R/(y23) is defined by the matrix(
z1 z2 t1 t2 0 u1
z2 z3 t2 0 u1 u2

)
.

Adding the second row to the first row, we get(
z1 + z2 z2 + z3 t1 + t2 t2 u1 u1 + u2

z2 z3 t2 0 u1 u2

)
.

Multiplying the last column by −1 and then swapping it with the previous column,
we get (

z1 + z2 z2 + z3 t1 + t2 t2 −u1 − u2 u1
z2 z3 t2 0 −u2 u1

)
.

Let w1 = −u1 − u2; then the last matrix is nothing but(
z1 + z2 z2 + z3

z2 z3 ��
�� t1 + t2 t2 w1 u1

t2 0 u1 + w1 u1

)
.

Adding the second column to the first one, we get(
z1 + 2z2 + z3 z2 + z3

z2 + z3 z3 ��
�� t1 + t2 t2

t2 0 ��
�� w1 u1

u1 + w1 u1

)
,

which is a concatenation of a scroll block, a Jordan block with eigenvalue 0, and
another Jordan block with eigenvalue 1.

Remark 2.2. Note that using arguments similar to that of Example 2.1, we can
show that if R is a rational normal scroll and Y is a set of natural coordinates, then
R/(Y ) is defined by nilpotent, scroll, and Jordan blocks with eigenvalue 0 or 1.
There is no need to assume that k is algebraically closed of characteristic zero in
these arguments. We leave the details to the interested reader.

2.2. Hilbert Series and Castelnuovo–Mumford Regularity

Let R be a standard graded k-algebra. For a finitely generated graded R-module
M , we define the Castelnuovo–Mumford regularity of M by

regR M = sup{j − i : TorRi (k,M)j 	= 0}.
The following result is well known; we state it for ease of reference.

Lemma 2.3 [6, Proposition 2.1]. Let S → R be a surjection of standard graded
k-algebras, and M a finitely generated graded R-module. Then

(i) regS M ≤ regS R + regR M ;
(ii) if regS R ≤ 1, then regR M ≤ regS M .
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Let X be a Kronecker–Weierstrass matrix of length sequence

m1, . . . ,mc︸ ︷︷ ︸
N

, n1, . . . , nd︸ ︷︷ ︸
S

,p11, . . . , p1g1, . . . , pt1, . . . , ptgt︸ ︷︷ ︸
J

.

Denote m = mc = max{m1, . . . ,mc}. For integers b, q , let N(n1, . . . , nd;b, q)

denote the cardinality of the set{
(v1, . . . , vd) : vj ∈ Z≥0,

d∑
j=1

nj vj ≤ b − 1 and
d∑

i=1

vi = q − 1

}
.

We immediately have the following:

Lemma 2.4. If b ≤ (q − 1) · min{n1, . . . , nd}, then N(n1, . . . , nd, b, q) = 0.

Let R be the determinantal ring of X. Let R′ be the determinantal ring of the
submatrix of X consisting of Jordan and scroll blocks. We cite the following result
for later usage.

Theorem 2.5 (Chun [7, Theorem 2.2.3]). The Hilbert series of R = k[X]/I2(X)

is given by

HR(v) =
( c∑

i=1

mi − c

)
v

+
m∑

q=2

( c∑
i=1

mi−2∑
r=0

N(n1, . . . , nd;mi − 1 − r, q)

)
vq + HR′(v).

The regularity of the determinantal rings of 2 × e matrices of linear forms can be
computed as follows.

Theorem 2.6 [5, Section 5; 23, Theorem 4.2]. Let X be a 2 × e matrix of linear
forms such that I2(X) 	= 0. If in a Kronecker–Weierstrass normal form of X, m is
the length of the longest nilpotent block and n is the length of the shortest scroll
block, then regk[X]/I2(X) = 1 if either m ≤ 1 or n = 0, and 
m−1

n
� otherwise.

2.3. Koszul Filtrations

We recall the following notion introduced by Conca, Trung, and Valla [13], which
is implicit in [4].

Definition 2.7 (Koszul filtration). Let R be a standard graded k-algebra with
graded maximal ideal m. Let F be a set of ideals of R such that

(i) every ideal in F is generated by linear forms;
(ii) 0 and m belong to F ;

(iii) (colon condition) if I 	= 0 and I ∈ F , then there exist an ideal J ∈ F and a
linear form x ∈ R1 \ 0 such that I = J + (x) and J : I ∈ F .

Then F is called a Koszul filtration of R.
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In the same paper, the authors proved that if such a Koszul filtration exists, then
regR R/I = 0 for every I ∈ F . In particular, choosing I = m, R is Koszul. Fur-
thermore, for I ∈ F , the quotient ring R/I is Koszul by applying Lemma 2.3(ii)
to M = k.

2.4. Gröbner Bases in the Absence of Nilpotent Blocks

We need of the following result on Gröbner basis, which is crucial to our argu-
ments in the sequel. Let X be a Kronecker–Weierstrass matrix with the length
sequence

(m1 ≤ · · · ≤ mc︸ ︷︷ ︸
N

, n1 ≤ · · · ≤ nd︸ ︷︷ ︸
S

,p11 ≥ · · · ≥ p1g1, . . . , pt1 ≥ · · · ≥ ptgt︸ ︷︷ ︸
J

)

and order the blocks of X according to its length sequence. For our purpose, we
have chosen a different order of blocks than that of [23, Proposition 3.1]. On
the other hand, for the next result, the method of proving loc. cit. carries over
verbatim.

Lemma 2.8 [23, Proposition 3.1]. Assume that X has no nilpotent block. Order
the variables in k[X] such that they are decreasing on the first row and the last
variable of a block is larger than the first variable of its adjacent block on the
right. Then in the induced degree reverse lexicographic order, the 2-minors of X

form a Gröbner basis for I2(X).

3. Kronecker–Weierstrass Normal Forms of Certain Section Rings

Let X be a 2 × e matrix of linear forms in a polynomial ring S = k[x1, . . . , xn]
(where e,n ≥ 1 and I2(X) 	= 0). Let A,B ∈ Me×n be the matrix corresponding to
the rows of X as in Section 2. Consider the matrix pencil A + vB , where v is an
indeterminate. The largest number r such that there exists an r-minor of A + vB

with nonzero determinant is called the rank of A + vB .
By [17, p. 30, Theorem 4] and its proof we have the following criterion for the

existence scroll blocks and information about their lengths.

Lemma 3.1. Some (equivalently, every) Kronecker–Weierstrass normal form of X

has a scroll block if and only if rank(A + vB) < min{n, e}. Moreover:

(i) If some Kronecker–Weierstrass normal form of X contains a scroll block
of length s ≥ 1, then there exist (s + 1) linearly independent vectors
w0,w1, . . . ,ws in kn such that

Aw0 = 0, Bw0 = Aw1, . . . ,

Bws−1 = Aws, Bws = 0.
(3.1)

(ii) Assume that there exist (s + 1) vectors w0,w1, . . . ,ws in kn such that not all
of them are zero and (3.1) holds. Then every Kronecker–Weierstrass normal
form of X contains a scroll block of length ≤ s.
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The following result about the lengths of the scroll blocks in Kronecker–
Weierstrass normal forms is crucial in the proofs of Theorem 1.2 and Theo-
rem 6.12.

Proposition 3.2. Let X be a Kronecker–Weierstrass matrix, and R its deter-
minantal ring. Let R′ = R/(l1, . . . , lr ) be a quotient ring of R by linear forms
l1, . . . , lr . Then R′ is the determinantal ring of some 2 × e′ matrix of linear
forms X′. Moreover, if some Kronecker–Weierstrass normal form of X′ has a
scroll block of length s, then X has a scroll block of length at most s.

Proof. By induction, we may assume that R′ = R/(l) for some linear form l. We
use the notation of Section 2: the set of variables of S is {x1, . . . , xn} with dual
basis {x∗

1, . . . , x∗
n}.

Assume that l = xi − ∑
j>i aj xj . We call i the leading variable of l. We ob-

serve that X′ is obtained from X by deleting xi and replacing it by
∑

j>i aj xj .
Then R′ is clearly the determinantal ring of the matrix X′ just described. Let A,
B be the matrices corresponding to rows of X as in Section 2. Also, let A′, B ′ be
the matrices corresponding to rows of X′.

Step 1: If X is just one block, we show that X′ cannot contain any scroll block.
Case 1a: X is one scroll block(

x1 x2 . . . xs−1 xs

x2 x3 . . . xs xs+1

)
.

Now X′ is the matrix(
x1 x2 . . . xi−1

∑s+1
j=i+1 aj xj . . . xs

x2 x3 . . .
∑s+1

j=i+1 aj xj xi+1 . . . xs+1

)
.

Hence, in the new coordinates x1, . . . , xi−1, xi+1, . . . , xs+1, A′ is the following
matrix:

A′ =
(

Ei−1 0
0 A′′

)
,

where Ei−1 is the unit matrix of size (i − 1) × (i − 1), and

A′′ =

⎛
⎜⎜⎜⎜⎝

ai+1 ai+2 · · · as as+1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠ ∈ M(s−i+1)×(s−i+1).

Similarly,

B ′ =
(

F 0
0 B ′′

)
,

where

F =

⎛
⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎠ ∈ M(i−2)×(i−1)
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and

B ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ai+1 ai+2 · · · as as+1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ M(s−i+2)×(s−i+1).

Therefore, the pencil A′ + vB ′ is

A′ + vB ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 v 0 · · · 0 · · · · · · 0 0
0 1 v · · · 0 · · · 0 0 0
...

...
. . .

. . .
...

...
... 0 0

0 0 · · · 1 v 0 · · · 0 0
0 0 · · · 0 1 vai+1 vai+2 · · · vas+1
0 0 · · · 0 0 ai+1 + v ai+2 · · · as+1
0 0 · · · 0 0 1 v · · · 0
...

...
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0 0 0 · · · 1 v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Ms×s .

The determinant of A′ + vB ′ is a polynomial of degree (s − i) in v with leading
coefficient 1. Therefore, rank(A′ + vB ′) = s. By Lemma 3.1 any Kronecker–
Weierstrass normal form of X′ has no scroll blocks.

Case 1b: X is one nilpotent block or one Jordan block. In this case, it is
easy to see that A′ has independent columns. By Lemma 3.1 every Kronecker–
Weierstrass normal form of X′ has no scroll blocks.

Step 2: Now assume that X consists of at least two blocks. By induction on
the number of blocks we may assume that the leading variable of l is in the set of
variables of the first block of X. We note that A,B ∈ Me×n are block matrices of
the following form:

A =
(

A11 0
0 A22

)
, B =

(
B11 0
0 B22

)
.

Hence, A′,B ′ ∈ Me×(n−1) are upper block matrices of the form

A′ =
(

A′
11 A′

12
0 A22

)
, B ′ =

(
B ′

11 B ′
12

0 B22

)
.

Assume that some canonical form of X′ has a scroll block. Let s be the shortest
length of such a scroll block of X′. By Lemma 3.1(i) there exist (s + 1) indepen-
dent vectors w′

0, . . . ,w
′
s ∈ kn−1 such that

A′w′
0 = 0, A′w′

1 = B ′w′
0, . . . , A′w′

s = B ′w′
s−1, B ′w′

s = 0.

For each i = 0, . . . , s, write

w′
i =

(
u′

i

v′
i

)
,

where u′
i is a column vector of size equal to the number of columns of A′

11, and
v′
i is a column vector of size equal to the number of columns of A22.
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Let

wi =
(

0
v′
i

)
∈ kn,

where 0 is the zero vector of size equal to the number of columns of A11. From
the form of the matrices A, B , A′, B ′ we have

Aw0 = 0, Aw1 = Bw0, . . . ,

Aws = Bws−1, Bws = 0.
(3.2)

If not all the vectors w0, . . . ,ws are zero vectors, by Lemma 3.1(ii) X has a scroll
block of length at most s. Assume that all the vectors w0, . . . ,ws are zero vectors.
From equation (3.2) we have

A′
11u

′
0 = 0, A′

11u
′
1 = B ′

11u0, . . . ,

A′
11u

′
s = B ′

11u
′
s−1, B ′

11u
′
s = 0.

Moreover, the vectors u′
0, . . . , u

′
s are linearly independent. By Lemma 3.1 the

pencil A′
11 + vB ′

11 has a scroll block. This pencil is obtained by replacing xi by∑
i<j≤m ajxj , where m is the last index of the variables appearing in the first

block. The last condition contradicts with the case of X consisting of just one
block. �
We will also need the information about lengths of nilpotent blocks of linear sec-
tions of rational normal scrolls. This will be important for the proofs of Theo-
rem 1.2(i) and (ii) in Section 6.

Lemma 3.3. Let R = R(n1, . . . ,nt) be a rational normal scroll where 1 ≤ n1 ≤
· · · ≤ nt. Let Y be a subset of the set of natural coordinates of R. Then in any
Kronecker–Weierstrass normal form of the matrix defining R/(Y ), every nilpotent
block has length at most nt.

Proof. Let X be the matrix defining R/(Y ). The pencil corresponding to X is
a block matrix whose each block is obtained by deleting certain columns cor-
responding to the variables in Y from the matrix pencil of R. Since k is al-
gebraically closed of characteristic 0, each block in the matrix of R modulo
some variables has a Kronecker–Weierstrass normal form. Since the Kronecker–
Weierstrass normal form of a block matrix is the concatenation of normal forms
of these blocks, it is clear that each nilpotent block in any normal form of X has
length at most nt. �

4. The Sufficient Condition

In this section, we prove the sufficient condition in Theorem 1.1. This is done in
the following:

Theorem 4.1. Let X be a concatenation of nilpotent blocks, scroll blocks, and
Jordan blocks. Assume that X satisfies the length condition m ≤ 2n, where m is
the maximal length of a nilpotent block, and n is the minimal length of a scroll
block. Then the ring R = k[X]/I2(X) has a Koszul filtration.
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Although the construction will not be straightforward, the idea behind is quite
simple. We start by constructing a Koszul filtration for the submatrix of nilpotent
and scroll blocks in Section 4.1 and for the submatrix of Jordan blocks in Sec-
tion 4.2. Then “concatenating” these two filtrations in a suitable way, we get a
Koszul filtration for the original matrix. The proof of Theorem 4.1 will be given
in Section 4.3.

We assume that X has the length sequence

(m1, . . . ,mc︸ ︷︷ ︸
N

, n1, . . . , nd︸ ︷︷ ︸
S

,p11, . . . , p1g1,p21, . . . , ptgt︸ ︷︷ ︸
J

).

To simplify the matter, we still use the notation of Section 2 for the blocks and
entries of X. By abuse of notation, we use xi,j , yi,j , and zi

j,r to denote the class

of xi,j , yi,j , and zi
j,r in the quotient ring k[X]/I2(X), respectively. To verify the

colon condition in the proof of Theorem 4.1, the following simple identities are
useful.

Lemma 4.2. We have the following identities in R = k[X]/I2(X):

(i) x.,.z
.
.,. = 0 and (x1,1, . . . , xc,mc−1)

2 = 0.
(ii) For all 1 ≤ i ≤ c, 1 ≤ r ≤ mi − 1, 1 ≤ j ≤ d , and 1 ≤ s ≤ nj + 1, if either

r + s ≥ mi + 1 or r + s ≤ nj + 1, then xi,ryj,s = 0.
(iii) For all 1 ≤ i ≤ d , 1 ≤ r < s ≤ ni + 1,

(z
.
.,.) ⊆ (yi,r ) : yi,s .

(iv) For all 1 ≤ i ≤ d , 2 ≤ r ≤ ni + 1,

d∑
j=1

(yj,1, . . . , yj,nj
) ⊆ (yi,r−1) : yi,r .

(v) For all 1 ≤ i ≤ d , 1 ≤ r ≤ ni ,

d∑
j=1

(yj,2, . . . , yj,nj +1) ⊆ (yi,r+1) : yi,r .

(vi) For all 1 ≤ i < j ≤ t ,

zi.,.z
j.,. = 0.

Proof. (i) For ease of notation, assume that we have a Jordan block and a nilpotent
block of X of the form(

z1 z2 . . . zp−1 zp

z2 + λz1 z3 + λz2 . . . zp + λzp−1 λzp

)
and (

0 x1 x2 . . . xm−2 xm−1
x1 x2 x3 . . . xm−1 0

)
,

respectively.
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We have that x1(z1, . . . , zp) = 0. Then since the 2-minors(
x1 zr

x2 zr+1 + λzr

)
and

(
x1 zp

x2 λzp

)
are zero, we get that x2(z1, . . . , zp) = 0. Continuing in this manner, we get
x.z. = 0. This gives the first part of (i). The second part is proved similarly.

(ii) In addition to the considered Jordan and nilpotent blocks, consider a scroll
block of X of the form (

y1 y2 . . . yn−1 yn

y2 y3 . . . yn yn+1

)
.

We want to show that xiyj = 0 if i + j ≤ n + 1 or i + j ≥ m + 1. First, we have

x1y1 = x1y2 = · · · = x1yn = 0.

For 2 ≤ s ≤ n, since the minor (
x1 ys−1
x2 ys

)
is zero, we get x2ys−1 = 0. Continuing in this manner, we get xiyj = 0 if i + j ≤
n + 1. Similarly, starting with

xm−1y2 = xm−1y3 = · · · = xm−1yn+1 = 0,

we obtain the remaining claim.
(iii) Looking at the 2-minors of the form(

zi ys−1
zi+1 + λzi ys

)
,

we immediately have ys(z1, . . . , zp) ⊆ ys−1(z1, . . . , zp). The conclusion follows.
We leave the details of (iv) and (v) to the readers. For (vi), consider another

Jordan block of X of the form(
u1 u2 . . . uq−1 uq

u2 + βu1 u3 + βu2 . . . uq + βuq−1 βuq

)
,

where β 	= λ. We wish to show that uizj = 0 for all i, j .
Since the minor (

zp uq

λzp βuq

)
is zero and β − λ 	= 0, we get zpuq = 0. Looking at the minor(

zp uq−1
λzp βuq−1 + uq

)
,

we then obtain zpuq−1 = 0. Continuing in this manner, we get zp(u1, . . . , uq) = 0.
By reverse induction on 1 ≤ j ≤ p we obtain that zj (u1, . . . , uq) = 0. �
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4.1. Matrices of Nilpotent and Scroll Blocks

First, note that the length condition in Theorem 4.1 involves only nilpotent and
scroll blocks. Hence, it is natural to start building a Koszul filtration for the case
where X contains only such blocks. In this subsection, we assume that X is a
concatenation of nilpotent blocks and scroll blocks with length sequence

(m1, . . . ,mc︸ ︷︷ ︸
N

, n1, . . . , nd︸ ︷︷ ︸
S

).

Moreover, assume that mc ≤ 2n1.
The following special case is enough to illustrate the construction of a Koszul

filtration.

Example 4.3. Let X be the matrix of one nilpotent and one scroll block satisfying
the length condition. Hence,

X =
(

0 x1 x2 . . . xm−1
x1 x2 x3 . . . 0 ��

�� y1 y2 . . . yn

y2 y3 . . . yn+1

)
,

where 2 ≤ m ≤ 2n. We have

I2(X) = (x1, . . . , xm−1)
2 + (xiyj : i + j ≤ n + 1 or i + j ≥ m + 1)

+ (xiyj − xi+1yj−1 : n + 2 ≤ i + j ≤ m)

+ (yiyj − yi+1yj−1 : 1 ≤ i ≤ j ≤ n + 1).

Then R = k[X]/I2(X) has a Koszul filtration as follows. Let s = max{m − n,1}.
Define F = {H0, . . . ,Hm−1} ∪ {Ia,b : b ≥ 0,1 ≤ a ≤ n + 1 − b}, where

H0 = (0), H1 = (xs), H2 = (xs−1, xs), . . . , Hs = (x1, . . . , xs),

Hs+1 = (x1, . . . , xs, xs+1), . . . , Hm−1 = (x1, . . . , xs, . . . , xm−1),

Ia,b = Hm−1 + (y1, y2, . . . , ya, yn+2−b, yn+3−b, . . . , yn, yn+1).

Then F is a Koszul filtration for R.
To be more precise, note that In+1,0 = m. For the required colon condition, we

can check the following identities:

(i) H0 : H1 = In+1−s,1.
(ii) H1 : H2 = · · · = Hs−1 : Hs = Hs : Hs+1 = · · · = Hm−2 : Hm−1 = m.

(iii) If b ≥ 2, then Ia,b−1 : Ia,b = m.
(iv) If a ≥ 2, then

Ia−1,b : Ia,b =
{
m if b ≥ 1,

In,0 if b = 0.

(v) If a = 1, b = 0, then Hm−1 : I1,0 = Hm−1.
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(vi) If a = 1, b = 1, then I1,0 : I1,1 = I1,0.

These identities will be justified by the forthcoming lemmas of this section.

Let us comeback to the general case of matrices with only nilpotent and scroll
blocks. To facilitate the presentation, it is useful to introduce the following notion.

Definition 4.4. We say that a sequence b = (b1, b2, . . . , bs) of nonnegative in-
tegers has no gap if for any 1 ≤ i ≤ s, bi = 0 implies that bi+1 = · · · = bs = 0.

Our Koszul filtration for R = k[X]/I2(X) consists of the ideals of the following
types.

Construction 4.5 (Koszul filtration for matrices of nilpotent and scroll blocks).
For each i = 1, . . . , c, denote si = max{mi − n1,1}. Consider ideals of the fol-
lowing types:

(i) H0,m0−1 = (0) (where m0 is used just for systematic reason),
(ii) Hi,r , where 1 ≤ i ≤ c, 1 ≤ r ≤ mi − 1, given recursively by

Hi,1 = Hi−1,mi−1−1 + (xi,si ),

Hi,2 = Hi−1,mi−1−1 + (xi,si−1, xi,si ), . . . ,

Hi,si = Hi−1,mi−1−1 + (xi,1, . . . , xi,si ),

Hi,si+1 = Hi−1,mi−1−1 + (xi,1, . . . , xi,si , xi,si+1), . . . ,

Hi,mi−1 = Hi−1,mi−1−1 + (xi,1, xi,2, . . . , xi,mi−1), and

(iii) Is;a,b, where 1 ≤ s ≤ d , a = (a1, . . . , as) and b = (b1, . . . , bs) are such that
1 ≤ aj ≤ nj + 1 − bj for 1 ≤ j ≤ s, and b has no gap, given by

Is;a,b = Hc,mc−1

+
s∑

j=1

[(yj,1, yj,2, . . . , yj,aj
) + (yj,nj −bj +2, yj,nj −bj +3, . . . , yj,nj +1)].

Of course, if there is no nilpotent block, then there is only one ideal of type H ,
which is H0,m0−1 = 0, and similar convention works if there is no scroll block.

Remark 4.6. If X consists only of scroll blocks, namely X defines a rational
normal scroll, then we obtain from the construction a Koszul filtration for that
scroll. This gives new information about the Koszul property of rational normal
scrolls.

The fact that the ideals Hi,r , and Is;a,b form a Koszul filtration for R follows from
the following series of lemmas.

First, for 1 ≤ i ≤ c, 1 ≤ j ≤ d , define ai,j , bi,j as follows: ai,j = nj + 1 − si
and bi,j = min{nj + 1 + si − mi, si}. Concretely,

(i) if mi ≥ nj + 2, then bi,j = nj + 1 + si − mi ,
(ii) if mi ≤ nj + 1, then bi,j = si .
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In any case, we have bi,j ≥ 1 and 1 ≤ ai,j ≤ nj +1−bi,j . Indeed, since mc ≤ 2n1,
we get si = max{mi −n1,1} ≤ n1, so ai,j ≥ 1. Also, nj +1+ (mi −n1)−mi ≥ 1,
and hence bi,j ≥ 1.

Lemma 4.7 (Colon condition for the ideals Hi,j ). The following equalities hold
for each 1 ≤ i ≤ c:

(i) Hi−1,mi−1−1 : xi,si = Id;ai ,bi
, where ai = (ai,1, . . . , ai,d ), bi = (bi,1, . . . ,

bi,d ).
(ii) Hi,j : Hi,j+1 = m, for j = 1, . . . ,mi − 2.

Proof. (i) First, the left-hand side contains the right-hand side. Indeed, take
1 ≤ j ≤ d and 1 ≤ s ≤ nj + 1. If s ≤ nj + 1 − si , then s + si ≤ nj + 1,
so yj,sxi,si = 0 by Lemma 4.2(ii). Now we show that if 0 ≤ s ≤ bi,j , then
yj,nj +2−s ∈ Hi−1,mi−1−1 : xi,si .

If mi ≥ nj + 2 and s ≤ bi,j = nj + 1 + si −mi , then nj + 2 − s + si ≥ mi + 1,
and nj + 2 − s ≥ mi − si + 1 ≥ 2, so yj,nj +2−sxi,si = 0 by Lemma 4.2(ii). On
the other hand, if mi ≤ nj + 1 and s ≤ bi,j = si , then nj + 2 − s + si ≥ nj + 2 ≥
mi + 1, so again yj,nj +2−sxi,si = 0 by Lemma 4.2(ii).

For the reverse inclusion, working modulo Hi−1,mi−1−1, we can assume that
i = 1. Denoting a = a1 and b = b1, we need to show that

0 : x1,s1 = Id;a,b. (4.1)

To establish (4.1), we will show the equality of the Hilbert series of the two sides.
Consider the short exact sequence

0 → R/(0 : x1,s1)(−1)
·x1,s1−−−→ R → R/(x1,s1) → 0.

Denote m = max{m1, . . . ,mc}. Let R′ be the determinantal ring of the submatrix
of X consisting of scroll blocks. By Theorem 2.5 we have

HR(v) = (m1 + · · · + mc − c)v

+
m∑

q=2

c∑
i=1

mi−2∑
r=0

N(n1, . . . , nd,mi − 1 − r;q)vq + HR′(v).

The length sequence of R/(x1,s1) is

s1,m1 − s1,m2, . . . ,mc︸ ︷︷ ︸
N

, n1, . . . , nd︸ ︷︷ ︸
S

.

A small remark here is that s1 = max{m1 −n1,1} ≤ m1 − s1. Now from m1 ≤ 2n1
it is clear that s1,m1 − s1 ≤ n1. Therefore, by Lemma 2.4 and Theorem 2.5 we
get

HR/(x1,s1 )(v) = (m1 + · · · + mc − c − 1)v

+
m∑

q=2

c∑
i=2

mi−2∑
r=0

N(n1, . . . , nd,mi − 1 − r;q)vq + HR′(v).
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Together with the formula for HR(v), we infer

HR(v) − HR/(x1,s1 )(v) = v +
m∑

q=2

m1−2∑
r=0

N(n1, . . . , nd,m1 − 1 − r;q)vq.

Note that if q ≥ 3, then N(n1, . . . , nd,m1 − 1 − r;q) = 0 for all r ≥ 0. Indeed,
we have m1 − 1 − r ≤ 2n1 ≤ (q − 1)n1, so the conclusion holds because of
Lemma 2.4.

Claim. If q = 2, then

m1−2∑
r=0

N(n1, . . . , nd,m1 − 1 − r;2)v2 =
( ∑

j : m1≥nj +2

(m1 − nj − 1)

)
v2.

Proof. If a sequence (v1, . . . , vd) of nonnegative integers satisfies
∑d

j=1 nj vj ≤
m1 − 2 − r and

∑d
j=1 vj = 2 − 1 = 1, then exactly one of v1, . . . , vd equals to 1,

and the others are zero. Fix 1 ≤ j ≤ d , then the equality vj = 1 happens if and
only if nj ≤ m1 − 2 − r , namely if and only if m1 ≥ nj + 2, and there are exactly
(m1 −nj −1) values of r such that this is the case. Therefore, the claim is proved.

�

From these facts we obtain

HR(v) − HR/(x1,s1 )(v) = v +
( ∑

j : m1≥nj +2

(m1 − nj − 1)

)
v2.

The Hilbert series is additive along short exact sequences, so

HR/(0 : x1,s1 ) = 1 +
( ∑

j : m1≥nj +2

(m1 − nj − 1)

)
v. (4.2)

Note that

(yj,1, . . . , yj,nj +1−s1 , yj,nj +2−b1,j
, yj,nj +3−b1,j

, . . . , yj,nj +1)

= (yj,1, yj,2, . . . , yj,nj +1)

unless nj + 1 − s1 ≤ nj − b1,j , namely b1,j ≤ s1 − 1, which is nothing but m1 ≥
nj + 2. Therefore, R/Id;a,b has the length sequence

m1 − nj : where m1 ≥ nj + 2︸ ︷︷ ︸
N

.

Applying Theorem 2.5, we infer

HR/Id;a,b(v) = 1 +
( ∑

j : m1≥nj +2

(m1 − nj − 1)

)
v.

Therefore, combining with (4.2), we have HR/Id;a,b(v) = HR/(0 : x1,s1 )(v), and
thus (4.1) is true.
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(ii) Modulo Hi,j one reduces to the case where the first nilpotent block of X

has length m1 ≤ n1. We have to prove that

0 : x1,1 = m.

This follows from part (i) since, in this case, a = (n1, . . . , nd) and b = (1, . . . ,1).
�

In the following two lemmas, working modulo Hc,mc−1, we assume that X has no
nilpotent blocks. For simplicity, for each s, 1 ≤ s ≤ d , we denote

1s = (1, . . . ,1︸ ︷︷ ︸
s times

), 0s = (0, . . . ,0︸ ︷︷ ︸
s times

).

Lemma 4.8 (Colon condition for the ideals Is;a,b where max1≤i≤s{ai, bi} ≥ 2).
Assume that 1 ≤ s ≤ d and let a = (a1, . . . , as) and b = (b1, . . . , bs) be such that
a1, . . . , as ≥ 1 and b has no gap.

(i) If bi ≥ 2 for some 1 ≤ i ≤ s, denote b̂ = (b1, . . . , bi−1, bi − 1, bi+1, . . . , bs).
Then Is;a,b = I

s,a,b̂ + (yi,ni−bi+2) and

I
s,a,b̂ : yi,ni−bi+2 = m.

(ii) If b1, . . . , bs ≤ 1 and ai ≥ 2 for some 1 ≤ i ≤ s, denote â = (a1, . . . , ai−1,

ai − 1, ai+1, . . . , as). Then Is;a,b = Is,â,b + (yi,ai
) and

Is;â,b : yi,ai
=

{
m if bi = 1,

Id;(a′
1,...,a

′
i−1,a

′
i ,...,a

′
d ),0d

if bi = 0,

where a′
i = ni , and for j 	= i,

a′
j =

{
nj if nj − aj ≥ ni − ai + 1,

nj + 1 otherwise.

Proof. (i) By Lemma 4.2(iii)–(v) we have
d∑

r=1

(yr,2, . . . , yr,nr+1) ⊆ (yi,1, yi,ni−bi+3) : yi,ni−bi+2.

Therefore, it is enough to show that yr,1 ∈ I
s,a,b̂ : yi,ni−bi+2 for all 1 ≤ r ≤ d .

Since ai ≥ 1 for 1 ≤ i ≤ s, we only need to prove that yr,1 ∈ I
s,a,b̂ : yi,ni−bi+2 for

s + 1 ≤ r ≤ d . This is true since ni − bi + 2 ≤ ni ≤ nr and hence

yr,1yi,ni−bi+2 = yr,ni−bi+2yi,1 ∈ (yi,1).

(ii) First, assume that bi = 1 and hence yi,ni+1 ∈ Is;â,b. By Lemma 4.2(iii)–
(iv), we only need to check that yj,nj +1 ∈ Is;â,b : yi,ai

for all 1 ≤ j ≤ d . For
each j ≤ i, since b has no gap, bj = 1, so yj,nj +1 ∈ Is;â,b. For j ≥ i + 1,
yi,ai

yj,nj +1 = yi,ni+1yj,nj +ai−ni
, hence yj,nj +1 ∈ (yi,ni+1) : yi,ai

. This gives us
the desired equality.

Second, assume that bi = 0. We wish to prove that

Is;â,b : yi,ai
= Id;(a′

1,...,a
′
i−1,ni ,a

′
i+1,...,a

′
d ),0d

. (4.3)
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If nj − aj ≤ ni − ai for some j 	= i, then yj,nj +1 ∈ Is;â,b : yi,ai
because

yj,nj +1yi,ai
= yj,aj

yai+nj −aj +1 ∈ (yj,aj
). Combining this with Lemma 4.2, we

see that the left-hand side contains the right-hand side. Working modulo the ideal∑
�	=i : n�−a�≤ni−ai

(y�,1, . . . , y�,n�+1),

we can assume that nj − aj ≥ ni − ai + 1 for all j 	= i, 1 ≤ j ≤ s. Equation (4.3),
which we have to prove, becomes

Is;â,0s
: yi,ai

= Id;n1,...,nd ,0d
.

To prove this, we use the monoid presentation of a rational normal scroll. Thus, we
can identify yj,r with xnj −r+1yr−1sj ∈ k[x, y, s1, . . . , sd ] for all 1 ≤ j ≤ d , 1 ≤
r ≤ nj + 1. Here x, y, s1, . . . , sd are distinct variables. Assume that there exists a
polynomial f in the variables y1,n1+1, . . . , yd,nd+1 such that fyi,ai

∈ Is;â,0s
. Us-

ing the monoid grading, we can assume that f is a monomial
∏d

j=1 y
mj

j,nj +1 where

mj ≥ 0. In the monoid presentation, we have that
∏d

j=1(y
nj sj )

mj xni+1−ai yai−1si
belongs to the ideal∑

r 	=i

(xnr sr , . . . , x
nr−ar+1yar−1sr ) + (xni si , . . . , x

ni−ai+2yai−2si).

This is a contradiction since in the monoid ring k[xn1s1, x
n1−1ys1, . . . , y

nd sd ], the
element

∏d
j=1(y

nj sj )
mj xni+1−ai yai−1si is not divisible by any monomial gener-

ator of the above ideal (by looking at the power of x). We conclude the proof of
the lemma. �

Lemma 4.9 (Colon condition for Is;a,b where max1≤i≤s{ai, bi} ≤ 1). Assume that
1 ≤ s ≤ d , and let a = (a1, . . . , as) and b = (b1, . . . , bs) be such that a1 = · · · =
as = 1 and bj ≤ 1 for all 1 ≤ j ≤ s. Denote by i the largest index such that
bi = 1.

(i) If i ≥ 1, let b̃ = (b1, . . . , bi−1,0, . . . ,0). Then Is;1s ,b = I
s;1s ,b̃

+ (yi,ni+1) and

I
s;1s ,b̃

: yi,ni+1 = Id;(n1+1,...,ni−1+1,1,ni+1−ni+1,...,nd−ni+1),0d
. (4.4)

(ii) If i = 0, then Is;1s ,0s
= Is−1;1s−1,0s−1 + (ys,1) and

Is−1;1s−1,0s−1 : ys,1 = Is−1;(n1+1,...,ns−1+1),0s−1 . (4.5)

Proof. (i) First, we prove that the left-hand side of (4.4) contains the right-hand
side. For each 1 ≤ j ≤ i − 1 and each 1 ≤ r ≤ nj + 1, we have

yi,ni+1yj,r = yi,ni
yj,r+1 = · · · = yi,ni−nj +ryj,nj +1 ∈ I

s;1s ,b̃
,

and hence yj,r ∈ I
s;1s ,b̃

: yi,ni+1.

For each i ≤ j ≤ d , and each 1 ≤ r ≤ nj + 1 − ni , we have

yi,ni+1yj,r = yi,ni
yj,r+1 = · · · = yi,1yj,ni+r ∈ I

s;1s ,b̃
,
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so yj,r ∈ I
s;1s ,b̃

: yi,ni+1. Combining this with Lemma 4.2(iii), we see that the

left-hand side contains the right-hand side. Working modulo the ideal

i−1∑
j=1

(yj,1, . . . , yj,nj +1),

we may assume that i = 1. Equation (4.4), which we have to prove, becomes

Is;1s ,0s
: y1,n1+1 = Id;c,0d

, (4.6)

where c = (1, n2 − n1 + 1, . . . , nd − n1 + 1). Modulo Id;c,0d
, after reindexing

the variables, X is a concatenation of Jordan blocks with eigenvalue 0 and length
sequence

(n1, . . . , n1)︸ ︷︷ ︸
J

,

and we need to prove that z1
1,1 is a nonzero divisor on k[X]/I2(X). This follows

from Lemma 2.8 since, in this case, the 2 × 2 minors of X form a quadratic
Gröbner basis for I2(X) with respect to the graded reverse lexicographic order. In
particular, z1

1,1 is a nonzero divisor.
(ii) First, we prove that the left-hand side of (4.5) contains the right-hand side.

For each 1 ≤ � ≤ s − 1 and each 2 ≤ j ≤ n� + 1, we have

ys,1y�,j = ys,2y�,j−1 = · · · = ys,j y�,1 ∈ Is−1;1s−1,0s−1 .

Note that the assumption that n1 ≤ n2 ≤ · · · ≤ nd is essential here since we need
ys,j to be in our set of variables.

Working modulo the right-hand side, it remains to prove the statement in the
case where X is a rational normal scroll and s = 1, that is, y1,1 is a nonzero divisor.
This is obvious since the corresponding determinantal ring is a domain. �

4.2. Matrices of Jordan Blocks

The second step is to find Koszul filtrations for concatenations of Jordan blocks.
Assume that X is a concatenation of gi Jordan blocks with eigenvalues λi for
i = 1, . . . , t . Here, we assume that λ1, λ2, . . . , λt are the pairwise distinct eigen-
values of blocks of our matrix. The Jordan blocks with the same eigenvalues λi

are arranged in the order of decreasing length. Concretely,

X =
(

X1
1 X1

2 · · · X1
g1 ��

�� · · ·

��
��Xt

1 Xt
2 · · · Xt

gt

)
,

where

Xi
j =

(
zi
j,1 zi

j,2 . . . zi
j,pij

zi
j,2 + λiz

i
j,1 zi

j,3 + λiz
i
j,2 . . . λiz

i
j,pij

)
.

Construction 4.10 (Koszul filtration for matrices of Jordan blocks). Our Koszul
filtration will consist of the ideals of the following types:

(i) J 0,g0,p0g0 = (0) (where g0, p0g0 are used just for systematic reason),
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(ii) J i,j,r , where 1 ≤ i ≤ t , 1 ≤ j ≤ gi , and 1 ≤ r ≤ pij ,

J i,j,r = (zi
1,1, z

i
1,2, . . . , z

i
1,pi1

, . . . , zi
j,1, . . . , z

i
j,r ), and

(iii) K�,i,j,r , where 1 ≤ � ≤ t , 1 ≤ i ≤ �, 1 ≤ j ≤ gi , and 1 ≤ r ≤ pij ,

K�,i,j,r =
∑

1≤u≤�

u 	=i

J u,gu,pugu + J i,j,r .

By convention, J i,j,r = 0 if i = 0, and

K�,i,j,r =
∑

1≤u≤�

u 	=i

J u,gu,pugu

if j = 0.

Example 4.11. Let X be the following concatenation matrix (where p,q ≥ 1,
λ ∈ k \ 0):

X =
(

z1 z2 . . . zp−1 zp

z2 z3 . . . zp 0 ��
�� u1 u2 . . . uq−1 uq

u2 + λu1 u3 + λu2 . . . uq + λuq−1 λuq

)
.

Then I2(X) = I2(z) + I2(u) + (z1, . . . , zp)(u1, . . . , uq). Here I2(z) is the ideal of
2-minors of the first Jordan block of X, and similarly for I2(u), which is also the
ideal of 2-minors of (

u1 u2 . . . uq−1 uq

u2 u3 . . . uq 0

)
.

In this case, t = 2 and g1 = g2 = 1. Consider the following ideals of k[X]/I2(X):

J 0,0 = (0),

J 1,r = (z1, . . . , zr ), J 2,s = (u1, . . . , us),

K2,1,r = (u1, . . . , uq) + (z1, . . . , zr ),

K2,2,s = (z1, . . . , zp) + (u1, . . . , us),

where 1 ≤ r ≤ p, 1 ≤ s ≤ q . Then the collection

{J 0,0} ∪ {J 1,r } ∪ {J 2,s} ∪ {K2,1,r } ∪ {K2,2,s}
is a Koszul filtration for the ring in question.

In more details, we have K2,1,p = m. The colon condition is verified by the
following equalities:

(i) J 0,0 : J 1,1 = J 2,q ,
(ii) J 0,0 : J 2,1 = J 1,p ,

(iii) J 1,r−1 : J 1,r = J 2,s−1 : J 2,s = m if r, s ≥ 1,
(iv) J 2,q : K2,1,1 = J 2,q ,
(v) J 1,p : K2,2,1 = J 1,p ,

(vi) K2,1,r−1 : K2,1,r = K2,2,s−1 : K2,2,s = m if r, s ≥ 1.

These identities will be justified by the next result.
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The fact that the ideals {J i,j,r }∪ {K�,i,j,r } in Construction 4.10 form a Koszul fil-
tration for the determinantal ring k[X]/I2(X) follows from the following lemma.
Note that (i), (ii), (iii) give the colon condition for J i,j,r with either r = j = 1,
or r = 1 and j > 1, or r > 1, respectively; hence, we obtain the colon condition
for all ideals of type J . Similarly, thanks to (iv), (v), (vi), we obtain the colon
condition for all ideals of type K .

Lemma 4.12 (Colon condition for the ideals J i,j,r and K�,i,j,r ). For each 1 ≤
� ≤ t , 1 ≤ i ≤ �, 2 ≤ j ≤ gi , and 2 ≤ r ≤ pij , we have the following equalities:

(i) J
i−1,gi−1,p(i−1)gi−1 : zi

1,1 = Kt,i,0,0,

(ii) J i,j−1,pi(j−1) : zi
j,1 = Kt,i,j−1,pi(j−1) ,

(iii) J i,j,r−1 : zi
j,r = m,

(iv) K
�−1,i−1,gi−1,p(i−1)gi−1 : zi

1,1 = Kt,i,0,0,

(v) K�,i,j−1,pi(j−1) : zi
j,1 = Kt,i,j−1,pi(j−1) ,

(vi) K�,i,j,r−1 : zi
j,r = m.

Proof. (i) By Lemma 4.2(v) the left-hand side contains the right-hand side. Work-
ing modulo the right-hand side, we may assume that X consists of Jordan blocks
with the same eigenvalue λ (which can be taken to be 0) and i = 1. We need to
prove that

0 : z1
1,1 = 0. (4.7)

This follows from the same Gröbner basis argument as in the proof of Lem-
ma 4.9(i).

By the same arguments we obtain (ii), (iv), and (v).
(iii) This is a consequence of Lemma 4.2(iii) and the following analogue of

Lemma 4.2(iv):
g∑

t=1

(zt,1, . . . , zt,pt ) ⊆ (zi,r−1) : zi,r .

By the same arguments, we obtain (vi). The lemma follows. �

4.3. Koszul Filtration for Theorem 4.1

Let X be a Kronecker–Weierstrass matrix satisfying the length condition. The
final step to get a Koszul filtration for the determinantal ring of X is “concatenat-
ing” the filtration for Jordan blocks in Section 4.2 with the Koszul filtration for
the matrix of nilpotent and scroll blocks in Section 4.1. The result is our desired
filtration for any Kronecker-Weierstrass matrix satisfying the length condition.

Construction 4.13 (Koszul filtration). For each i = 1, . . . , c, denote si =
max{mi − n1,1}. With the notation from Sections 4.1 and 4.2, our Koszul fil-
tration consists of the ideals of the following types:

(i) H0,m0−1 = (0),
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(ii) Hi,r (where 1 ≤ i ≤ c, 1 ≤ r ≤ mi − 1) with generators as in Construc-
tion 4.5,

(iii) Is;a,b (where 1 ≤ s ≤ d , and a = (a1, . . . , as) and b = (b1, . . . , bs) are such
that bj ≥ 0, 1 ≤ aj ≤ nj + 1 − bj for 1 ≤ j ≤ s, and b has no gap) with
generators as in Construction 4.5,

(iv) J
i,j,r

a,b , where 1 ≤ i ≤ t , 1 ≤ j ≤ gi , 1 ≤ r ≤ pij , and a = (a1, . . . , ad) and
b = (b1, . . . , bd) are such that br ≥ 0, 1 ≤ ar ≤ nr + 1 − br for r = 1, . . . , d ,
and b has no gap, given by

J
i,j,r

a,b = Id;a,b + J i,j,r .

Here J i,j,r have generators as in Construction 4.10.
(v) K

�,i,j,r

a,b , where 1 ≤ i ≤ � ≤ t , 1 ≤ j ≤ gi , 1 ≤ r ≤ pij , and a = (a1, . . . , ad)

and b = (b1, . . . , bd) are such that br ≥ 0, 1 ≤ ar ≤ nr + 1 − br for r =
1, . . . , d , and b has no gap, given by

K
�,i,j,r

a,b = Id;a,b + K�,i,j,r .

Here K�,i,j,r have generators as in Construction 4.10.

Remark 4.14. (1) Construction 4.13 generalizes Construction 4.5 and Construc-
tion 4.10.

(2) Note that if I is an ideal in a Koszul filtration of R, then necessarily R/I

is Koszul. This can be used as a test for our Koszul filtration: we can check that
modulo ideals of type H , I , J , or K , we again get determinantal rings of matri-
ces satisfying the length condition. Therefore, such quotient rings should also be
Koszul by Theorem 4.1, giving support to the correctness of our filtration 4.13.

Example 4.15. Consider the matrix (where λ ∈ k \ 0)

X =
(

0 x1 x2 x3
x1 x2 x3 0 ��

�� y1 y2
y2 y3 ��

�� z1 z2
z2 0 ��

�� u1 u2
u2 + λu1 λu2

)
.

In this example, c = d = 1, t = 2, and g1 = g2 = 1. Moreover, s1 = 2. Denote
H0,m0−1 by H0, H1,r by Hr , I1,(a1),(b1) by Ia1,b1 , J i,1,r

(a1),(b1)
by J

i,r
a1,b1

, and K
�,i,1,r
(a1),(b1)

by K
�,i,r
a1,b1

. Construction 4.13 gives the following filtration:

H0 = (0), H1 = (x2), H2 = (x1, x2), H3 = (x1, x2, x3),

I1,0 = (x1, x2, x3, y1), I2,0 = (x1, x2, x3, y1, y2),

I1,1 = (x1, x2, x3, y1, y3), I2,1 = (x1, x2, x3, y1, y2, y3), . . . ,

J
1,1
1,0 = (x1, x2, x3, y1, z1), J

1,2
1,0 = (x1, x2, x3, y1, z1, z2),

J
1,1
2,1 = (x1, x2, x3, y1, y2, y3, z1), J

2,1
1,0 = (x1, x2, x3, y1, u1),

J
2,2
2,1 = (x1, x2, x3, y1, y2, y3, u1, u2), . . . ,

K
2,1,1
1,0 = (x1, x2, x3, y1, u1, u2, z1),

K
2,2,2
1,1 = (x1, x2, x3, y1, y3, z1, z2, u1, u2),
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K
2,2,2
2,0 = (x1, x2, x3, y1, y2, z1, z2, u1, u2), . . . ,

K
2,2,2
2,1 = (x1, x2, x3, y1, y2, y3, z1, z2, u1, u2) = m.

For example, we can check by Macaulay2 [18] that:

(i) H0 : H1 = K
2,2,2
1,1 , H1 : H2 = H2 : H3 = m,

(ii) H3 : I1,0 = H3,
(iii) I1,0 : I2,0 = K

2,2,2
2,0 ,

(iv) I2,0 : I2,1 = K
2,2,2
2,0 ,

(v) I2,1 : J
1,1
2,1 = J

2,2
2,1 .

Let us now prove Theorem 4.1 by showing that Construction 4.13 indeed gives a
Koszul filtration.

Proof of Theorem 4.1. We show that the list of ideals

F = {Hi,j } ∪ {Is;a,b} ∪ {J i,j,r

a,b } ∪ {K�,i,j,r

a,b }
in Construction 4.13 gives a Koszul filtration for R.

From the definition of F , the first two conditions of the definition of Koszul
filtration follow immediately. For the colon condition, the following equalities
hold.

(i) For the ideal Hi,1 where 1 ≤ i ≤ c, we have

Hi−1,mi−1−1 : Hi,1 = Hi−1,mi−1−1 : xi,si = K
t,t,gt ,ptgt

ai ,bi
,

where ai and bi are as in Lemma 4.7(i): The left-hand side contains the right-
hand side because of Lemma 4.2(ii) and Lemma 4.7(i). Working modulo
Kt,t,gt ,ptgt , we may assume that X has no Jordan blocks. The equality now
follows from Lemma 4.7(i).

(ii) For the ideal Hi,j where 1 ≤ i ≤ c and 2 ≤ j ≤ mi − 1, we have

Hi,j−1 : Hi,j = m.

This follows from Lemma 4.7(ii) and Lemma 4.2(i).
(iii) For the ideal Is,a,b where 1 ≤ s ≤ d and b is such that bi ≥ 2 for some

i: denote b̂ = (b1, . . . , bi−1, bi − 1, bi+1, . . . , bs). Then Is;a,b = I
s;a,b̂ +

(yi,ni−bi+2) and

I
s;a,b̂ : yi,ni−bi+2 = m.

This follows from Lemma 4.2(iii) and Lemma 4.8(i).
(iv) For the ideal Is,a,b where 1 ≤ s ≤ d , b1, . . . , bs ≤ 1, and a is such that ai ≥ 2

for some i, denote â = (a1, . . . , ai−1, ai − 1, ai+1, . . . , as). Then Is;a,b =
Is;â,b + (yi,ai

) and

Is;â,b : yi,ai
=

{
m if bi = 1,

K
t,t,gt ,ptgt

(a′
1,...,a

′
i−1,a

′
i ,...,a

′
d ),0d

if bi = 0,
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where a′
i = ni and, for j 	= i,

a′
j =

{
nj if nj − aj ≥ ni − ai + 1,

nj + 1 otherwise.

This follows from Lemma 4.8(ii) and Lemma 4.2(iii).
(v) For the ideal Is,a,b where 1 ≤ s ≤ d , a = 1s , and b = 1i for some 1 ≤ i ≤ s,

we have Is;1s ;1i
= Is;1s ,1i−1 + (yi,ni+1) and

Is;1s ,1i−1 : yi,ni+1 = K
t,t,gt ,ptgt

(n1+1,...,ni−1+1,1,ni+1−ni+1,...,nd−ni+1),0d
.

This follows from Lemma 4.2(iii) and Lemma 4.9(i).
(vi) For the ideal Is,a,b where 1 ≤ s ≤ d , a = 1s , and b = 0s , we have Is,1s ,0s =

Is−1,1s−1,0s−1 + (ys,1) and

Is−1;1s−1,0s−1 : ys,1 = Is−1,(n1+1,...,ns−1+1),0s−1 .

The left-hand side contains the right-hand side by Lemma 4.9(ii). Working
modulo the right-hand side, we may assume that X has no nilpotent blocks
and s = 1. We need to prove that y1,1 is a nonzero divisor. This follows from
Lemma 2.8.

(vii) Finally, for J and K series, the similar equalities hold as in Lemma 4.12.

This completes the proof of Theorem 4.1. �

5. The Necessary Condition

For m ≥ 1 and n ≥ 1, consider the scroll of type (m,n). It is given by the matrix

X =
(

x1 x2 . . . xm

x2 x3 . . . xm+1 ��
�� y1 y2 . . . yn

y2 y3 . . . yn+1

)
.

Theorem 5.1. For any n ≥ 1 and m ≥ 2n+1, the ring R(m,n)/(x1, xm+1) is not
Koszul.

Proof. Denote T = R(m,n)/(x1, xm+1). We introduce some notation. Let x, y,
s1, and s2 be variables. Identify N

4 with the multiplicative monoid 〈x, y, s1, s2〉
by mapping a sequence of natural numbers (g,h,p, q) to xgyhs

p

1 s
q

2 . Recall that
R(m,n) is the monoid ring k[�] where � is the following affine submonoid
of N4:

〈xms1, x
m−1ys1, . . . , y

ms1, x
ns2, x

n−1ys2, . . . , y
ns2〉.

Note that R(m,n) is a standard graded k-algebra by giving each of the minimal
generators of � the degree 1.

Observe that T has an induced �-grading and k is a �-graded module. Denote
a = 
m/n� and μ = xanyms1s

a
2 , an element of degree a + 1 ≥ 4 of �.

Claim. We always have βT
3,μ(k) ≥ 1.
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This implies that βT
3,a+1(k) 	= 0, and hence T is not Koszul.

We will use a result of Herzog, Reiner, and Welker [21, Theorem 2.1], which
gives the multigraded Betti numbers of k over T . Denote by �μ the simplicial
complex whose faces are sequences α1 < · · · < αs in (0,μ) with αi ∈ �. Let J be
the submonoid generated by xms1, yms1 of �. Note that T = k[�]/(xms1, y

ms1).
Denote by �μ,J the subcomplex of �μ consisting of sequences α1 < · · · < αs

such that for some 0 ≤ i ≤ s, we have αi+1/αi ∈ J , where α0 = 0 and αs+1 = μ

by convention.
By [21, Theorem 2.1] we have

β3,μ(k) = dimk H̃1(�μ,�μ,J ; k),

where the left-hand side is the reduced, relative simplicial homology of the pair
�μ, �μ,J . There is an exact sequence

H̃1(�μ; k) → H̃1(�μ,�μ,J ; k) → H̃0(�μ,J ; k) → H̃0(�μ; k).

Since k[�] = R(m,n) is Koszul, by the same result cited before, the two terms on
two sides of the sequence are zero. Thus, it is enough to show that H̃0(�μ,J ; k) 	=
0 or, equivalently, that �μ,J is disconnected.

There are two types of facets of �μ,J : the sequences α1 < · · · < αs such that
αi+1/αi ∈ (yms1)� for some 0 ≤ i ≤ s and such that αj+1/αj ∈ (xms1)� for
some 0 ≤ j ≤ s. These two classes of facets are disjoint since μ is not a multiple
of s2

1 in N
4.

Now μ = yms1(x
ns2)

a , so if α1 < · · · < αs is a facet of the first type, then
the sequence (αi+1/αi)

s
i=0 is (up to permutation) the sequence (yms1, x

ns2, x
ns2,

xns2, . . . , x
ns2) (there are a elements xns2). Therefore, the only facets of the first

type are of the form

(xns2, (x
ns2)

2, . . . , (xns2)
t , yms1(x

ns2)
t , yms1(x

ns2)
t+1, . . . , yms1(x

ns2)
a−1)

for some 0 ≤ t ≤ a.
The following diagram illustrates the case n = 1, m = 3:

x3y3s1s
3
2

(xs2)
3 y3s1(xs2)

2 x3s1(ys2)
2 (ys2)

3

(xs2)
2 y3s1xs2 x3s1ys2 (ys2)

2

xs2 y3s1 x3s1 ys2

In the diagram, the arrows signify divisibility of upper elements to the corre-
sponding lower elements. The facets of �μ,J are maximal chains of arrows in the
diagram.
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Fix 1 ≤ t ≤ a. We show that no facet of second type may contain (xns2)
t . In-

deed, otherwise, we have a facet α1 < · · · < αs of second type, where αi = (xns2)
t

for some 1 ≤ i ≤ s. None of the quotient αj/αj−1 where j ≤ i can be xms1

since xms1 is not a divisor of (xns2)
t . Now αs+1/αi = (αs+1/αs) · · · (αi+1/αi) =

x(a−t)nyms1s
a−t
2 . One of the quotients αj+1/αj (where j = i, i + 1, . . . , s) is

xms1, and hence the product of the remaining ones is x(a−t)n−mymsa−t
2 . The last

element does not belong to � since (a − t)n ≤ (a − 1)n < m, a contradiction.
Similarly, one can prove that no facet of second type may contain one of the

elements yms1, y
ms1xs2, . . . , y

ms1(xs2)
a−1.

It is immediate that (yns2, y
2ns2

2 , . . . , y(a−1)nsa−1
2 , xan−mymsa

2 ) is a facet of
second type. Therefore, �μ,J has at least two connected components. (In fact, it
has exactly two components since the interested reader can check that the facets
of second type generate a connected complex.) Hence, the claim is true, and the
proposition is established. �

We are ready for the following:

Proof of the necessary condition in Theorem 1.1. If m ≥ 2n + 1, then the deter-
minantal ring A of the submatrix consisting of a nilpotent block of length m and
a scroll block of length n is not Koszul by Theorem 5.1. Since A is an algebra
retract of R, by [19, Proposition 1.4] R is also not Koszul. This is a contradiction,
and hence m ≤ 2n. �

Remark 5.2. Let R be a rational normal scroll, and Y a set of natural coordi-
nates. Using Theorem 1.1, we can determine all Y such that the quotient ring
R/(Y ) is Koszul. Indeed, R/(Y ) is defined by a matrix consisting of scroll blocks
with certain variables replaced by zero. By the proof of Lemma 3.3 we can find
a Kronecker–Weierstrass normal form of R/(Y ) by first finding the normal form
for each of these blocks. Such normal forms exist by Remark 2.2. Then by Theo-
rem 1.1 we easily determine whether R/(Y ) is Koszul or not.

6. Applications to Linear Sections of Rational Normal Scrolls

We start this section by proving that all the linear sections of a scroll have a linear
resolution if and only if the scroll is of type (n1, . . . ,n1).

Definition 6.1. Let R be a standard graded k-algebra with r1, . . . , rn being min-
imal homogeneous generators of m. We say that R is strongly Koszul if for every
sequence 1 ≤ i1 < i2 < · · · < is ≤ n, the ideal (ri1, . . . , ris−1) : ris is an ideal gen-
erated by a subset of {r1, . . . , rn}.
Remark 6.2. Another notion of strongly Koszul algebras was introduced in [11,
Definition 3.1]. The two notions are equivalent when R = k[�], where � is an
affine monoid, and r1, . . . , rn are the minimal generators of �.

See [20] for a detailed discussion of strongly Koszul algebras.
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Proposition 6.3. For a homogeneous affine monoid � and r1, . . . , rn the minimal
generators of �, the following are equivalent:

(i) R = k[�] is strongly Koszul;
(ii) regR R/(Y ) = 0 for every subset Y of {r1, . . . , rn}.
Proof. (i) obviously implies (ii): the ideals generated by subsets of {r1, . . . , rn}
form a Koszul filtration for k[�]. Now assume that (ii) is true. For each subset Y

of {r1, . . . , rn} and rj /∈ Y , consider the short exact sequence

0 → (Y ) ∩ (rj ) → (Y ) ⊕ (rj ) → (Y, rj ) → 0.

By the hypothesis, regR((Y ) ⊕ (rj )) = regR(Y, rj ) = 1. Hence, regR((Y ) ∩
(rj )) ≤ 2. By [20, Proposition 1.4] this implies that R is strongly Koszul. �

An immediate corollary is the following result due to Conca.

Proposition 6.4 (Conca [8]). The scroll R = R(n1, . . . ,nt) has the property that
regR R/(Y ) = 0 for every set of variables Y if and only if n1 = n2 = · · · = nt.

Proof. We prove that R is strongly Koszul if and only if n1 = n2 = · · · = nt.
The “if” direction is clear: if n1 = n2 = · · · = nt, then R is the Segre product of
k[s1, . . . , st] and the n1th Veronese of k[x, y]. Therefore, R is strongly Koszul by
[20, Proposition 2.3].

The “only if” direction: assume that the contrary is true, for example, nt > n1.
Since R is strongly Koszul, moding out the variables of the blocks of lengths
t2, . . . , tn−1, we see that the scroll of type (n1,nt) is also strongly Koszul. We will
deduce a contradiction. For simplicity, we can assume that t = 2.

Denote a = n1 and b = n2. Let r = 
b/a�. The ring R is also an affine monoid
ring, R ∼= k[xas1, x

a−1ys1, . . . , y
as1, x

bs2, x
b−1ys2, . . . , y

bs2] ⊆ k[x, y, s1, s2]
where x, y, s1, s2 are variables. By [20, Proposition 1.4] the ideal (xas1) : yas1 is
generated by a subset of

{xas1, x
a−1ys1, . . . , y

as1, x
bs2, . . . , y

bs2}.
However, xbyra−bsr

2 is clearly a minimal generator of (xas1) : yas1, and it does
not belong to the before-mentioned set since it has degree r ≥ 2 in R. This is a
contradiction. �

Definition 6.5. Let R be a standard graded k-algebra with graded maximal
ideal m. Let R = S/I be a presentation of R where S = k[x1, . . . , xn] is a standard
graded polynomial ring and I a homogeneous ideal of S. The algebra R is called
linearly Koszul (with respect to the sequence x1, . . . , xn) if R/(Y ) is a Koszul
algebra for every subsequence Y of x = x1, . . . , xn.

We say that R satisfies the regularity condition if regR/(Y ) ≤ regR for ev-
ery subsequence Y of x, where reg denotes the absolute Castelnuovo–Mumford
regularity.

Remark 6.6. (i) Any algebra defined by quadratic monomial relations is Koszul
by the result of Fröberg [15], and consequently it is also linearly Koszul.
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(ii) If R is linearly Koszul, then so is the quotient ring R/(Y ) for every subse-
quence Y of x.

(iii) If R is strongly Koszul with respect to the sequence x, then it is also
linearly Koszul. The reverse implication is not true, even if R is defined by all
monomial relations except one binomial relation. For example, let R be the deter-
minantal ring of the matrix (

x 0 z

y z t

)
.

Concretely, R = k[x, y, z, t]/(xz, z2, xt − yz). Then y is an R-regular element,
and R/(y) ∼= k[x, z, t]/(xz, z2, xt) is Koszul, so R is also Koszul, for example, by
Lemma 2.3. It is also easy to check that each of the quotient rings R/(x), R/(z),
R/(t) is a Koszul algebra defined by monomial relations. Therefore, R is linearly
Koszul. On the other hand, 0 : t = (x2), and hence R is not strongly Koszul (with
respect to the natural coordinates).

Note that if R is a rational normal scroll, then regR = 1. In this case, we have the
following:

Lemma 6.7. If reg(R) = 1 and R satisfies the regularity condition, then R is
linearly Koszul.

Proof. Take any standard graded polynomial ring S that surjects onto R. From
regS R = 1 we get regR k ≤ regS k = 0 by Lemma 2.3.

Denote by x the sequence of natural coordinates of R. For every subse-
quence Y of x, we have regR R/(Y ) ≤ regR/(Y ) ≤ 1. By Lemma 2.3 this implies
regR/(Y ) k ≤ regR k = 0. Hence, R/(Y ) is Koszul. �

We are ready for Theorem 1.2(i), which characterizes balanced scrolls [12] in
terms of the regularity condition. This was predicted by Conca [8].

Theorem 6.8. A rational normal scroll satisfies the regularity condition if and
only if it is balanced.

Proof. Assume that the scroll is balanced, that is, R = R(n1, . . . ,n1,n1 +
1, . . . ,n1 + 1). For every set of variables Y , the quotient ring R/(Y ) is the de-
terminantal ring of a 2 × e matrix X of linear forms, which can assumed to be in
Kronecker–Weierstrass form. By Proposition 3.2 the length of any scroll block of
X (if exists) is at least n1. By Lemma 3.3 each nilpotent block of X has length at
most n1 + 1. Therefore, regR/(Y ) ≤ 1 by Theorem 2.6, as desired.

The necessary condition is immediate from Theorem 2.6. In our case,

reg
R(n1, . . . ,nt)

(xt,1, xt,nt+1)
=

⌈
nt − 1

n1

⌉
≥ 2

if nt ≥ n1 + 2. �

Now we prove Theorem 1.2(ii), which characterizes linearly Koszul scrolls.
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Theorem 6.9. The scroll R = R(n1, . . . ,nt) is linearly Koszul if and only if nt ≤
2n1.

Proof. For the sufficient condition, assume that nt ≤ 2n1. Take any set of natural
coordinates Y . Let X be the matrix of linear forms defining R/(Y ). By Proposi-
tion 3.2 and Lemma 3.3 any canonical form of X satisfies the length condition.
By Theorem 4.1 we conclude that R/(Y ) is Koszul.

The necessary condition follows from Theorem 5.1. �

Next, we consider the following class of linearly Koszul algebras, first introduced
in [8] under a different name.

Definition 6.10. Let R be a standard graded k-algebra. We say that R is univer-
sally linearly Koszul (abbreviated ul-Koszul) if R/(Y ) is a Koszul ring for every
set of linear forms Y .

Remark 6.11. We know that every Koszul algebra defined by quadratic monomial
relations are linearly Koszul. However, a Koszul algebra defined by quadratic
monomial relations need not be universally linearly Koszul. Indeed, let

R = k[x, y, z, t, u, v]
(x2, xy, y2, xz, yt, uv)

and I = (x + y −u, z − t − v). Then R/I ∼= k[x, y, z, t]/(x2, xy, y2, xz, yt, xt −
yz) is not Koszul: it is defined by the matrix(

0 x y z

x y 0 t

)
,

and by Theorem 5.1 R/I is not Koszul.

In [9], the author defines R to be universally Koszul if regR R/(Y ) = 0 for ev-
ery sequence of linear forms Y . Clearly, every universally Koszul algebra is ul-
Koszul. In the same paper, the universally Koszul rational normal scrolls of type
(n1, . . . ,nt) are completely classified: either t = 1 (a rational normal curve), or
t = 2 and n1 = n2. Using the classification of the Kronecker–Weierstrass normal
forms of linear sections of rational normal scrolls in Section 2, we prove the fol-
lowing:

Theorem 6.12. The rational normal scroll R(n1, . . . ,nt) is ul-Koszul if and only
if either t = 1, or t = 2 and n2 ≤ 2n1, or t = 3 and n1 = n2 = n3.

Proof. If the necessary condition is not true, then n2 + · · · + nt ≥ 2n1 + 1. Mod-
ing out a suitable sequence of binomial linear forms Y , we arrive at the ring
R(n1,n2 + · · · + nt). By Theorem 5.1 we get that R/(Y ) is not linearly Koszul.
Hence, R is not ul-Koszul.

The converse follows from Theorem 1.1 and Proposition 3.2: for any quotient
ring by a linear ideal of R, any of its corresponding Kronecker–Weierstrass ma-
trices satisfies the length condition. �
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Conca [10] discovered the classification of universally Koszul algebras defined
by monomial relations. It would be interesting to classify all universally linearly
Koszul algebras defined by monomial relations.

Finally, similarly to Theorem 6.12, we can classify scrolls that satisfy the “uni-
versal” version of the regularity condition.

Theorem 6.13. The rational normal scroll R = R(n1, . . . ,nt) has the property
that regR/(Y ) ≤ regR for any set of linear forms Y if and only if t ≤ 1, or t = 2
and n2 ≤ n1 + 1, or t = 3 and n1 = n2 = n3 = 1.

Proof. If the necessary condition is not true, then n2 + · · · + nt ≥ n1 + 2. Moding
out suitable linear forms, we arrive at the determinantal of a scroll block of length
n1 and a nilpotent block of length n2 + · · · + nt. The regularity of that ring is at
least 2 by Theorem 2.6. This is a contradiction.

For the sufficient condition: we only have to use Proposition 3.2 and Theo-
rem 2.6. �
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