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1. Introduction

In recent decades, the strong laws of large numbers (SLLN) for unbounded random sets,
gave rise to applications in several fields, such as optimization and control, stochastic and
integral geometry, mathematical economics, statistics and related fields. The first multival-
ued SLLN was proved by Artstein and Vitale [1] for independent identically distributed
(i.i.d.) random variables whose values are compact subsets of RY. Puri and Ralescu [16]
were the first to obtain the SLLN for i.i.d. Banach space-valued compact convex random
sets. Later, Hiai [7] and Hess [6] independently proved similar results for random sets in an
infinite dimensional Banach space, with respect to the Mosco convergence. Further vari-
ants of the multivalued SLLN have been established under various conditions, for example,
see Castaing, Quang and Giap [2,3], Fu and Zhang [4,5], Inoue [9,10], Kim [12], Quang
and Giap [18,19], Quang and Thuan [20].

The first result on SLLN with respect to Mosco convergence for triangular array of ran-
dom sets was established by Quang and Giap [18]. In this paper, the authors established
the SLLN for triangular array of row-wise independent random sets in Banach space with
bounded expectation condition. According to this direction, in present paper, we study
the Mosco convergence of the SLLN for triangular array of row-wise exchangeable ran-
dom sets and fuzzy random sets. However, in [18], the SLLN was established under the
bounded expectation condition, while in the present paper, this condition is not assumed.
To give the main results, we provide a new method in building structure of triangular array
of selections to prove the ‘lim inf” part of Mosco convergence. We also use a condition of
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the Mosco convergence in the first column of triangular array of random sets and fuzzy
random sets, which was introduced by Hiai [7]. Our results improve some related results
in literature. Moreover, some typical examples illustrating this study are provided.

The organization of this paper is as follows: In Section 2, we introduce some basic
notions: set-valued random variable, fuzzy-valued random variable, Mosco convergence
and exchangeability. Section 3 is concerned with some theorems on Mosco convergence of
the SLLN for triangular arrays of row-wise exchangeable random sets and fuzzy random
sets in a separable Banach space. A new method in building structure of triangular array
of selections to prove the ‘lim inf’ part of the Mosco convergence is provided. Illustrative
examples are also provided in this section.

2. Preliminaries

Throughout this paper, let (22, F,P) be a complete probability space, (X, ||.||) be a real
separable Banach space and X* be its topological dual. The o-field of all Borel sets of X is
denoted by B(X). In the present paper, R (resp. N) will be denoted the set of real numbers
(resp. the set of positive integers).

Let ¢(X) be the family of all nonempty closed subsets of X and £(X) (shortly, £) be the
Eftros o -field on ¢(X). This o -field is generated by the subsets U™ = {F € ¢(X) : FN U #
@}, where U ranges over the open subsets of X. On the other hand, for each A,C C X,
clC, coC and coC denote the norm-closure, the convex hull and the closed convex hull of C,
respectively; the distance function d(-, C) of C, the Hausdorff distancedr (A, C) of A and C,
the norm ||C|| of C and the support function s(C, -) of C are defined by

d(x,C) = inf{||[x — y|| : y € C}, (x € X),

dy(A, C) = max{sup d(x, C),sup d(y, A)},
x€A yeC

ICll = du(C, {0}) = sup{||x]| : x € C},
s(C,x™) = sup{{x,x*) :x € C}, (x* € X¥).

The space ¢(X) has a linear structure induced by Minkowski addition and scalar
multiplication:

A+B={a+b:aecAbeB}
M ={la:a € A},

where A,B € ¢(X), A € R.

A multivalued (set-valued) function X: Q — ¢(X) is said to be F-measurable (or mea-
surable) if X is (F, £)—measurable, i.e. for every open set U of X, the subset X1 (U™) =
{w e Q: X(w) N U # ?} belongs to . A measurable multivalued function is also called
a closed valued random variable (or random set). The sub-o-field X~ 1(€) generated by X
is denoted by Fx.

The distribution Py of the random set X : Q — ¢(X) on the measurable space (¢(X), £)
is defined by Px(B) = P(X~!(B)), forall B € &. A collection of random sets {X;,i € I}
is said to be identically distributed (i.d.) if the Py, i € I are identical.
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A random element (Banach space valued random variable) f : 2 — X is called a
selection of the random set X if f(w) € X(w) forallw € Q.

For every sub-o-field A of F and for 1 < p < oo, LP(R2, A, P, X) denotes the Banach
space of (equivalence classes of) measurable functions f : & — X such that the norm

Ifll, = (E|Lf||P)% = (/g ||f(a))||PdP)% is finite. In special case, LP(Q2,F,P,X) (resp.
LP(2,F,P,R)) is denoted by LP(X) (resp. LF). For each random set X, define the
following closed subset of £P(2, A, P, X)

Sh(A) = {f € L2(Q,AP,X) : f(0) € X(w), forall w € Q).

A random set X : Q — ¢(X) is called integrable if the set S}i(]:) is nonempty (i.e.
d(0,X(-)) is in £!), and it is called integrable bounded if the random variable || X]| is
in £1.

For any random set X and any sub-o -field A of F, the multivalued expectation of X over
Q, with respect to A4, is defined by

E(X, A) = {E(f) : f € Sx(A)},

where E(f) = [, fdP is the usual Bochner integral of f. Shortly, E(X, F) is denoted by EX.
We note that E(X, .A) is not always closed.

The sequence of random elements {X, :n > 1} is called a martingale sequence if
E||X,| < oo and X, = E(Xp4m|X1,X2,...,X,) as. for all positive integers m and n.
Similarly, {X,, : n > 1} is called a reverse martingale sequence if it is a martingale under
the reverse ordering of N, that is, X;,1» = E(Xu|Xm+n> Xm+n+1,- - .) as. for all positive
integers m and n.

A sequence of random elements {X,, : n > 1} is said to be tight if for each € > 0 there
exists a compact subset K. of X such that P[X,, ¢ K] < € for every positive integer n.
Also, a general condition involving tightness of distributions and moments of the random
elements {X,, : n > 1} called compact uniform integrability (CUI) can be stated as: Given
€ > 0, there exists a compact subset K, of X such that sup,, (E|| X, [[x,¢k.]Il) < €, where I4
is the indicator function of A.

Next, we describe some basic concepts of fuzzy random sets. A fuzzy set in X is a
function u : X — [0, 1]. For each fuzzy set u, the a-level set is denoted by

Lyu={xeX:ulx)>a}, 0 <a <1.

It is easy to see that, for every o € (0, 1], Lou = NgoLgu. Let F(X) denote the space of
fuzzy subsets u : X — [0, 1] such that

(1) uisnormal,i.e. the 1-level set Lyu £ @,

(2) uisupper semicontinuous, that is, for each o € (0,1], the a-level set Lyu

is a closed subset of X.

We note that the relation Lo(#) = {x € X : u(x) > 0} = X is automatically satisfied.
A linear structure in F(X) is defined by the following operations,

(u+v)(x) = sup min{u(y),v(z)},
y+z=x
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[ u T if A #£0,
Au)(x) = { Loy if »=0,
where u,v € F(X), A € R. Then it follows that, for u,v € F(X), A € R, we have Ly (u +
v) = Ly (u) + Ly (v) and Ly (Au) = AL, (u) for each o € (0, 1].

The concept of a fuzzy random set as a generalization for a random set was extensively
studied by Puri and Ralescu [17]. A fuzzy-valued random variable (or fuzzy random set)
is a Borel measurable function X : Q@ — F(X) such that L, X is a random set for each o €
(0, 1].

The expected value of any fuzzy random set X, denoted by EX, is a fuzzy set such that,
for every o € (0,1],

Lo (EX) = E(LyX).

Next, we shall use a notion of convergence for sequences of subsets which has been
introduced by Mosco [13,14] and which related to that of Kuratowski. Let ¢ be a topology
on X and (C,),>1 be a sequence in ¢(X). We put

t-iC, ={xe X:x=t-limx,, x, € C,,Vn > 1},

t-IsC, = {x € X : x = t-limxy, xx € Cy), Yk > 1}

where (Cyx))k>1 is a subsequence of (Cy),>1. The subsets ¢-liC,, and ¢-IsC,, are the lower
limit and the upper limit of (C,),>1, relative to topology t. We obviously have ¢-1iC,, C
t-IsC,,.

A sequence (C,),>1 converges to Co, in the sense of Kuratowski, relatively to the topol-
ogy t, if the two following equalities are satisfied: ¢-IsC,, = t-liC,, = C. In this case, we
shall write Co, = t-limC,; this is true if and only if the next two inclusions hold ¢-IsC,, C
Coo C t-liCy,.

Let us denote by s (resp. w) the strong (resp. weak) topology of X. It is easily seen that
s-liC,, C w-IsC,, and s-1iC,, € ¢(X) unless it is empty. A subset C is said to be the Mosco
limit of the sequence (C,),> denoted by M- lim C, if w-IsC,, = s-liC,, = Cs which is true
if and only if

w-IsC,, C Coo C s-liCy,.

The corresponding definitions of pointwise convergence and almost sure convergence
for a sequence {X,, : n > 1} of multivalued functions defined on 2 are clear. In fact, in
the above definitions, it suffices to replace C, by X, (w) and Cx by Xoo(w) for almost
surely o € Q. Also, a fuzzy random set X is said to be the Mosco limit of the sequence of
fuzzy random sets {X, : n > 1} denoted by M- lim X, if Ly Xooc = M-1im L, X,, for every
o € (0,1] a.s.

At the end of this section, we introduce some concepts of exchangeability. A sequence
{X1,X2,...,X,} of random sets is said to be exchangeable if the joint probability law of
random sets, (X1, X3, . ..,X},), is permutation invariant, that is,

P(Xl c Bl,. . .,Xn S Bn) == P(Xj-[(l) S Bl,. . ')XT[(T’!) S Bn),

forall By,...,B, € £ and each permutation 7 of {1,2, ..., n}.
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Also, a sequence (X1, X2, ..., X} of fuzzy random sets is said to be exchangeable if for
each o € (0, 1], the sequence of random sets (Lo X1, LaXa, . .., LyX,) is exchangeable.

Exchangeability for an infinite sequence is related to i.i.d. in the following sense. It
is obvious that a sequence of {Xy : k > 1} being i.i.d. random sets implies {Xj : k > 1}
are pairwise independent and exchangeable. However, if {Xj : kK > 1} is a sequence of
exchangeable random sets, then {X : kK > 1} arei.d. random sets. Moreover, if {Xj : k > 1}
is a sequence of exchangeable random sets and pairwise independent, then these random
sets are i.i.d (see Hu [8]). We note that the above results are also true for a finite sequence
{Xk : 1 < k < n} if this sequence can be embedded into an infinite sequence of exchange-
able random sets. Thus, we can see the concept of exchangeability is an extension of the
concept of i.i.d. random sets.

3. SLLN in Mosco convergence for triangular array of rowwise exchangeable
random sets

Let X, Y be two random sets and f (resp. g) belongs to 8)1((.7:) (resp. S%,(]:)). If X,Y are
independent, then in general case, f and g are not independent. However, if f € S} (Fx)
and g € S} (Fy) then the pair of X, Y being independent random sets implies indepen-
dence of the selections f, g. Similarly, if X, Y are exchangeable random sets, then in general
case, f and g are not exchangeable. However, Inoue and Taylor [11] proved the following
result.

Lemma 3.1 (Inoue and Taylor [11, Lemma 4.2]): (1) For each random set X and S)lg(f)
#+ (), we have

coE(X) = coE(X, Fx).

(2) Let X, Y be exchangeable random sets. For each f € S;((]:X), there exists g € S%,(]:y)
such that f and g are exchangeable.
(3) For exchangeable random sets X, Y and S)I((]—') #+ (,

E(X, Fx) = E(Y, Fy).

Remark 3.1: Lemma 3.1(2) is also true for a finite or infinite collection of random sets.
Especially, we also obtain the stronger conclusion that, let {X,, : n > 1} (resp. {X; : 1 < k <
n}) be a sequence of exchangeable random sets, then for each f; € S)lﬁ (Fx, ), there exists a
sequence {f, : n > 2} (resp. {fx : 2 <k < n}) of f, € S;(n (Fx,) and a measurable function
@ : c¢(X) — X such that the sequence {f, : n > 1} (resp. {fx : 1 < k < n}) is exchangeable
and for every n > 1, w € Q, f,(®) = ¢(X,(w)).

The two following lemmas established the SLLN for triangular array of row-wise
exchangeable random variables taking values in a separable Banach space.

Lemma 3.2 (Taylor and Patterson [21, Theorem 1]): Let {X,x : n > 1,1 < k < n} be an
array of random elements in the separable Banach space X. Let {X,x} be row-wise exchange-
able. Let { X,k : n > 1} converge in the second mean to Xk for each k and || X1 — Xoo1 || >
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1 X(n41),1 — Xoo1ll for each n. If
on(f) = E(f (Xm)f Xn2)) = 0asn — oo foreachf € X*
then

1 n
_ZXnk — 0 a.s. as n — 00.
n

k=1

The following lemma was obtained with CUI and reverse martingale hypotheses for the
case of single-valued random variables

Lemma 3.3 (Patterson and Taylor [15, Theorem 3.4]): Let {X,x:n > 1,1 <k < n} be
an array of row-wise exchangeable random elements in the separable Banach space X such
that the sequence {X,1 : n > 1} is CUL If

(i) {E(X11Gp) : n > 1} is a reverse martingale

n n+1
(where Gy = (D Xk O Xntyko -+ s
k=1 k=1

(i) E(f (Xu1)f (Xu2)) — 0 as n — oo, for each;f € X*,
(iii) E(f*(X,1)) = o(n) for each f € X*,

then

n
1
—ank — 0 as.asn— o0.
n

k=1

In the case of real-valued random variables, we have the following result.

Lemma 3.4 (Patterson and Taylor [15, Theorem 2.1]): Let {X,x:n > 1,1 <k < n} be
an array of row-wise exchangeable real-valued random variables. If

(1) EX;n X)) = 0asn— oo,
(ii) E(X2)) = o(n),

(iii) {E(Xy1|Gp) : n > 1} is a reverse martingale

n n+1
(where G, = O'{Z Xk ZX(nH),k, oD,
k=1 k=1

then

n
1
_ZXnk — 0 a.s.asn — oo.
"=t

Now, we give a lemma which will be used to prove the main results.
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Lemma 3.5 (Quang and Giap [18, Lemma 3.3]): Let {x,;: n > 1,1 < i < n} be a trian-
gular array of elements in a Banach space satisfying the conditions:
(i) lim x,; =0,
1—> 00
(ii) there exists a positive constant C such that ||x,;|| < C, foralln> 1,1 <i<n.

1 n
Then, 5 Y i1 Xui = 0 asn — oo.

Lemma3.6: Let X, ) be two Banach space. Let {X; : 1 < i < n} be a sequence of exchange-
able random sets taking values of closed subsets of the Banach space X and let ¢ : ¢(X) —
c(Y) be a (£(X),E(Q))-measurable mapping. Then, the sequence {¢(X;) : 1 <i < n} of

random sets taking values of closed subsets of the Banach space 2) is exchangeable.

Proof: For any permutation 77 of {1,2, ..., n} and the subsets {B;, Bz, . . ., By} of £()), we
have

P (ﬂ[‘P(Xn(i)) € B,-])

i=1

= (ﬂ[Xn(i) € ¢_1(Bi)])

i=1
=P (ﬁ[xi € ga—l(Bi)J)
i=1
(by the exchangeability of collection {Xj,1 < i < n} and (p_l(Bi) € £(X))
=P (ﬁ[fﬂ(Xi) € Bi]) :
i=1

Since then, the lemma is proved. [ ]

Remark 3.2: Lemma 3.6is also true if the (£(X), £()))-measurable function ¢ : ¢(X) —
c(9)) is replaced by one of the following functions:
(i) the (£(X), B(Y)))-measurable function ¢ : ¢(X) — 2),
(ii) the (B(X), B()))-measurable function ¢ : X — ) (Here, {X;: 1 <i < n}isa
finite sequence of single-valued random variables in the Banach space X).
It is known that for each random set X, if f is a Fx-measurable selection of X then
there exists a measurable function g : ¢(X) — X such that g(X) = f. For the collection

of random sets (Xj,i € I), I; (Xj,i € I) denotes the family of all the measurable functions
g:c(X) — X such that g(X;) € S}(i (Fx,) foreveryi e I.

The following two theorems will prove the SLLN for triangular array of row-wise
exchangeable random sets without CUI and reverse martingale hypotheses. Our first
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theorem is an extension of a result of Inoue and Taylor [11, Theorem 4.3]. Also, the second
theorem extends a result of Taylor and Patterson [21, Theorem 1] to the case of set-valued
random variables. To establish these theorems, we provide a new method in building struc-
ture of triangular array of selections to prove the lim inf” part of Mosco convergence. Also,
as in the proving of [18, Theorem 4.2], to give conclusions, we have to use Lemma 3.5.
However, in [18, Theorem 4.2], the SLLN was established under the bounded expectation
condition, while in the present paper, this condition is not assumed.

Theorem 3.7: Let {X,;: n > 1,1 < i < n} be a triangular array of row-wise exchangeable
random sets taking values of closed subsets of the separable Banach space X. Suppose that

pn(f) = Cov (f(gn(coan)),f(gn(coan))) — 0asn — o0, (1)

foreach f € X* and g, € I, (coXy1,coX,n), n > 1. If there exists a nonempty subset X of X
such that

+) For each x € X, there exists a sequence {f, : n > 1} of f, € S)l(n1 (Fx,,) such that

LZ
Ifn1 — Efarll = If(n+1),1 — Ef(as1),1 || for each n and f,, — x as n — oo. (2)

2
+) Foreach x* € X*, s(X,,1, x) LN s(X,x*) as n — oo, and

1s(Xu1, ™) — Es(Xn1, X)| > [s(X(n41),1>x°) — Es(X(n41),1,X7)| foreach n,  (3)

then

1 n
M-lim ;cl ;Xm-(a)) = coX a.s.
1=

Proof: Let G,(w) = %cl 2?21 Xui(w). At first, we will show that coX C s-liG,(w) a.s. To
do this, we will use Lemma 3.5. For each x € coX and € > 0, by [2, Lemma 3.6], we can
choose x1,x3, . .., %, € X (the elements x1, x3, . . ., x,,, only depend on x and €) such that

1 m
I|— E xj— x| <e.
m “

j=1

Therefore, we only need to show that there exists a triangular array {f,; : n > 1,1 <i <
n} of selections of {X,,;} such that

1 & 1 &
- me’(w) - ij a.s.as n — 00. (4)

Indeed, let z,, = % Z]";l xj. The statement (4) means that z,, € s-liG,(w) a.s. Since
the space X is separable, there exists a countable dense set Dgx of coX. For each fixed
x) € Desy and for every €x = % (k > 1), by (4), there exists a positive integer my, which
depends on x¥) and e, such that Zm, € s-liGy(w) a.s. Therefore, there exists Ny € F such
that P(Nx) = 1 and z,, € s-liG,(®) for all ® € Ni. Let N = ()= Nk, then P(N) = 1.

For each w € N, it follows from the set s-liG,(w) is closed, z;,, € s-liG,(w) for all k and
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Zmy — x) as k — oo, that x¥) € s-liG,,(w). This means that x¥) € s-liG, (w) a.s., for each
j > 1. Noting that Dgx is a countable set, we obtain Dgx C s-liG,(w) a.s. Since the set
s-1iG,(w) is closed for each w, by taking the closure of both sides of the above relation, we
have coX C s-liG,(w) a.s. Therefore, the statement (4) is proved.

By (2), for each je {1,2,. ..,m} there exists a sequence {gr(ljl) :n>1} of ggl)
S)lfm (Fx,,) such that ||gfl]1) || > ||g(n+1)1 Eg((]n)—i—l)lH for each n and g(ll) — Xxj as
n— oQ.

Since {X,; : n > 1,1 < i < n} is row-wise exchangeable and by virtue of Lemma 3.1(2),
it follows that for each j € {1,2,...,m} and for each n > 1, there exists a sequence {ggl) :

1 <i<n}of g,?;-) € SJl(m (Fx,;) such that the sequence {gr(i.) : 1 < i < n}isexchangeable. By

Lemma 3.6 for the case of single-valued random variables, we get E|| gg;-) — xjl 2= E| g(] )

N o12
xjl|* foralli € {1,2,...,n}. It follows that gy(l]i) LN xjasn — oo foreach i and j.

Now, we will construct a triangular array {f,;:n > 1,1 <i <n} of f,; € Sjl(m-(me)
satisfying (4) as follows:

fri(®) = g (a)) if i = j (mod m), where j € {1,2,...,m} and for all w € Q. (5)

This means that

/ g(l) \

(1) 2)
821 gzz
(1) (2) (m)
(fm> _ 8m,1 8m,2 e Em,m
n>1,1<i<n
(D ) (m) (1
Em+1,1 Em+12 - Em+im Em+1,m+1
: : . : :
1% column 2™ ¢olumn m® column  (m+1)™ column
| ortsl) o el ol o ) /

Then, foreachm > 1andj € {1,2,...,m}, thearray {f, (i—1)m+;} is row-wise exchange-
able and

L2
fa, (i-lym+j —> Xj as n — o0, foreach i > 1. (6)

(Let us note that {f,; (i—1)m+;j} is not a triangular array of random elements .)
Lety,i = Efuisn > 1,1 <i <n.Ifn= (k— 1)m+ [,where 1 <[ < m,then the follow-
ing estimations hold:

1« 1
I~ ;fm(w - ;xjn
= ||_ Z an (i— 1)m+](w) - - Z fn, (k— l)m—i—](a)) - — Zx]”

Jll1 ]l—l—l
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IA

|

1 m
+- Z fo, (k= 1ym+i (@) |

j=1+1

1 —
-

I
_

™

(fu(i—1ym+j(@) — %))

~
I
—

1

- %) 13 s

J=1

S|

+
R

IA

QN

||M§

k
Z n(z 1)m+](w) )’n,(i—l)m—i—j)

i

kdh 1 o
+- Z P Z 1Yn,Gi—1ym+i — %]
j=1 " i=1

1 1
+— Z e 1m (@) = P magll + — D Wyn -ty |
j=l+1 j=I+1

ko1 ’”
i (27) ||;xj||. @

Let gni(®) = fni(®) — ypi» forallw € 2, n > 1and 1 <i < n. By Lemma 3.6 for the
case of single-valued random variables, we get that if a sequence {f : kK > 1} of random
elements is exchangeable then the sequence {fx + ¢ : k > 1} is exchangeable, too (where
¢ is a constant in X). Therefore, since the array {f, i—1ym+j : n > 1,1 < i < k} of random
elements is row-wise exchangeable, we obtain Efy, (i—1)m+j = ¢ for all i (here, n and j are
fixed). From the above statements, we deduce that the array {gy, i—1)m+j : n > 1,1 < i < k}
is row-wise exchangeable, too.

2
By (6), for each s = (i — 1)m +j (1 <j < m), we have f,; L Xj as n — 00; namely,
E|/fus — x]-||2 — 0asn — 00, and so
0 < IEfus — %1 = I1E(fus — )17
2
< (Ellfus —xll)”  (by IEX| < E[IXID)
< E|lfus — lel2 — 0 as n — oQ.

(by the inequality for convex function)

Since then, we get

—00
0 < llgnsll2 = I(fus — x]) — (Efus — x])HZ < |lfus — x]”Z + [|Efns — x]”Z "0

This means that
LZ
gns —> 0 as n — oo. (8)

Further, for each f € X*, we have

on(f) = E (f(gni)f (gn}))
= E (f(fui — Bfu) f (hj — Efi)
= E((f (fi) — f Bfui)).(f (fu)) — f(Efyj))) (by f is a linear mapping)
= E((f (fui) — EF (1)) -(f (fup) — E¢F (f))))
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(by the definition of expectation of random elements)

= Cov (f(fni)’f(fnj))
= Cov (f(gn(c0Xn1)),f(gn(c0Xy2))) = 0 as n — oo forall i # j and
i =j (mod m). (by (1)) 9)

For each n = (k— 1)m + 1, set S,(J) (w) = %Zlegn,(i_l)mﬂ(a)) for all w € Q. For
each j € {1,2,...,m}, the sequence {S,(q]) : n > 1} of random elements is divided into m
subsequences {S&)—l)mﬂ ck>1}L1€{1,2,...,m}.

From the above statements, the triangular array {g—1)m+i,i-1m+j: k> 1,1 <i < k}
satisfies all the conditions of Lemma 3.2 for each [,j € {1,2, ..., m}. Applying this lemma,
we obtain

k
i 1
S&)_l)mﬂ(a)) =7 E Sk—Dym+1(i—Hmtj(@) — 0 as.as k — oo, (10)
i=1

foreach ,j € {1,2,...,m}.
It is equivalent to

k
i 1
Sg)(a)) =7 Zgn,(i—l)mﬂ(w) — O0as.asn — oo, foreachje {1,2,...,m}. (11)
i=1

For each n>1 and j € {1,2,...,m}, we set Vy(lj) = %ZLI Iymi—1m+j — %jll. The

sequence {V,(,i ) in > 1} of real numbers is divided into m subsequences {V(]) c k>

(k—1)ym+1 *
1}, 1e{1,2,...,m}.
Foreachl,j € {1,2,...,m}, we put

(%)
Zki] = Y= vym+1G—-1ym+j — %jl-

For each j € {1,2,...,m}, by the assumption that the array {f, i—1)ymyj:n>11=<i=<
k} is row-wise exchangeable and converges in the second mean to x;j as n — oo for each
column, we get that the elements of this array have bounded expectations. Therefore,

y
2| < IBf it vmal + Il < C+ Ixll, (12)

forallk > 1,1 <i <k

Since the convergence in L? implies the convergence in L' and by (6), we have that
z,({i.’]) — 0as k — oo, for each i > 1. Since then, z,({i.’]) — 0asi — o0.
Combining this with (12), we have that for each ,j € {1,2, ..., m}, the triangular array

{z](ci.’j) :k > 1,1 < i < k} of real numbers satisfies all the conditions of Lemma 3.5. Applying
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this lemma, we obtain

k
V((l]c) Dl = 7 Z Iy (k=1ym+1,Gi—1ym+j — %jl = 0 as k — oo foreach I,j € {1,2,...,m}.
i=1
Hence,
. k
V:SJ) Z 1n, (i—Dm-+j — x]” — 0asn— oo. (13)
i=1
By (11), we have

; Z ”fn,(k—l)m—l—j(a)) _yn,(k—l)m—l—jH
j=l+1

1 m
== D lgnd-vmj@l

j=l+1
K 1 k 1 k—1
= ; Z % Zgn,(i—l)m—l—j(a)) - (—)— Zgn (i— l)m—l—](a)) — O0asn — oo.
=1 =1
(14)
Similarly, by (13), we obtain
1 m
- Z Iy, (k—1)ym+ll
j=l+1
1 m
< » Z 1y k- 1ymtj — %l + = Z [l
= ] I+1
k m k—1 1 k—1
== ( D Iymnme = %1l = (—— )EZHyn,(i_l)mﬂ—xju)
j=l+1 \" =1 i=1
1 m
+ - - .
" Z [xill > 0 as n — oo (15)
j=l+1

We also have (% — %) — 0 as n — oo. Therefore, combining (7), (11), (13), (14)
and (15), we get

1 — 1 &
- me-(a)) - ij — 0 a.s.as n — 00.
i=1 =1

This yields % Z] 1 %j € s-liGy(w) a.s. Hence coX C s-liGy(w) a.s.

Thus, in the above proving, the triangular array {g,;: n > 1,1 <i < n} of random

elements has been divided into m? triangular sub-arrays {g—1ym+ii-nmtj: k> 1,1 <
i < k}. Also, for each j € {1,2,...,m}, the array {||ys,i—nym+j —xjll :n > 1,1 <i <k}
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of real numbers has been divided into m triangular sub-arrays {z,(ci.’j) ck>1,1<i<k}

l€{1,2,...,m}. By using Lemma 3.2 (resp. Lemma 3.5) for each above triangular sub-
array of random elements (resp. of real numbers), we obtain the ‘lim inf” path of the Mosco
convergence.

Next, let {xj : j > 1} be a dense sequence of X \ CoX. By the separation theorem, there
exists a sequence {x;‘ :j > 1} in X* with IIx;-k || = 1 such that

(xj,x;‘) — d(xj,c0X) > s(coX, x;‘), for every j > 1. (16)

Then x € coX if and only if (x, x7) < s(CoX, x7) for every j > 1.
Note that the function X — s(X, x;‘) of ¢(X) into (—o0, 00] is (€, B(R))-measurable.
Using the above statement, the inequality (16), the hypotheses of this theorem and
Lemma 3.6, we have that {s Xni,xjf") :n>1,1 <i<mn}isa triangular array of row-wise

exchangeable random variables in £!, for each j > 1. Set hgl) = S(Xm,x;‘) — E(s(Xm-,x]’-")).

Then, {hgi) :n>1,1 <i < n}is the triangular array of row-wise exchangeable random
variables.

(G) L2
n

By the condition (3), using the arguments as in the proof of (8), we geth,; — 0 as n —

- 2
oo. It implies that hgl) 50 asn— 00, for each i > 1.
By the condition (1), we have that p,(f) = E(hs.)hgi) — 0asn — oo forall i # k.

1
From the above statements, we get that the triangular array {hgi) :n> 1,1 <i<n}sat-
isfies all the conditions of Lemma 3.2 for real-valued random variables, for each j > 1.
Then, applying this lemma, we have

1 <
- Zh;(z{i)(a)) — 0 a.s.as n — oo, foreveryj > 1.
n

i=1

This means that

1 & 1 & ,
- E s(Xm-,x;‘) - E E(s(Xm-,x;)) — 0 as.as n — 0o, foreveryj > 1.

Moreover, by (3) and (16), we get
Es(Xm-,x]’.") = s(clE(Xm-),x]’.") — s(X, x;") < 00 as n — oo forevery i,j > 1.

Therefore, for each i and j, the sequence {s(Xy;,x]") : n > 1} has bounded expectation.

Since Es(Xm-,x]’-k) = Es(an,x]’-k) foralli € {1,2,...,n}, the triangular array {S(Xm-,x]’-") :
n > 1,1 < i < n} has bounded expectation.

Since then, by applying Lemma 3.5, we have

1 n
— ZE(S(Xm', x;‘)) — s(X, x;f) as n — 0o, foreveryj > 1.
n
i=1
Consequently, for each j > 1, s(G,(w), x7) — s(X, x]f") a.s. as n — oo. Namely, there
exists N € F, P(N) = 0 such that for each w € Q\N,j > 1, s(Gn(a)),xJ’.") — s(X, x]’.“) as
n— oo.
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For each w € Q\N, if x € w-IsG,,(w) then xj X xask — oo, where Xk € Gur)(w).
Hence,

(x,x7) = lgr;o(Xk, X SkILH;OS(Gn(k>(w),xf) = s(X, x}) = s(coX, x}), for every j > 1.

This implies that x € coX. Thus, w—ls%cl Yo Xui(w) C coX a.s. [ |

By putting X,i(w) = Xj(w) for every n>1, 1 <i<n and w € Q, and applying
Theorem 3.7 for the triangular array {X,,; : n > 1,1 < i < n}, we get

Corollary 3.8 (Inoue and Taylor [11, Theorem 4.3]): Let {X,, : n > 1} be an infinite
sequence of exchangeable random sets in c¢(X). If E|| X, || < oo and Cov{f(g(coX})),f(g(co
X5))} = 0 foreach f € X*, then

n
1 — .
- E X — coEX; in Mosco sense,
n
k=1

where g € I;(coX1,coXy).

In Lemma 3.2, for each k > 1, the sequence {X,x : n > 1} converges in the second mean
to Xook> Where Xk is a random element. However, in Theorem 3.7, the condition

LZ
fon— xasn — 00 49

cannot be replaced by the weaker one

2
fn N f as n — oo, where f is a random element satistying Ef = x. (II)

Because, in the proof of Theorem 3.7, if the condition (I) is replaced by the condition (II),

(l) (J) 0 _

then the statement g, | asn — 00 can not imply gU) —> f; 7 asn — oo with Ef,

f1 = x;j forevery i € {1,2, .o, n)
The example below shows sequences {f, : n > 1} and {g, : n > 1} such that {f,, : n > 1}
converges in the second mean to a random variable f and {gy, f,} is exchangeable for every
n > 1,but {g, : n > 1} does not converge in the second mean.

Example 1: Let f be a random variable in R, which is defined as follows:
1
P(f:l):P(f:—l):E.

) L2
Putting f, := f foreach n > 1, thenf, — f as n — oo.
Define the random variables

f, if nisan even positive integer,
8n = .
—f, otherwise.
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For every x1,x, € R, we have
P(f <xi,—f <x) =P <x1,—1 <x2) + P(—1 < x1,1 < x2),
and
P(—f <x1,f <x) =P(—1 <x1,1 <x) +P(1 <x1,—1 < x7).
Combining the above two equalities, we obtain
P(f < x1,—f <x2) =P(—f < x1,f < x2), forall x;,x; € R.

Hence, f and —f are exchangeable.
Since then, {g,, f,} is exchangeable for all positive integers n.
For every k € N, we get

1
P(Ig2k+1 — g2kl > 1) = P(12f] > 1) = P(|f| > 5) =1

Hence, this sequence does not converge in probability. This implies that {g, : n > 1}
does not converge in the second mean.

Theorem 3.9: Let {X,;: n > 1,1 < i < n} be a triangular array of row-wise exchangeable
random sets in separable Banach space X.
Assume that there exists a triangular array {fyi:n > 1,1 <i < n} of fu; € S}(ni(fxni)

such that {f,;} is row-wise exchangeable, f,j L2> fook as n — oo for each
k> 1and ||fu1 — foo1ll = Ilfns1),1 — foorll for all n. (17)
Suppose that there exists a nonempty subset X of X such that:
+) Foreach x € X,E(f(gnl(coan) — x).f(gn2(coXy2) — x)) — 0asn— oo,
forall f € X* and gni € [1(coXyi), n> 1, i € {1,2}. (18)
+) Foreach x* € X* and k > 1, s(X,,x, ™) 5 Sg;c) as n — 0o, and
|s( X1, x™) — S((fl)l > [s(X(nt1),1,X%) — ngl)lfor all n, (19)

then

1 < _
M-lim - cl;Xm(a)) = coX a.s.
1=

Proof: By the arguments as in the proof of Theorem 3.7, for each x € coX and € > 0, there
exist X1, X2, . . ., X;; € X such that

1 m
| — E xj— x| <e.
m 4

j=1

To prove the ‘lim inf’ part coX C s-liG,(w) a.s. in the Mosco convergence, we need to show
that % Z]’il xj € s-liGy(w) as.
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If n = (k— 1)m + I, where 1 <[ < m, then the following estimations hold:

1 — 1
||; ani(a)) - ijH
i=1 j=1
- H_ sz” (i~ l)m"‘J(w) - Z Jonyhe— l)m—l—](w) - ijll
J 1 i=1 ] I+1

k m
=P
j=1
ko1 ~
+ (— — —) 1Y %l (20)
n m =1

1 m
+ = 2 Wt nme @

j=1+1

k

1

P E (fn(i—Dym+j (@) — x))
i—1

By (18), we have

on(f,xj) = E(f(fns — x).f (fuk — xj)) — 0 as n — 00, (21)

foralls #k,f € X*, foreachj e {1,2,...,m}.

By the arguments as in the proof of Theorem 3.7, we have that foreach j € {1,2,...,m},
the row-wise exchangeability of array {fy i—1)m+;} of random elements implies the row-
wise exchangeability of array {f, i—1)m+j — Xj}-

Foreachn = (k — 1)m + I, we put Sg) (w) = % Zle(fn,(i_l)mﬂ(w) —xj) forallw € Q.

For eachj € {1,2,...,m}, the sequence {Sg) : n > 1} of random elements is divided into

m subsequences {Sgc)_l)m_l ck>14L1e{l,2,...,m}.

2

By (17), we get that f,, (i_1)m+j — xj L fooimtymtj — Xj as n — oo for each i > 1, j €
{L,2,...,m}and ||(fn,(i—1)m+j - xj) - (foo,(i—l)m—l—j - x])” = ”fn,(i—l)m—i—j _foo,(i—l)m—i-j”-

Therefore, the triangular array {fx—1)m+i,i—1)m+j — %j: k> 1,1 < i < k} of random
elements satisfies all the conditions of Lemma 3.2 for each [,j € {1,2, ..., m} and we have

S(;c—l)m—l—l(a)) = P Z(f(k—l)m—i—l,(i—l)M-i-j(w) —xj) = Oas.as k — oo, (22)
i=1

foreachl,j € {1,2,...,m}.

It implies that

Sg)(a)) — Oas.as n— oo, foreachje {1,2,...,m}. (23)

Since n — oo implies k — o0, by (23), we obtain

m
= Z o=ty @)1 = = Z Z(fn (i=Dmj (@) = X))
] I+1 ] I+1 i=1

k—1 1 & 1
- (T)m ;(fn,(i—l)m—i-j(w) —xj) + P
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— 0as n— oQ. (24)

Since then, combining (20), (23) and (24), we have
1 — 1 &
- ani(w) - — ij — 0 a.s.as n — oo.
n m i

Hence, % ZJZI xj € s-liGy(w) a.s. Let {x]’." : j > 1} be as in the proof of Theorem 3.7

taken for coX. To prove the ‘lim sup’ path W—ZS%CIZ?ZI X,i(w) C coX a.s. in the Mosco
convergence, we argue as in the proof of Theorem 3.7. Detail, for each j > 1, set hgl) (w) =
s(Xyi(w), x]’.") —s(X, x]’.k). By using Lemma 3.2, we obtain

1w (i
- Zhgi)(a)) — 0 as.asn — oo, foreachj> 1.
n

i=1

This means that

1 n
— E S(Xni’x;‘k) — S(X,x;k) — 0 a.s.as n — oo, foreachj > 1.
n

i=1

It is equivalent to s(G,(®), x]’.k) — s(X, x;-") a.s., for each j > 1. Thus, we obtain the desired
conclusion. [ |

Remark 3.3: Let us note that the conclusion of Theorem 3.9 will be only coX C s-liG,(®)
a.s., if the condition (18) is not assumed. At this point, Theorem 3.9 extends the result of
Taylor and Patterson (21, Theorem 1) for multivalued random variables. Indeed, suppose
that the triangular array {X,,; : n > 1,1 < i < n} of random elements in a separable Banach
space satisfies all the conditions of Lemma 3.2. We can check that the triangular array {X,,; :
n > 1,1 < i < n} satisfies all the conditions of Theorem 3.9 without the condition (19) for
single-valued random variables case with X = {0}. By using Theorem 3.9, we obtain the
SLLN as in Lemma 3.2.

Next, we will establish a multivalued SLLN for triangular array of row-wise exchangeable
random sets with CUI and reverse martingale conditions. To do this, we need the following
lemma.

Lemma3.10: Let {f, : n > 1} be a sequence of random elements in L (X). Suppose that the
sequence {f, : n > 1} is CUI and Ef, — x as n — 0o, where x is an element of X. Then, the
sequence {f, — Ef, : n > 1} is CUL

Proof: Given € > 0, there exists a compact subset K; of X such that

€
sup E”fnl[fngéKl]H < 2 (25)
n

We put K, = cl{Ef, | n > 1}. By the convergence of the sequence {Ef,, : n > 1}, we have
that K, is a compact subset of X. We set K = K; — K3, then K is a compact subset.
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Now, we will show that
K; C Ef, + K, forevery n > 1. (26)

Indeed, for each k; € K, it follows from K = K; — K; and Ef, € K; that k, = k; —
Ef, € K. This yields k; = Ef, + k, € Ef, 4+ K. Thus, (26) is proved.
By (26), we get

(fn ¢ Ef, + K] C [fn ¢ K1), forevery n > 1. (27)
Next, we have that

E||(fu — Ef) i, —gf,¢x1 | < 2B ful(f,—Ef, ¢kl
= 2E||ful[f,¢Ef, K1
< 2E||ful(f ¢k, ll, for every n > 1 (by (27)).
By (25), we obtain

sup El| (fy — Ef) I, —gf, 2kl < €.

The lemma is proved completely. |

Theorem 3.11: Let {X,; : n > 1,1 < i < n} be a triangular array of row-wise exchangeable
random sets in the separable Banach space X. If for every f € X*,
+) the sequence {g,(Xy1) : n > 1} is CUL with g, € I;(coXy1), (28)
+) {E(gn(coXu1)|G(n, m,j)) : n > 1} is a reverse martingale, for each m > 1,
jefl,2,...,m}, where I(n,m,j) = {(k—1)ym+j|l < (k—1)m+j<nkeN}

gn € [1(coXy1) and G(n,m,j) = of Z gn(coXik),
kel(n,m,j)

Z gnt1(coXyi1 k). s (29)
keI(n+1,m,)

+) Cov (f(gn(coan)),f(gn(coan))) — 0.as n — oo, with g, € I)(coXy1,c0Xy2),

(30)
+) Var(f(gn(coXa))) = o(n), with g, € I(coX,1), (31)
+) there exists a set X € c¢(X) such that
X C s-licdlE(Xn1, Fx,,)> (32)
lim sup s(clEX;;1, x™) < s(X,x™) forall x* € X¥, (33)
then

1 n
M-lim - cl;Xm-(a)) = coX a.s.
1=
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Proof: Asin the proof of Theorem 3.7, to prove the ‘lim inf” part in the Mosco convergence,
we need to show that there exists a triangular array {f,; : n > 1,1 <i < n}off,; € S)l(m, (F)
such that

1 < 1
- E fril@) > — E Xja.s. asn — 00
n - m “4

i=1 j=1

By (32), for each j € {1,2,...,m}, there exists a sequence {ggl) :n>1} of ggl) €

S}(m (Fx,,) such that E :?1) — Xjasn — 00.

Since the triangular array {X,,; : n > 1,1 < i < n} of random sets is row-wise exchange-
able and by Lemma 3.1(2), it follows that for each j € {1,2,...,m} and for each n > 1,
there exists a sequence {ggi) :1 <i<n}of gr(l]i) € S)l(m-(ani) such that {ggi) 11 <i<nj}

is exchangeable. Since then, we get Eggg = Eggl) for all i € {1,2,...,n}. It follows that

Eg,?i) — xjasn — oo for each iand j.

Next, we define the triangulararray {f,; : n > 1,1 < i < n}off,; € S}(m, (Fx,,;) as follows:

Jni(w) == g,(qj;-)(a)) if i =j (mod m), wherej e {1,2,...,m} and for all w € Q.

Let y,; = Efyi and g,i(®) = fri(w) — yni, wheren > 1,1 <i <n,w € Q.

Let n = (k—1)m+1, 1 < < m. By the arguments as in the proof of Theorem 3.7,
we get that the array {g, —1)m+j:n > 1,1 <i <k} of random elements is row-wise
exchangeable, for eachj € {1,2,...,m}.

By the arguments as in (9), for every f € X*,

E (f (gni)f (gn)))
= Cov (f(fui)- f (fuj))
= Cov (f(g(coXm)),f(g(coan)))
= Cov (f(gn(coan)),f(gn(coan))) — 0 asn — oo forall i # jand i = j(mod m).
(by the condition (30)) (34)

Similarly, by the condition (31), we have that

E(fz(gnl)) = Var(f(gn(coXn))) = o(n), forall f € X*.

Asin the proof of Theorem 3.7, foreach n = (k — 1)m + land foreachj € {1,2,...,m},
set S,(qj) (w) = % Zf;l Sn(i—mtj(w) forallw € Q. For eachj € {1,2,...,m}, the sequence
{SS) : n > 1} of random elements is divided into m subsequences {Sgc)—nerl ck>1} 1€
{1,2,...,m}.

Since the triangular array {gg? :n>1,1 <i<n} of random elements is row-wise
exchangeable and by the condition (29), the sequence {E(gg.)|G(n, m,j)) : n > 1} of
random elements is a reverse martingale, for each m > land j € {1,2,...,m}.
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Foreachm > land ,j € {1,2,...,m}, set

k+1

(L)
G (f) = G{Zf(k Dm-+1,(i— l)m—i—]’kam—l-l(z Dmtjs -+ - 1

For each m > 1 and Lj € {1,2,...,m}, the sequence {E(g(k 1)m+l]|G((k Dm +
I,m,j)) : k > 1} of random elements is a reverse martingale, since every subsequence of
a reverse martingale sequence is also a reverse martingale.

Next, we will show that the sequence E(g(k ym +l] G,(cl’j) (f)) : k > 1} of random ele-

ments is a reverse martingale.
Indeed, it suffices to show that

() (L) (l )
BB, 1),0,1Gk” NG (1) = B Gl (1) ass.
which is equivalent to

E(g(k 1)m+lJ G(Ul(f)) (gkm—l—l] G(l]1(f)) a.s.

(by the smoothing lemma with G,(c:]_)l (f) C G(l] ) (). (35

Since the sequence {E(gg;)_l)m+l’j|G((k — 1)m—+1,m,j)) : k > 1} of random elements is
a reverse martingale and by the similar argument, we obtain

E(g(k D1 Glkm +1m, j)) = E(gkm+l]|G(km + 1, m, j)) as. (36)
We have that
E(o? G(lj E(E G(k I G
@011, IGL) (F) = B(B@,, Gk + Lm, )Gl () as.

(by the smoothing lemma with G,(cj_)l (f) C G(km + I, m,j))

= BB, 1)y Glhm + Lm, )G, () as. (by (36))

(l )

= B(g_ D G ()

(by the smoothing lemma with G](cl_’i)l (f) C G(km + I, m,j)).

Thus, (35) is proved.
Exchangeability of the sequence {f(—1ym+i—1ymtj:1 <i =<k} implies that the

sequence {E(guk—1)m+i J|G](cl’j) (g)) : k > 1} of random elements is a reverse martingale
(where

k k+1
Lj
G;(c])(g)=0{§ g(k—l)m—i—l,(i—l)m—i—j’z Skm1,(i—Lym-j> - - - 1)

By (28) and by the exchangeability of {g,?? : 1 < i < n}, we deduce that the sequence

{g(]) n > 1} is CUL for each j € {1,2,...,m}. This yields that {fx_1)mt1j: k> 1} is
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CUIL for each ,j € {1,2,...,m} (Because g((;c)—l)m+l,j(w) = f(k—1)m+1j(®)). Moreover, the
sequence {Ef(x—1)m+1; : kK > 1} converges to xjask — co. Applying Lemma 3.10, we obtain
that the sequence {g—1)ym+1j : kK > 1} is CUL for each Lj € {1,2,..., m}.

Hence, for each [,j € {1,2,...,m}, the triangular array {g—1ym11,(—1)ym+j : k= 1,1 <
i < k} satisfies all the conditions of Lemma 3.3, and so

>

~ 1
SEQ_I)mH(a)) = P Zg(k_l)m+l’(i_1)m+j(0)) — 0 a.s. as k — oo,
i=1
foreach l,j € {1,2,...,m}.
It is equivalent to

>~

i 1
S,(ql) (w) = . Zgn,(i—l)m+j(w) — 0 as.asn— oo, foreachje {1,2,...,m}.
i=1
Suppose that V,gj ), Zl(ci'J) are defined as in the proof of Theorem 3.7.
For each j € {1,2,...,m}, since the array {f, —1)m+j:n > 1,1 <i <k} is row-wise
exchangeable and {Ef,,(i—1)m+j} converges to xj as n — oo for each column, it implies that
this array has bounded expectation. Therefore, we have

(L)
12" | < I Efui—nmil + 51 < C+ I,

forallkzl,l§i§k,n=(k—1)m—|—l. .

By z](ci.’]) — 0as k — oo, for each i > 1, we get Z](ci.’]) — 0asi — oo.

Combining the above statements, we have that for each m > 1 and ,j € {1,2,...,m},
the triangular array {z](ci.’]) : k> 1,1 < i < k} satisfies all the conditions of Lemma 3.5.

To complete the ‘lim inf” part of the proof in the Mosco convergence, we proceed as in
the proof of Theorem 3.7.

Finally, by the arguments as in the proof of Theorem 3.7 and by Lemma 3.4, we obtain

the “lim sup’ path of the Mosco convergence. [

Remark 3.4: 1. In Theorem 3.11, if the condition (29) is replaced by the following two
conditions:

+) {E(f(g(coX,,1))|G8 (n,m,j)) : n > 1} is a reverse martingale, for each m > 1,
1<j<mfeX,
+) {E(g(coan)I[g(COan)¢K]|Gg(n, m,j)) : n > 1} is a reverse martingale,

for each m > 1,1 < j < m, and for each compact subset K of X,

then by the same arguments as in the proof of Theorem 3.11 and using [15,
Theorem 3.3], the SLLN also holds.

2. Inthe past results, one built the family of selections of random sets to prove the ‘lim inf’
path by being the union of the families with respect to x;j, j € {1,2, ..., m}. However,
in present paper, the triangular array {f,; : n > 1,1 < i < n} of selections of random
sets is the union of sets which each set is a sub family of triangular array with respect
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to xj, j € {1,2,...,m}. Then, we use the single-valued SLLN for each triangular sub-
array to obtain the multivalued SLLN. This is one of the key tools to prove the most
difficult ‘half of the multivalued SLLN in the Mosco topology.

The example below shows that Theorem 3.11 is really different from Lemma 3.3, even
in the case of single-valued random variables.

Example 2: Consider the Banach space X = R. The triangular array {X,;: n > 1,1 <
i < n} is defined by X,,i(w) = {1} for every n > 1,1 <i < n and w € Q. Then, it is easy
to check that the triangular array {X,; : n > 1,1 < i < n} satisfies all the conditions of
Theorem 3.11. But, it follows from EX,%1 = 1 for all n > 1 that the triangular array {X,; :
n > 1,1 < i < n} does not satisfy the condition (iif) of Lemma 3.3.

However, the conditions (29) and (32) in Theorem 3.11 are also necessary. The next
example shows that Theorem 3.11 is not true without the conditions (29) and (32).

Example3: Let X = ¢2 bethe space of square-summable sequences. Namely, x € £2 if x =
(X1,%2, -+ > Xn, .. .),Xi € Rand Y 72, |xn|? < 00. The norm || - ||z is defined by ||x|p =

2202 | |xn|2. Then, €% is a Hilbert space with scalar multiplication (-|-) which is given by

(x]y) = ZZOZI Xnyn for each x = (x1,x2,...,%p,...) € Ez,y =LYy Vnr---) € 22

For each i > 1, let ¢; = {0,...,0,1,0,...}, with number 1 in the i" position. Then,
{e1,e2,...,en, ...} 1s a standard basis of X.

Foreachn > 1,1 <i <nand w € Q, we set X,;j(w) = {e,}. Then, the triangular array
{Xui:n>1,1 <i<n} satisfies all the conditions of Theorem 3.11 without the condi-
tions (29) and (32). We have G, (w) = %cl Y iy Xni(w) = {ey) foreveryn > 1land w €
Q. Since |ley — enllz = /2 for all m # n, the sequence {e, : n > 1} is not Cauchy’s
sequence. Consequently, the sequence {e, : n > 1} does not converge in norm. Therefore,
we have 0 ¢ s-liG,(w) forall w € Q2.

By Riezs’s theorem, we have that for each f € X*, there exists a € £2 such that f(x) =
(alx) for all x € X. On the other hand, a = Y_,~ | (aley).e, € 2. This series converges to
a. It implies that the general term (ale,) converges to 0 as n — oo, which is equivalent

to limf(e,) = f(0). It follows that e, 2% 0as n— oo. Since then, 0 € w-IsG,(w) for all
w € Q.

Since the above statements, we do not obtain the SLLN for the triangular array {X,,; :
n > 1,1 < i < n} with respect to Mosco convergence.

In Theorems 3.7 and 3.11, we use a condition which is general stronger than the
condition (i) of Lemma 3.5, that is,

z,({i.’]) — 0 as k — oo for each i. (iii)

However, the condition (if) is also necessary in this case. Indeed, the following example
shows that if the condition (i) is replaced by the condition (iif) then Lemma 3.5 without
condition (ii) is also not true.

Example 4: Let {x,; : n > 1,1 < i < n} be a triangular array of elements in R and it is
defined as follows:
{ n* ifi=n,
Xnpi = 1
n

otherwise.
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This means that

1 2
5 2
1 1 32
n>1,1<i<n . .
1 1 1
- - n?
n n n

R

It is clear that lim,—, oo X, = 0 for each 7; namely, the condition (iii) is satisfied.

Moreover, x,, = n> — 00 as n — o0. This means that the condition (ii) of Lemma 3.5
is not satisfied.

However,

I n—1 2 n—1
—me'=—( " +n%) = 5t n—>ocoasn— oo,

Now, we extend the previous theorems to fuzzy-valued random sets.

Theorem 3.12: Let {X,; : n > 1,1 < i < n} be a triangular array of row-wise exchangeable
fuzzy random sets such that for each o € (0, 1], the triangular array of random sets {Ly Xp; :
n > 1,1 < i < n} satisfies all the conditions of one of three Theorems 3.7, 3.9 and 3.11. Then,

1
M-lim — chXm(a)) = Isx a.s.,
i=1

where Issx is the indicator function of coX.

Proof: Let G(w) = %clzyzlf(m(a)). By virtue of the suitable theorem (one of three

Theorems 3.7, 3.9 and 3.11), we have that M- lim L,G,(w) = c0X a.s. for every fixed
a € (0,1], in particular, for every o = r € Q, where Q is the set of all rational num-
bers. Since countable set Q is dense in [0, 1] and Ly G,, (w) = limypa,req L,G,(w), we have
M-1im L, G, (w) = coX, for every @ € (0,1], as.

Next, for each C € ¢(X), there exists a unit (with probability one) fuzzy-valued random
set Y satisfying Ly Y(w) = C, for alla € (0, 1], a.s. Indeed, it is easy to check that LyIc =
C, for all @ € (0,1]. Suppose that the fuzzy random set Y satisfying L, Y (w) = C for all
o € (0,1] a.s. For each w € N with P(N) = 1, put u = Y (). It follows from the sets L1,
a € (0,1] are non-increasing monotonic ordered by inclusion as & 1 that Lyu = C for all
a € (0,1] is equivalent to

L0+U cCcC Llu,

where Ly+u = {x € X | u(x) > 0}.

Since then, it is not hard to prove that u = I¢, which implies Y(w) = Ic as.

Hence, M- lim L, G, (w) = LyIx foreverya € (0,1],a.s., thatis, M- lim G, (w) = Lsx
a.s. |
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