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ABSTRACT
In this paper, we obtain strong laws of large numbers for triangu-
lar array of row-wise exchangeable random sets and fuzzy random
sets in a separable Banach space in the Mosco sense. Our results are
obtained without bounded expectation condition, with or without
compactly uniformly integrable and reverse martingale hypothe-
ses. They improve some related results in literature. Moreover, some
typical examples illustrating this study are provided.
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1. Introduction

In recent decades, the strong laws of large numbers (SLLN) for unbounded random sets,
gave rise to applications in several elds, such as optimization and control, stochastic and
integral geometry, mathematical economics, statistics and related elds. The rst multival-
ued SLLN was proved by Artstein and Vitale [1] for independent identically distributed
(i.i.d.) random variables whose values are compact subsets of Rd. Puri and Ralescu [16]
were the rst to obtain the SLLN for i.i.d. Banach space-valued compact convex random
sets. Later, Hiai [7] and Hess [6] independently proved similar results for random sets in an
in nite dimensional Banach space, with respect to the Mosco convergence. Further vari-
ants of themultivalued SLLN have been established under various conditions, for example,
see Castaing, Quang and Giap [2,3], Fu and Zhang [4,5], Inoue [9,10], Kim [12], Quang
and Giap [18,19], Quang and Thuan [20].
The rst result on SLLN with respect to Mosco convergence for triangular array of ran-

dom sets was established by Quang and Giap [18]. In this paper, the authors established
the SLLN for triangular array of row-wise independent random sets in Banach space with
bounded expectation condition. According to this direction, in present paper, we study
the Mosco convergence of the SLLN for triangular array of row-wise exchangeable ran-
dom sets and fuzzy random sets. However, in [18], the SLLN was established under the
bounded expectation condition, while in the present paper, this condition is not assumed.
To give themain results, we provide a newmethod in building structure of triangular array
of selections to prove the ‘lim inf ’ part of Mosco convergence. We also use a condition of
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the Mosco convergence in the rst column of triangular array of random sets and fuzzy
random sets, which was introduced by Hiai [7]. Our results improve some related results
in literature. Moreover, some typical examples illustrating this study are provided.
The organization of this paper is as follows: In Section 2, we introduce some basic

notions: set-valued random variable, fuzzy-valued random variable, Mosco convergence
and exchangeability. Section 3 is concerned with some theorems onMosco convergence of
the SLLN for triangular arrays of row-wise exchangeable random sets and fuzzy random
sets in a separable Banach space. A new method in building structure of triangular array
of selections to prove the ‘lim inf ’ part of the Mosco convergence is provided. Illustrative
examples are also provided in this section.

2. Preliminaries

Throughout this paper, let ( ,F ,P) be a complete probability space, (X, . ) be a real
separable Banach space and X∗ be its topological dual. The σ - eld of all Borel sets ofX is
denoted byB(X). In the present paper, R (resp. N) will be denoted the set of real numbers
(resp. the set of positive integers).
Let c(X) be the family of all nonempty closed subsets ofX and E(X) (shortly, E) be the

E ros σ - eld on c(X). This σ - eld is generated by the subsetsU− = {F ∈ c(X) : F ∩ U =
∅}, where U ranges over the open subsets of X. On the other hand, for each A,C ⊂ X,
clC, coC and coC denote the norm-closure, the convex hull and the closed convex hull of C,
respectively; the distance function d(·,C) of C, the Hausdor distancedH(A,C) of A and C,
the norm C of C and the support function s(C, ·) of C are de ned by

d(x,C) = inf{ x − y : y ∈ C}, (x ∈ X),
dH(A,C) = max{sup

x∈A
d(x,C), sup

y∈C
d(y,A)},

C = dH(C, {0}) = sup{||x|| : x ∈ C},
s(C, x∗) = sup{ x, x∗ : x ∈ C}, (x∗ ∈ X∗).

The space c(X) has a linear structure induced by Minkowski addition and scalar
multiplication:

A+ B = {a+ b : a ∈ A, b ∈ B},
λA = {λa : a ∈ A},

where A,B ∈ c(X), λ ∈ R.
A multivalued (set-valued) function X: → c(X) is said to beF-measurable (or mea-

surable) if X is (F , E)−measurable, i.e. for every open set U of X, the subset X−1(U−) =
{ω ∈ : X(ω) ∩ U = ∅} belongs to F . A measurable multivalued function is also called
a closed valued random variable (or random set). The sub-σ - eld X−1(E) generated by X
is denoted byFX .
The distribution PX of the random setX : → c(X) on themeasurable space (c(X), E)

is de ned by PX(B) = P(X−1(B)), for all B ∈ E . A collection of random sets {Xi, i ∈ I}
is said to be identically distributed (i.d.) if the PXi , i ∈ I are identical.
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A random element (Banach space valued random variable) f : → X is called a
selection of the random set X if f (ω) ∈ X(ω) for all ω ∈ .
For every sub-σ - eldA of F and for 1 ≤ p <∞, Lp( ,A,P,X) denotes the Banach

space of (equivalence classes of) measurable functions f : → X such that the norm
f p = (E f p)

1
p = ( f (ω) pdP)

1
p is nite. In special case, Lp( ,F ,P,X) (resp.

Lp( ,F ,P,R)) is denoted by Lp(X) (resp. Lp). For each random set X, de ne the
following closed subset of Lp( ,A,P,X)

SpX(A) = {f ∈ Lp( ,A,P,X) : f (ω) ∈ X(ω), for all ω ∈ }.

A random set X : → c(X) is called integrable if the set S1X(F) is nonempty (i.e.
d(0,X(·)) is in L1), and it is called integrable bounded if the random variable X is
in L1.
For any random set X and any sub-σ - eldA ofF , themultivalued expectation ofX over
, with respect toA, is de ned by

E(X,A) = {E(f ) : f ∈ S1X(A)},

where E(f ) = fdP is the usual Bochner integral of f. Shortly, E(X,F) is denoted by EX.
We note that E(X,A) is not always closed.
The sequence of random elements {Xn : n ≥ 1} is called a martingale sequence if

E Xn <∞ and Xn = E(Xn+m|X1,X2, . . . ,Xn) a.s. for all positive integers m and n.
Similarly, {Xn : n ≥ 1} is called a reverse martingale sequence if it is a martingale under
the reverse ordering of N, that is, Xm+n = E(Xn|Xm+n,Xm+n+1, . . . ) a.s. for all positive
integersm and n.
A sequence of random elements {Xn : n ≥ 1} is said to be tight if for each > 0 there

exists a compact subset K of X such that P[Xn /∈ K ] < for every positive integer n.
Also, a general condition involving tightness of distributions and moments of the random
elements {Xn : n ≥ 1} called compact uniform integrability (CUI) can be stated as: Given
> 0, there exists a compact subset K ofX such that supn(E XnI[Xn /∈K ] ) < , where IA
is the indicator function of A.
Next, we describe some basic concepts of fuzzy random sets. A fuzzy set in X is a

function u : X→ [0, 1]. For each fuzzy set u, the α-level set is denoted by

Lαu = {x ∈ X : u(x) ≥ α}, 0 < α ≤ 1.

It is easy to see that, for every α ∈ (0, 1], Lαu = ∩β<αLβu. Let F(X) denote the space of
fuzzy subsets u : X→ [0, 1] such that

(1) u is normal, i.e. the 1-level set L1u = ∅,
(2) u is upper semicontinuous, that is, for each α ∈ (0, 1], the α-level set Lαu

is a closed subset of X.

We note that the relation L0(u) = {x ∈ X : u(x) ≥ 0} = X is automatically satis ed.
A linear structure in F(X) is de ned by the following operations,

(u+ v)(x) = sup
y+z=x

min{u(y), v(z)},
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(λu)(x) = u(λ−1x) if λ = 0,
I{0}(x) if λ = 0,

where u, v ∈ F(X), λ ∈ R. Then it follows that, for u, v ∈ F(X), λ ∈ R, we have Lα(u+
v) = Lα(u)+ Lα(v) and Lα(λu) = λLα(u) for each α ∈ (0, 1].
The concept of a fuzzy random set as a generalization for a random set was extensively

studied by Puri and Ralescu [17]. A fuzzy-valued random variable (or fuzzy random set)
is a Borel measurable function X̃ : → F(X) such that LαX̃ is a random set for each α ∈
(0, 1].
The expected value of any fuzzy random set X̃, denoted by EX̃, is a fuzzy set such that,

for every α ∈ (0, 1],

Lα(EX̃) = E(LαX̃).

Next, we shall use a notion of convergence for sequences of subsets which has been
introduced by Mosco [13,14] and which related to that of Kuratowski. Let t be a topology
onX and (Cn)n≥1 be a sequence in c(X). We put

t-liCn = {x ∈ X : x = t- lim xn, xn ∈ Cn,∀n ≥ 1},
t-lsCn = {x ∈ X : x = t- lim xk, xk ∈ Cn(k),∀k ≥ 1}

where (Cn(k))k≥1 is a subsequence of (Cn)n≥1. The subsets t-liCn and t-lsCn are the lower
limit and the upper limit of (Cn)n≥1, relative to topology t. We obviously have t-liCn ⊂
t-lsCn.
A sequence (Cn)n≥1 converges to C∞, in the sense of Kuratowski, relatively to the topol-

ogy t, if the two following equalities are satis ed: t-lsCn = t-liCn = C∞. In this case, we
shall write C∞ = t-limCn; this is true if and only if the next two inclusions hold t-lsCn ⊂
C∞ ⊂ t-liCn.
Let us denote by s (resp. w) the strong (resp. weak) topology of X. It is easily seen that

s-liCn ⊂ w-lsCn and s-liCn ∈ c(X) unless it is empty. A subset C∞ is said to be theMosco
limit of the sequence (Cn)n≥1 denoted byM- limCn ifw-lsCn = s-liCn = C∞ which is true
if and only if

w-lsCn ⊂ C∞ ⊂ s-liCn.

The corresponding de nitions of pointwise convergence and almost sure convergence
for a sequence {Xn : n ≥ 1} of multivalued functions de ned on are clear. In fact, in
the above de nitions, it su ces to replace Cn by Xn(ω) and C∞ by X∞(ω) for almost
surely ω ∈ . Also, a fuzzy random set X∞ is said to be theMosco limit of the sequence of
fuzzy random sets {Xn : n ≥ 1} denoted by M- limXn if LαX∞ = M- lim LαXn for every
α ∈ (0, 1] a.s.
At the end of this section, we introduce some concepts of exchangeability. A sequence

{X1,X2, . . . ,Xn} of random sets is said to be exchangeable if the joint probability law of
random sets, (X1,X2, . . . ,Xn), is permutation invariant, that is,

P(X1 ∈ B1, . . . ,Xn ∈ Bn) = P(Xπ(1) ∈ B1, . . . ,Xπ(n) ∈ Bn),

for all B1, . . . ,Bn ∈ E and each permutation π of {1, 2, . . . , n}.
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Also, a sequence {X̃1, X̃2, . . . , X̃n} of fuzzy random sets is said to be exchangeable if for
each α ∈ (0, 1], the sequence of random sets {LαX̃1, LαX̃2, . . . , LαX̃n} is exchangeable.
Exchangeability for an in nite sequence is related to i.i.d. in the following sense. It

is obvious that a sequence of {Xk : k ≥ 1} being i.i.d. random sets implies {Xk : k ≥ 1}
are pairwise independent and exchangeable. However, if {Xk : k ≥ 1} is a sequence of
exchangeable random sets, then {Xk : k ≥ 1} are i.d. random sets.Moreover, if {Xk : k ≥ 1}
is a sequence of exchangeable random sets and pairwise independent, then these random
sets are i.i.d (see Hu [8]). We note that the above results are also true for a nite sequence
{Xk : 1 ≤ k ≤ n} if this sequence can be embedded into an in nite sequence of exchange-
able random sets. Thus, we can see the concept of exchangeability is an extension of the
concept of i.i.d. random sets.

3. SLLN inMosco convergence for triangular array of rowwise exchangeable
random sets

Let X, Y be two random sets and f (resp. g) belongs to S1X(F) (resp. S1Y(F)). If X,Y are
independent, then in general case, f and g are not independent. However, if f ∈ S1X(FX)
and g ∈ S1Y(FY) then the pair of X, Y being independent random sets implies indepen-
dence of the selections f, g. Similarly, if X, Y are exchangeable random sets, then in general
case, f and g are not exchangeable. However, Inoue and Taylor [11] proved the following
result.

Lemma 3.1 (Inoue and Taylor [11, Lemma 4.2]): (1) For each random set X and S1X(F)
= ∅, we have

coE(X) = coE(X,FX).

(2) Let X, Y be exchangeable random sets. For each f ∈ S1X(FX), there exists g ∈ S1Y(FY)
such that f and g are exchangeable.

(3) For exchangeable random sets X,Y and S1X(F) = ∅,

E(X,FX) = E(Y ,FY).

Remark 3.1: Lemma 3.1(2) is also true for a nite or in nite collection of random sets.
Especially, we also obtain the stronger conclusion that, let {Xn : n ≥ 1} (resp. {Xk : 1 ≤ k ≤
n}) be a sequence of exchangeable random sets, then for each f1 ∈ S1X1(FX1), there exists a
sequence {fn : n ≥ 2} (resp. {fk : 2 ≤ k ≤ n}) of fn ∈ S1Xn(FXn) and a measurable function
ϕ : c(X)→ X such that the sequence {fn : n ≥ 1} (resp. {fk : 1 ≤ k ≤ n}) is exchangeable
and for every n ≥ 1, ω ∈ , fn(ω) = ϕ(Xn(ω)).
The two following lemmas established the SLLN for triangular array of row-wise

exchangeable random variables taking values in a separable Banach space.

Lemma 3.2 (Taylor and Patterson [21, Theorem 1]): Let {Xnk : n ≥ 1, 1 ≤ k ≤ n} be an
array of random elements in the separable Banach space X. Let {Xnk} be row-wise exchange-
able. Let {Xnk : n ≥ 1} converge in the second mean to X∞k for each k and Xn1 − X∞1 ≥
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X(n+1),1 − X∞1 for each n. If

ρn(f ) = E(f (Xn1)f (Xn2))→ 0 as n→∞ for each f ∈ X∗

then

1
n

n

k=1
Xnk→ 0 a.s. as n→∞.

The following lemma was obtained with CUI and reverse martingale hypotheses for the
case of single-valued random variables

Lemma 3.3 (Patterson and Taylor [15, Theorem 3.4]): Let {Xnk : n ≥ 1, 1 ≤ k ≤ n} be
an array of row-wise exchangeable random elements in the separable Banach space X such
that the sequence {Xn1 : n ≥ 1} is CUI. If

(i) {E(Xn1|Gn) : n ≥ 1} is a reverse martingale

(where Gn = σ {
n

k=1
Xnk,

n+1

k=1
X(n+1),k, . . . }),

(ii) E(f (Xn1)f (Xn2))→ 0 as n→∞, for each; f ∈ X∗,

(iii) E(f 2(Xn1)) = o(n) for each f ∈ X∗,

then

1
n

n

k=1
Xnk→ 0 a.s. as n→∞.

In the case of real-valued random variables, we have the following result.

Lemma 3.4 (Patterson and Taylor [15, Theorem 2.1]): Let {Xnk : n ≥ 1, 1 ≤ k ≤ n} be
an array of row-wise exchangeable real-valued random variables. If

(i) E(Xn1Xn2)→ 0 as n→∞,

(ii) E(X2n1) = o(n),
(iii) {E(Xn1|Gn) : n ≥ 1} is a reverse martingale

(where Gn = σ {
n

k=1
Xnk,

n+1

k=1
X(n+1),k, . . . }),

then

1
n

n

k=1
Xnk→ 0 a.s. as n→∞.

Now, we give a lemma which will be used to prove the main results.
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Lemma 3.5 (Quang and Giap [18, Lemma 3.3]): Let {xni : n ≥ 1, 1 ≤ i ≤ n} be a trian-
gular array of elements in a Banach space satisfying the conditions:

(i) lim
i→∞
xni = 0,

(ii) there exists a positive constant C such that xni ≤ C, for all n ≥ 1, 1 ≤ i ≤ n.

Then, 1n
n
i=1 xni→ 0 as n→∞.

Lemma3.6: LetX,Y be two Banach space. Let {Xi : 1 ≤ i ≤ n} be a sequence of exchange-
able random sets taking values of closed subsets of the Banach space X and let ϕ : c(X)→
c(Y) be a (E(X),E(Y))-measurable mapping. Then, the sequence {ϕ(Xi) : 1 ≤ i ≤ n} of
random sets taking values of closed subsets of the Banach spaceY is exchangeable.

Proof: For any permutation π of {1, 2, . . . , n} and the subsets {B1, B2, . . . ,Bn} of E(Y), we
have

P
n

i=1
[ϕ(Xπ(i)) ∈ Bi]

= P
n

i=1
[Xπ(i) ∈ ϕ−1(Bi)]

= P
n

i=1
[Xi ∈ ϕ−1(Bi)]

(by the exchangeability of collection {Xi, 1 ≤ i ≤ n} and ϕ−1(Bi) ∈ E(X))

= P
n

i=1
[ϕ(Xi) ∈ Bi] .

Since then, the lemma is proved.

Remark 3.2: Lemma 3.6 is also true if the (E(X), E(Y))-measurable functionϕ : c(X)→
c(Y) is replaced by one of the following functions:

(i) the (E(X),B(Y))-measurable function ϕ : c(X)→ Y,
(ii) the (B(X),B(Y))-measurable function ϕ : X→ Y (Here, {Xi : 1 ≤ i ≤ n} is a

nite sequence of single-valued random variables in the Banach space X).

It is known that for each random set X, if f is a FX-measurable selection of X then
there exists a measurable function g : c(X)→ X such that g(X) = f . For the collection
of random sets (Xi, i ∈ I), I1(Xi, i ∈ I) denotes the family of all the measurable functions
g : c(X)→ X such that g(Xi) ∈ S1Xi(FXi) for every i ∈ I.

The following two theorems will prove the SLLN for triangular array of row-wise
exchangeable random sets without CUI and reverse martingale hypotheses. Our rst
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theorem is an extension of a result of Inoue and Taylor [11, Theorem 4.3]. Also, the second
theorem extends a result of Taylor and Patterson [21, Theorem 1] to the case of set-valued
random variables. To establish these theorems, we provide a newmethod in building struc-
ture of triangular array of selections to prove the ‘lim inf ’ part of Mosco convergence. Also,
as in the proving of [18, Theorem 4.2], to give conclusions, we have to use Lemma 3.5.
However, in [18, Theorem 4.2], the SLLN was established under the bounded expectation
condition, while in the present paper, this condition is not assumed.

Theorem 3.7: Let {Xni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of row-wise exchangeable
random sets taking values of closed subsets of the separable Banach space X. Suppose that

ρn(f ) = Cov f (gn(coXn1)), f (gn(coXn2)) → 0 as n→∞, (1)

for each f ∈ X∗ and gn ∈ I1(coXn1, coXn2), n ≥ 1. If there exists a nonempty subset X of X
such that

+) For each x ∈ X, there exists a sequence {fn : n ≥ 1} of fn ∈ S1Xn1(FXn1) such that

fn1 − Efn1 ≥ f(n+1),1 − Ef(n+1),1 for each n and fn
L2→ x as n→∞. (2)

+) Foreach x∗ ∈ X∗, s(Xn1, x∗)
L2→ s(X, x∗) as n→∞, and

|s(Xn1, x∗)− Es(Xn1, x∗)| ≥ |s(X(n+1),1, x∗)− Es(X(n+1),1, x∗)| for each n, (3)

then

M- lim
1
n
cl
n

i=1
Xni(ω) = coX a.s.

Proof: Let Gn(ω) = 1ncl
n
i=1 Xni(ω). At rst, we will show that coX ⊂ s-liGn(ω) a.s. To

do this, we will use Lemma 3.5. For each x ∈ coX and > 0, by [2, Lemma 3.6], we can
choose x1, x2, . . . , xm ∈ X (the elements x1, x2, . . . , xm only depend on x and ) such that

1
m

m

j=1
xj − x < .

Therefore, we only need to show that there exists a triangular array {fni : n ≥ 1, 1 ≤ i ≤
n} of selections of {Xni} such that

1
n

n

i=1
fni(ω)→

1
m

m

j=1
xj a.s. as n→∞. (4)

Indeed, let zm = 1
m

m
j=1 xj. The statement (4) means that zm ∈ s-liGn(ω) a.s. Since

the space X is separable, there exists a countable dense set DcoX of coX. For each xed
x(j) ∈ DcoX and for every k = 1k (k ≥ 1), by (4), there exists a positive integer mk, which
depends on x(j) and k, such that zmk ∈ s-liGn(ω) a.s. Therefore, there exists Nk ∈ F such
that P(Nk) = 1 and zmk ∈ s-liGn(ω) for all ω ∈ Nk. Let N =

∞
k=1Nk, then P(N) = 1.

For each ω ∈ N, it follows from the set s-liGn(ω) is closed, zmk ∈ s-liGn(ω) for all k and
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zmk → x(j) as k→∞, that x(j) ∈ s-liGn(ω). This means that x(j) ∈ s-liGn(ω) a.s., for each
j ≥ 1. Noting that DcoX is a countable set, we obtain DcoX ⊂ s-liGn(ω) a.s. Since the set
s-liGn(ω) is closed for each ω, by taking the closure of both sides of the above relation, we
have coX ⊂ s-liGn(ω) a.s. Therefore, the statement (4) is proved.
By (2), for each j ∈ {1, 2, . . . ,m}, there exists a sequence {g(j)n1 : n ≥ 1} of g

(j)
n1 ∈

S1Xn1(FXn1) such that g
(j)
n1 − Eg

(j)
n1 ≥ g(j)(n+1),1 − Eg

(j)
(n+1),1 for each n and g

(j)
n1
L2→ xj as

n→∞.
Since {Xni : n ≥ 1, 1 ≤ i ≤ n} is row-wise exchangeable and by virtue of Lemma 3.1(2),

it follows that for each j ∈ {1, 2, . . . ,m} and for each n ≥ 1, there exists a sequence {g(j)ni :
1 ≤ i ≤ n} of g(j)ni ∈ S1Xni(FXni) such that the sequence {g

(j)
ni : 1 ≤ i ≤ n} is exchangeable. By

Lemma 3.6 for the case of single-valued random variables, we getE g(j)ni − xj 2 = E g
(j)
n1 −

xj 2 for all i ∈ {1, 2, . . . , n}. It follows that g
(j)
ni
L2→ xj as n→∞ for each i and j.

Now, we will construct a triangular array {fni : n ≥ 1, 1 ≤ i ≤ n} of fni ∈ S1Xni(FXni)
satisfying (4) as follows:

fni(ω) := g
(j)
ni (ω) if i ≡ j (mod m), where j ∈ {1, 2, . . . ,m} and for all ω ∈ . (5)

This means that

fni
n≥1,1≤i≤n

=





g(1)11

g(1)21 g(2)22
...

...
. . .

g(1)m,1 g(2)m,2 . . . g(m)m,m

g(1)m+1,1 g(2)m+1,2 . . . g(m)m+1,m g(1)m+1,m+1
...

1st column
of {g(1)ni }

...
2nd column
of {g(2)ni }

. . .
...

mth column
of {g(m)ni }

...
(m+1)th column
of {g(1)ni }

. . .





Then, for eachm ≥ 1 and j ∈ {1, 2, . . . ,m}, the array {fn,(i−1)m+j} is row-wise exchange-
able and

fn, (i−1)m+j
L2→ xj as n→∞, for each i ≥ 1. (6)

(Let us note that {fn,(i−1)m+j} is not a triangular array of random elements .)
Let yni = Efni, n ≥ 1, 1 ≤ i ≤ n. If n = (k− 1)m+ l, where 1 ≤ l ≤ m, then the follow-

ing estimations hold:

1
n

n

i=1
fni(ω) −

1
m

m

j=1
xj

= 1
n

m

j=1

k

i=1
fn,(i−1)m+j(ω) −

1
n

m

j=l+1
fn,(k−1)m+j(ω) −

1
m

m

j=1
xj
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≤
k
n

m

j=1

1
k

k

i=1
(fn,(i−1)m+j(ω) − xj) +

1
n

m

j=l+1
fn,(k−1)m+j(ω)

+ k
n
− 1
m

m

j=1
xj

≤ k
n

m

j=1

1
k

k

i=1
(fn,(i−1)m+j(ω) − yn,(i−1)m+j) +

k
n

m

j=1

1
k

k

i=1
yn,(i−1)m+j − xj

+
1
n

m

j=l+1
fn,(k−1)m+j(ω) − yn,(k−1)m+j +

1
n

m

j=l+1
yn,(k−1)m+j

+ k
n
− 1
m

m

j=1
xj . (7)

Let gni(ω) = fni(ω) − yni, for all ω ∈ , n ≥ 1 and 1 ≤ i ≤ n. By Lemma 3.6 for the
case of single-valued random variables, we get that if a sequence {fk : k ≥ 1} of random
elements is exchangeable then the sequence {fk + c : k ≥ 1} is exchangeable, too (where
c is a constant in X). Therefore, since the array {fn,(i−1)m+j : n ≥ 1, 1 ≤ i ≤ k} of random
elements is row-wise exchangeable, we obtain Efn,(i−1)m+j = c for all i (here, n and j are
xed). From the above statements, we deduce that the array {gn,(i−1)m+j : n ≥ 1, 1 ≤ i ≤ k}
is row-wise exchangeable, too.

By (6), for each s = (i− 1)m+ j (1 ≤ j ≤ m), we have fns
L2→ xj as n→∞; namely,

E fns − xj 2 → 0 as n→∞, and so

0 ≤ Efns − xj 2 = E(fns − xj) 2

≤ E fns − xj
2
(by EX ≤ E X )

≤ E fns − xj 2→ 0 as n→∞.
(by the inequality for convex function)

Since then, we get

0 ≤ gns 2 = (fns − xj)− (Efns − xj) 2 ≤ fns − xj 2 + Efns − xj 2
n→∞→ 0.

This means that

gns
L2→ 0 as n→∞. (8)

Further, for each f ∈ X∗, we have

ρn(f ) = E f (gni)f (gnj)
= E f (fni − Efni).f (fnj − Efnj)
= E (f (fni)− f (Efni)).(f (fnj)− f (Efnj)) (by f is a linear mapping)
= E (f (fni)− E(f (fni))).(f (fnj)− E(f (fnj)))
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(by the de nition of expectation of random elements)

= Cov f (fni), f (fnj)
= Cov f (gn(coXn1)), f (gn(coXn2)) → 0 as n→∞ for all i = j and
i ≡ j (mod m). (by (1)) (9)

For each n = (k− 1)m+ l, set S(j)n (ω) = 1k
k
i=1 gn,(i−1)m+j(ω) for all ω ∈ . For

each j ∈ {1, 2, . . . ,m}, the sequence {S(j)n : n ≥ 1} of random elements is divided into m
subsequences {S(j)

(k−1)m+l : k ≥ 1}, l ∈ {1, 2, . . . ,m}.
From the above statements, the triangular array {g(k−1)m+l,(i−1)m+j : k ≥ 1, 1 ≤ i ≤ k}

satis es all the conditions of Lemma 3.2 for each l, j ∈ {1, 2, . . . ,m}. Applying this lemma,
we obtain

S(j)
(k−1)m+l(ω) =

1
k

k

i=1
g(k−1)m+l,(i−1)m+j(ω)→ 0 a.s. as k→∞, (10)

for each l, j ∈ {1, 2, . . . ,m}.
It is equivalent to

S(j)n (ω) =
1
k

k

i=1
gn,(i−1)m+j(ω)→ 0 a.s. as n→∞, for each j ∈ {1, 2, . . . ,m}. (11)

For each n ≥ 1 and j ∈ {1, 2, . . . ,m}, we set V(j)n = 1k
k
i=1 yn,(i−1)m+j − xj . The

sequence {V(j)n : n ≥ 1} of real numbers is divided intom subsequences {V
(j)
(k−1)m+l : k ≥

1}, l ∈ {1, 2, . . . ,m}.
For each l, j ∈ {1, 2, . . . ,m}, we put

z(l,j)ki = y(k−1)m+l,(i−1)m+j − xj .

For each j ∈ {1, 2, . . . ,m}, by the assumption that the array {fn,(i−1)m+j : n ≥ 1, 1 ≤ i ≤
k} is row-wise exchangeable and converges in the second mean to xj as n→∞ for each
column, we get that the elements of this array have bounded expectations. Therefore,

|z(l,j)ki | ≤ Ef(k−1)m+l,(i−1)m+j + xj ≤ C + xj , (12)

for all k ≥ 1, 1 ≤ i ≤ k.
Since the convergence in L2 implies the convergence in L1 and by (6), we have that

z(l,j)ki → 0 as k→∞, for each i ≥ 1. Since then, z
(l,j)
ki → 0 as i→∞.

Combining this with (12), we have that for each l, j ∈ {1, 2, . . . ,m}, the triangular array
{z(l,j)ki : k ≥ 1, 1 ≤ i ≤ k} of real numbers satis es all the conditions of Lemma 3.5.Applying
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this lemma, we obtain

V(j)
(k−1)m+l =

1
k

k

i=1
y(k−1)m+l,(i−1)m+j − xj → 0 as k→∞ for each l, j ∈ {1, 2, . . . ,m}.

Hence,

V(j)n =
1
k

k

i=1
yn,(i−1)m+j − xj → 0 as n→∞. (13)

By (11), we have

1
n

m

j=l+1
fn,(k−1)m+j(ω) − yn,(k−1)m+j

= 1
n

m

j=l+1
gn,(k−1)m+j(ω)

= k
n

m

j=l+1

1
k

k

i=1
gn,(i−1)m+j(ω) − (

k− 1
k
)
1
k− 1

k−1

i=1
gn,(i−1)m+j(ω) → 0 as n→∞.

(14)

Similarly, by (13), we obtain

1
n

m

j=l+1
yn,(k−1)m+j

≤ 1
n

m

j=l+1
yn,(k−1)m+j − xj +

1
n

m

j=l+1
xj

=
k
n

m

j=l+1

1
k

k

i=1
yn,(i−1)m+j − xj − (

k− 1
k
)
1
k− 1

k−1

i=1
yn,(i−1)m+j − xj

+ 1
n

m

j=l+1
xj → 0 as n→∞. (15)

We also have ( kn −
1
m)→ 0 as n→∞. Therefore, combining (7), (11), (13), (14)

and (15), we get

1
n

n

i=1
fni(ω) −

1
m

m

j=1
xj→ 0 a.s. as n→∞.

This yields 1m
m
j=1 xj ∈ s-liGn(ω) a.s. Hence coX ⊂ s-liGn(ω) a.s.

Thus, in the above proving, the triangular array {gni : n ≥ 1, 1 ≤ i ≤ n} of random
elements has been divided into m2 triangular sub-arrays {g(k−1)m+l,(i−1)m+j : k ≥ 1, 1 ≤
i ≤ k}. Also, for each j ∈ {1, 2, . . . ,m}, the array { yn,(i−1)m+j − xj : n ≥ 1, 1 ≤ i ≤ k}
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of real numbers has been divided into m triangular sub-arrays {z(l,j)ki : k ≥ 1, 1 ≤ i ≤ k},
l ∈ {1, 2, . . . ,m}. By using Lemma 3.2 (resp. Lemma 3.5) for each above triangular sub-
array of random elements (resp. of real numbers), we obtain the ‘lim inf ’ path of theMosco
convergence.
Next, let {xj : j ≥ 1} be a dense sequence of X \ coX. By the separation theorem, there

exists a sequence {x∗j : j ≥ 1} inX∗ with x∗j = 1 such that

xj, x∗j − d(xj, coX) ≥ s(coX, x∗j ), for every j ≥ 1. (16)

Then x ∈ coX if and only if x, x∗j ≤ s(coX, x∗j ) for every j ≥ 1.
Note that the function X→ s(X, x∗j ) of c(X) into (−∞,∞] is (E ,B(R))-measurable.
Using the above statement, the inequality (16), the hypotheses of this theorem and

Lemma 3.6, we have that {s(Xni, x∗j ) : n ≥ 1, 1 ≤ i ≤ n} is a triangular array of row-wise
exchangeable random variables in L1, for each j ≥ 1. Set h(j)ni = s(Xni, x∗j )− E(s(Xni, x∗j )).
Then, {h(j)ni : n ≥ 1, 1 ≤ i ≤ n} is the triangular array of row-wise exchangeable random
variables.
By the condition (3), using the arguments as in the proof of (8), we get h(j)n1

L2→ 0 as n→

∞. It implies that h(j)ni
L2→ 0 as n→∞, for each i ≥ 1.

By the condition (1), we have that ρn(f ) = E(h
(j)
ni h
(j)
nk)→ 0 as n→∞ for all i = k.

From the above statements, we get that the triangular array {h(j)ni : n ≥ 1, 1 ≤ i ≤ n} sat-
is es all the conditions of Lemma 3.2 for real-valued random variables, for each j ≥ 1.
Then, applying this lemma, we have

1
n

n

i=1
h(j)ni (ω)→ 0 a.s. as n→∞, for every j ≥ 1.

This means that

1
n

n

i=1
s(Xni, x∗j )−

1
n

n

i=1
E(s(Xni, x∗j ))→ 0 a.s. as n→∞, for every j ≥ 1.

Moreover, by (3) and (16), we get

Es(Xni, x∗j ) = s(clE(Xni), x∗j )→ s(X, x∗j ) <∞ as n→∞ for every i, j ≥ 1.

Therefore, for each i and j, the sequence {s(Xni, x∗j ) : n ≥ 1} has bounded expectation.
Since Es(Xni, x∗j ) = Es(Xn1, x∗j ) for all i ∈ {1, 2, . . . , n}, the triangular array {s(Xni, x∗j ) :

n ≥ 1, 1 ≤ i ≤ n} has bounded expectation.
Since then, by applying Lemma 3.5, we have

1
n

n

i=1
E(s(Xni, x∗j ))→ s(X, x∗j ) as n→∞, for every j ≥ 1.

Consequently, for each j ≥ 1, s(Gn(ω), x∗j )→ s(X, x∗j ) a.s. as n→∞. Namely, there
exists N ∈ F , P(N) = 0 such that for each ω ∈ \N, j ≥ 1, s(Gn(ω), x∗j )→ s(X, x∗j ) as
n→∞.
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For each ω ∈ \N, if x ∈ w-lsGn(ω) then xk
w→ x as k→∞, where xk ∈ Gn(k)(ω).

Hence,

x, x∗j = limk→∞
xk, x∗j ≤ limk→∞

s(Gn(k)(ω), x∗j ) = s(X, x∗j ) = s(coX, x∗j ), for every j ≥ 1.

This implies that x ∈ coX. Thus, w-ls 1ncl
n
i=1 Xni(ω) ⊂ coX a.s.

By putting Xni(ω) = Xi(ω) for every n ≥ 1, 1 ≤ i ≤ n and ω ∈ , and applying
Theorem 3.7 for the triangular array {Xni : n ≥ 1, 1 ≤ i ≤ n}, we get

Corollary 3.8 (Inoue and Taylor [11, Theorem 4.3]): Let {Xn : n ≥ 1} be an in nite
sequence of exchangeable random sets in c(X). If E X1 <∞ and Cov{f (g(coX1)), f (g(co
X2))} = 0 for each f ∈ X∗, then

1
n

n

k=1
Xk→ coEX1 in Mosco sense,

where g ∈ I1(coX1, coX2).

In Lemma 3.2, for each k ≥ 1, the sequence {Xnk : n ≥ 1} converges in the secondmean
to X∞k, where X∞k is a random element. However, in Theorem 3.7, the condition

fn
L2→ x as n→∞ (I)

cannot be replaced by the weaker one

fn
L2→ f as n→∞, where f is a random element satisfying Ef = x. (II)

Because, in the proof of Theorem 3.7, if the condition (I) is replaced by the condition (II),

then the statement g(j)n1
L2→ f (j)1 as n→∞ can not imply g

(j)
ni
L2→ f (j)i as n→∞withEf

(j)
i =

Ef (j)1 = xj for every i ∈ {1, 2, . . . , n}.
The example below shows sequences {fn : n ≥ 1} and {gn : n ≥ 1} such that {fn : n ≥ 1}

converges in the secondmean to a random variable f and {gn, fn} is exchangeable for every
n ≥ 1, but {gn : n ≥ 1} does not converge in the second mean.

Example 1: Let f be a random variable in R, which is de ned as follows:

P(f = 1) = P(f = −1) = 1
2
.

Putting fn := f for each n ≥ 1, then fn
L2→ f as n→∞.

De ne the random variables

gn =
f , if n is an even positive integer,
−f , otherwise.
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For every x1, x2 ∈ R, we have

P(f < x1,−f < x2) = P(1 < x1,−1 < x2)+ P(−1 < x1, 1 < x2),

and

P(−f < x1, f < x2) = P(−1 < x1, 1 < x2)+ P(1 < x1,−1 < x2).

Combining the above two equalities, we obtain

P(f < x1,−f < x2) = P(−f < x1, f < x2), for all x1, x2 ∈ R.

Hence, f and −f are exchangeable.
Since then, {gn, fn} is exchangeable for all positive integers n.
For every k ∈ N, we get

P(|g2k+1 − g2k| > 1) = P(|2f | > 1) = P(|f | >
1
2
) = 1.

Hence, this sequence does not converge in probability. This implies that {gn : n ≥ 1}
does not converge in the second mean.

Theorem 3.9: Let {Xni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of row-wise exchangeable
random sets in separable Banach space X.
Assume that there exists a triangular array {fni : n ≥ 1, 1 ≤ i ≤ n} of fni ∈ S1Xni(FXni)

such that {fni} is row-wise exchangeable, fnk
L2→ f∞k as n→∞ for each

k ≥ 1 and fn1 − f∞1 ≥ f(n+1),1 − f∞1 for all n. (17)

Suppose that there exists a nonempty subset X of X such that:

+) For each x ∈ X,E f (gn1(coXn1)− x).f (gn2(coXn2)− x) → 0 as n→∞,
for all f ∈ X∗ and gni ∈ I1(coXni), n ≥ 1, i ∈ {1, 2}. (18)

+) For each x∗ ∈ X∗ and k ≥ 1, s(Xnk, x∗)
L2→ S(x

∗)
∞k as n→∞, and

|s(Xn1, x∗)− S(x
∗)
∞1 | ≥ |s(X(n+1),1, x

∗)− S(x
∗)
∞1 | for all n, (19)

then

M- lim
1
n
cl
n

i=1
Xni(ω) = coX a.s.

Proof: By the arguments as in the proof of Theorem 3.7, for each x ∈ coX and > 0, there
exist x1, x2, . . . , xm ∈ X such that

1
m

m

j=1
xj − x < .

To prove the ‘lim inf ’ part coX ⊂ s-liGn(ω) a.s. in theMosco convergence, we need to show
that 1m

m
j=1 xj ∈ s-liGn(ω) a.s.
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If n = (k− 1)m+ l, where 1 ≤ l ≤ m, then the following estimations hold:

1
n

n

i=1
fni(ω) −

1
m

m

j=1
xj

= 1
n

m

j=1

k

i=1
fn,(i−1)m+j(ω) −

1
n

m

j=l+1
fn,(k−1)m+j(ω) −

1
m

m

j=1
xj

≤ k
n

m

j=1

1
k

k

i=1
(fn,(i−1)m+j(ω) − xj) +

1
n

m

j=l+1
fn,(k−1)m+j(ω)

+ k
n
− 1
m

m

j=1
xj . (20)

By (18), we have

ρn(f , xj) = E f (fns − xj).f (fnk − xj) → 0 as n→∞, (21)

for all s = k, f ∈ X∗, for each j ∈ {1, 2, . . . ,m}.
By the arguments as in the proof of Theorem 3.7, we have that for each j ∈ {1, 2, . . . ,m},

the row-wise exchangeability of array {fn,(i−1)m+j} of random elements implies the row-
wise exchangeability of array {fn,(i−1)m+j − xj}.
For each n = (k− 1)m+ l, we put S(j)n (ω) = 1k

k
i=1(fn,(i−1)m+j(ω) − xj) for all ω ∈ .

For each j ∈ {1, 2, . . . ,m}, the sequence {S(j)n : n ≥ 1} of random elements is divided into
m subsequences {S(j)

(k−1)m+l : k ≥ 1}, l ∈ {1, 2, . . . ,m}.

By (17), we get that fn,(i−1)m+j − xj
L2→ f∞,(i−1)m+j − xj as n→∞ for each i ≥ 1, j ∈

{1, 2, . . . ,m} and (fn,(i−1)m+j − xj)− (f∞,(i−1)m+j − xj) = fn,(i−1)m+j − f∞,(i−1)m+j .
Therefore, the triangular array {f(k−1)m+l,(i−1)m+j − xj : k ≥ 1, 1 ≤ i ≤ k} of random

elements satis es all the conditions of Lemma 3.2 for each l, j ∈ {1, 2, . . . ,m} and we have

S(j)
(k−1)m+l(ω) =

1
k

k

i=1
(f(k−1)m+l,(i−1)m+j(ω) − xj)→ 0 a.s. as k→∞, (22)

for each l, j ∈ {1, 2, . . . ,m}.
It implies that

S(j)n (ω)→ 0 a.s. as n→∞, for each j ∈ {1, 2, . . . ,m}. (23)

Since n→∞ implies k→∞, by (23), we obtain

1
n

m

j=l+1
fn,(k−1)m+j(ω) =

k
n

m

j=l+1

1
k

k

i=1
(fn,(i−1)m+j(ω) − xj)

− (
k− 1
k
)
1
k− 1

k−1

i=1
(fn,(i−1)m+j(ω) − xj)+

1
k
xj
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→ 0 as n→∞. (24)

Since then, combining (20), (23) and (24), we have

1
n

n

i=1
fni(ω) −

1
m

m

j=1
xj→ 0 a.s. as n→∞.

Hence, 1m
m
j=1 xj ∈ s-liGn(ω) a.s. Let {x∗j : j ≥ 1} be as in the proof of Theorem 3.7

taken for coX. To prove the ‘lim sup’ path w-ls 1ncl
n
i=1 Xni(ω) ⊂ coX a.s. in the Mosco

convergence, we argue as in the proof of Theorem 3.7. Detail, for each j ≥ 1, set h(j)ni (ω) =
s(Xni(ω), x∗j )− s(X, x∗j ). By using Lemma 3.2, we obtain

1
n

n

i=1
h(j)ni (ω)→ 0 a.s. as n→∞, for each j ≥ 1.

This means that

1
n

n

i=1
s(Xni, x∗j )− s(X, x∗j )→ 0 a.s. as n→∞, for each j ≥ 1.

It is equivalent to s(Gn(ω), x∗j )→ s(X, x∗j ) a.s., for each j ≥ 1. Thus, we obtain the desired
conclusion.

Remark 3.3: Let us note that the conclusion of Theorem 3.9 will be only coX ⊂ s-liGn(ω)
a.s., if the condition (18) is not assumed. At this point, Theorem 3.9 extends the result of
Taylor and Patterson (21, Theorem 1) for multivalued random variables. Indeed, suppose
that the triangular array {Xni : n ≥ 1, 1 ≤ i ≤ n} of random elements in a separable Banach
space satis es all the conditions of Lemma 3.2.We can check that the triangular array {Xni :
n ≥ 1, 1 ≤ i ≤ n} satis es all the conditions of Theorem 3.9 without the condition (19) for
single-valued random variables case with X = {0}. By using Theorem 3.9, we obtain the
SLLN as in Lemma 3.2.
Next,wewill establish amultivalued SLLN for triangular array of row-wiseexchangeable

random sets with CUI and reversemartingale conditions. To do this, we need the following
lemma.

Lemma 3.10: Let {fn : n ≥ 1} be a sequence of random elements inL1(X). Suppose that the
sequence {fn : n ≥ 1} is CUI and Efn→ x as n→∞, where x is an element of X. Then, the
sequence {fn − Efn : n ≥ 1} is CUI.

Proof: Given > 0, there exists a compact subset K1 of X such that

sup
n
E fnI[fn /∈K1] < 2

. (25)

We put K2 = cl{Efn | n ≥ 1}. By the convergence of the sequence {Efn : n ≥ 1}, we have
that K2 is a compact subset ofX. We set K = K1 − K2, then K is a compact subset.
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Now, we will show that

K1 ⊂ Efn + K, for every n ≥ 1. (26)

Indeed, for each k1 ∈ K1, it follows from K = K1 − K2 and Efn ∈ K2 that kn = k1 −
Efn ∈ K. This yields k1 = Efn + kn ∈ Efn + K. Thus, (26) is proved.
By (26), we get

[fn /∈ Efn + K] ⊂ [fn /∈ K1], for every n ≥ 1. (27)

Next, we have that

E (fn − Efn)I[fn−Efn /∈K] ≤ 2E fnI[fn−Efn /∈K]
= 2E fnI[fn /∈Efn+K]
≤ 2E fnI[fn /∈K1] , for every n ≥ 1 (by (27)).

By (25), we obtain

sup
n
E (fn − Efn)I[fn−Efn /∈K] < .

The lemma is proved completely.

Theorem 3.11: Let {Xni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of row-wise exchangeable
random sets in the separable Banach space X. If for every f ∈ X∗,

+) the sequence {gn(Xn1) : n ≥ 1} is CUI, with gn ∈ I1(coXn1), (28)

+) {E(gn(coXn1)|G(n,m, j)) : n ≥ 1} is a reverse martingale, for each m ≥ 1,
j ∈ {1, 2, . . . ,m}, where I(n,m, j) = {(k− 1)m+ j|1 ≤ (k− 1)m+ j ≤ n, k ∈ N},

gn ∈ I1(coXn1) and G(n,m, j) = σ {
k∈I(n,m,j)

gn(coXnk),

k∈I(n+1,m,j)
gn+1(coXn+1,k), . . . }, (29)

+) Cov f (gn(coXn1)), f (gn(coXn2)) → 0 as n→∞, with gn ∈ I1(coXn1, coXn2),
(30)

+) Var(f (gn(coXn1))) = o(n), with gn ∈ I1(coXn1), (31)

+) there exists a set X ∈ c(X) such that
X ⊂ s-liclE(Xn1,FXn1), (32)

lim sup s(clEXn1, x∗) ≤ s(X, x∗) for all x∗ ∈ X∗, (33)

then

M- lim
1
n
cl
n

i=1
Xni(ω) = coX a.s.
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Proof: As in the proof ofTheorem3.7, to prove the ‘lim inf ’ part in theMosco convergence,
we need to show that there exists a triangular array {fni : n ≥ 1, 1 ≤ i ≤ n} of fni ∈ S1Xni(F)
such that

1
n

n

i=1
fni(ω)→

1
m

m

j=1
xj a.s. as n→∞.

By (32), for each j ∈ {1, 2, . . . ,m}, there exists a sequence {g(j)n1 : n ≥ 1} of g
(j)
n1 ∈

S1Xn1(FXn1) such that Eg
(j)
n1 → xj as n→∞.

Since the triangular array {Xni : n ≥ 1, 1 ≤ i ≤ n} of random sets is row-wise exchange-
able and by Lemma 3.1(2), it follows that for each j ∈ {1, 2, . . . ,m} and for each n ≥ 1,
there exists a sequence {g(j)ni : 1 ≤ i ≤ n} of g

(j)
ni ∈ S1Xni(FXni) such that {g

(j)
ni : 1 ≤ i ≤ n}

is exchangeable. Since then, we get Eg(j)ni = Eg
(j)
n1 for all i ∈ {1, 2, . . . , n}. It follows that

Eg(j)ni → xj as n→∞ for each i and j.
Next,we de ne the triangular array {fni : n ≥ 1, 1 ≤ i ≤ n}of fni ∈ S1Xni(FXni) as follows:

fni(ω) := g
(j)
ni (ω) if i ≡ j (mod m), where j ∈ {1, 2, . . . ,m} and for all ω ∈ .

Let yni = Efni and gni(ω) = fni(ω) − yni, where n ≥ 1, 1 ≤ i ≤ n,ω ∈ .
Let n = (k− 1)m+ l, 1 ≤ l ≤ m. By the arguments as in the proof of Theorem 3.7,

we get that the array {gn,(i−1)m+j : n ≥ 1, 1 ≤ i ≤ k} of random elements is row-wise
exchangeable, for each j ∈ {1, 2, . . . ,m}.
By the arguments as in (9), for every f ∈ X∗,

E f (gni)f (gnj)

= Cov f (fni), f (fnj)
= Cov f (g(coXni)), f (g(coXnj))
= Cov f (gn(coXn1)), f (gn(coXn2)) → 0 as n→∞ for all i = j and i ≡ j(mod m).
(by the condition (30)) (34)

Similarly, by the condition (31), we have that

E f 2(gn1) = Var(f (gn(coXn1))) = o(n), for all f ∈ X∗.

As in the proof of Theorem3.7, for each n = (k− 1)m+ l and for each j ∈ {1, 2, . . . ,m},
set S(j)n (ω) = 1k

k
i=1 gn,(i−1)m+j(ω) for all ω ∈ . For each j ∈ {1, 2, . . . ,m}, the sequence

{S(j)n : n ≥ 1} of random elements is divided into m subsequences {S
(j)
(k−1)m+l : k ≥ 1}, l ∈

{1, 2, . . . ,m}.
Since the triangular array {g(j)ni : n ≥ 1, 1 ≤ i ≤ n} of random elements is row-wise

exchangeable and by the condition (29), the sequence {E(g(j)nj |G(n,m, j)) : n ≥ 1} of
random elements is a reverse martingale, for each m ≥ 1 and j ∈ {1, 2, . . . ,m}.
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For eachm ≥ 1 and l, j ∈ {1, 2, . . . ,m}, set

G(l,j)k (f ) = σ {
k

i=1
f(k−1)m+l,(i−1)m+j,

k+1

i=1
fkm+l,(i−1)m+j, . . . }.

For each m ≥ 1 and l, j ∈ {1, 2, . . . ,m}, the sequence {E(g(j)
(k−1)m+l,j|G((k− 1)m+

l,m, j)) : k ≥ 1} of random elements is a reverse martingale, since every subsequence of
a reverse martingale sequence is also a reverse martingale.
Next, we will show that the sequence {E(g(j)

(k−1)m+l,j|G
(l,j)
k (f )) : k ≥ 1} of random ele-

ments is a reverse martingale.
Indeed, it su ces to show that

E(E(g(j)
(k−1)m+l,j|G

(l,j)
k (f ))|G

(l,j)
k+1(f )) = E(g

(j)
km+l,j|G

(l,j)
k+1(f )) a.s.,

which is equivalent to

E(g(j)
(k−1)m+l,j|G

(l,j)
k+1(f )) = E(g

(j)
km+l,j|G

(l,j)
k+1(f )) a.s.

(by the smoothing lemma with G(l,j)k+1(f ) ⊂ G
(l,j)
k (f )). (35)

Since the sequence {E(g(j)
(k−1)m+l,j|G((k− 1)m+ l,m, j)) : k ≥ 1} of random elements is

a reverse martingale and by the similar argument, we obtain

E(g(j)
(k−1)m+l,j|G(km + l,m, j)) = E(g

(j)
km+l,j|G(km+ l,m, j)) a.s. (36)

We have that

E(g(j)km+l,j|G
(l,j)
k+1(f )) = E(E(g

(j)
km+l,j|G(km+ l,m, j))|G

(l,j)
k+1(f )) a.s.

(by the smoothing lemma with G(l,j)k+1(f ) ⊂ G(km+ l,m, j))

= E(E(g(j)
(k−1)m+l,j|G(km + l,m, j))|G

(l,j)
k+1(f )) a.s. (by (36))

= E(g(j)
(k−1)m+l,j|G

(l,j)
k+1(f ))

(by the smoothing lemma with G(l,j)k+1(f ) ⊂ G(km+ l,m, j)).

Thus, (35) is proved.
Exchangeability of the sequence {f(k−1)m+l,(i−1)m+j : 1 ≤ i ≤ k} implies that the

sequence {E(g(k−1)m+l,j|G
(l,j)
k (g)) : k ≥ 1} of random elements is a reverse martingale

(where

G(l,j)k (g) = σ {
k

i=1
g(k−1)m+l,(i−1)m+j,

k+1

i=1
gkm+l,(i−1)m+j, . . . }).

By (28) and by the exchangeability of {g(j)ni : 1 ≤ i ≤ n}, we deduce that the sequence
{g(j)nj : n ≥ 1} is CUI, for each j ∈ {1, 2, . . . ,m}. This yields that {f(k−1)m+l,j : k ≥ 1} is
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CUI, for each l, j ∈ {1, 2, . . . ,m} (Because g(j)
(k−1)m+l,j(ω) = f(k−1)m+l,j(ω)). Moreover, the

sequence {Ef(k−1)m+l,j : k ≥ 1} converges to xj as k→∞. Applying Lemma3.10,we obtain
that the sequence {g(k−1)m+l,j : k ≥ 1} is CUI, for each l, j ∈ {1, 2, . . . ,m}.
Hence, for each l, j ∈ {1, 2, . . . ,m}, the triangular array {g(k−1)m+l,(i−1)m+j : k ≥ 1, 1 ≤

i ≤ k} satis es all the conditions of Lemma 3.3, and so

S(j)
(k−1)m+l(ω) =

1
k

k

i=1
g(k−1)m+l,(i−1)m+j(ω)→ 0 a.s. as k→∞,

for each l, j ∈ {1, 2, . . . ,m}.
It is equivalent to

S(j)n (ω) =
1
k

k

i=1
gn,(i−1)m+j(ω)→ 0 a.s. as n→∞, for each j ∈ {1, 2, . . . ,m}.

Suppose that V(j)n , z
(l,j)
ki are de ned as in the proof of Theorem 3.7.

For each j ∈ {1, 2, . . . ,m}, since the array {fn,(i−1)m+j : n ≥ 1, 1 ≤ i ≤ k} is row-wise
exchangeable and {Efn,(i−1)m+j} converges to xj as n→∞ for each column, it implies that
this array has bounded expectation. Therefore, we have

|z(l,j)ki | ≤ Efn,(i−1)m+j + xj ≤ C + xj ,

for all k ≥ 1, 1 ≤ i ≤ k, n = (k− 1)m+ l.
By z(l,j)ki → 0 as k→∞, for each i ≥ 1, we get z

(l,j)
ki → 0 as i→∞.

Combining the above statements, we have that for each m ≥ 1 and l, j ∈ {1, 2, . . . ,m},
the triangular array {z(l,j)ki : k ≥ 1, 1 ≤ i ≤ k} satis es all the conditions of Lemma 3.5.
To complete the ‘lim inf ’ part of the proof in the Mosco convergence, we proceed as in

the proof of Theorem 3.7.
Finally, by the arguments as in the proof of Theorem 3.7 and by Lemma 3.4, we obtain

the ‘lim sup’ path of the Mosco convergence.

Remark 3.4: 1. In Theorem 3.11, if the condition (29) is replaced by the following two
conditions:

+) {E(f (g(coXn1))|Gg(n,m, j)) : n ≥ 1} is a reverse martingale, for each m ≥ 1,
1 ≤ j ≤ m, f ∈ X∗,

+) {E(g(coXn1)I[g(coXn1)/∈K]|Gg(n,m, j)) : n ≥ 1} is a reverse martingale,
for each m ≥ 1, 1 ≤ j ≤ m, and for each compact subset K of X,

then by the same arguments as in the proof of Theorem 3.11 and using [15,
Theorem 3.3], the SLLN also holds.

2. In the past results, one built the family of selections of random sets to prove the ‘lim inf ’
path by being the union of the families with respect to xj, j ∈ {1, 2, . . . ,m}. However,
in present paper, the triangular array {fni : n ≥ 1, 1 ≤ i ≤ n} of selections of random
sets is the union of sets which each set is a sub family of triangular array with respect
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to xj, j ∈ {1, 2, . . . ,m}. Then, we use the single-valued SLLN for each triangular sub-
array to obtain the multivalued SLLN. This is one of the key tools to prove the most
di cult ‘half’ of the multivalued SLLN in the Mosco topology.
The example below shows that Theorem 3.11 is really di erent from Lemma 3.3, even
in the case of single-valued random variables.

Example 2: Consider the Banach space X = R. The triangular array {Xni : n ≥ 1, 1 ≤
i ≤ n} is de ned by Xni(ω) = {1} for every n ≥ 1, 1 ≤ i ≤ n and ω ∈ . Then, it is easy
to check that the triangular array {Xni : n ≥ 1, 1 ≤ i ≤ n} satis es all the conditions of
Theorem 3.11. But, it follows from EX2n1 = 1 for all n ≥ 1 that the triangular array {Xni :
n ≥ 1, 1 ≤ i ≤ n} does not satisfy the condition (iii) of Lemma 3.3.
However, the conditions (29) and (32) in Theorem 3.11 are also necessary. The next

example shows that Theorem 3.11 is not true without the conditions (29) and (32).

Example 3: LetX = 2 be the space of square-summable sequences. Namely, x ∈ 2 if x =
(x1, x2, . . . , xn, . . .), xi ∈ R and ∞

n=1 |xn|2 <∞. The norm · l2 is de ned by x l2 =
∞
n=1 |xn|2. Then, 2 is a Hilbert space with scalar multiplication (·|·) which is given by

(x|y) = ∞
n=1 xnyn for each x = (x1, x2, . . . , xn, . . .) ∈ 2, y = (y1, y2, . . . , yn, . . .) ∈ 2.

For each i ≥ 1, let ei = {0, . . . , 0, 1, 0, . . .}, with number 1 in the ith position. Then,
{e1, e2, . . . , en, . . .} is a standard basis ofX.
For each n ≥ 1, 1 ≤ i ≤ n and ω ∈ , we set Xni(ω) = {en}. Then, the triangular array

{Xni : n ≥ 1, 1 ≤ i ≤ n} satis es all the conditions of Theorem 3.11 without the condi-
tions (29) and (32). We have Gn(ω) = 1ncl

n
i=1 Xni(ω) = {en} for every n ≥ 1 and ω ∈

. Since em − en l2 =
√
2 for all m = n, the sequence {en : n ≥ 1} is not Cauchy’s

sequence. Consequently, the sequence {en : n ≥ 1} does not converge in norm. Therefore,
we have 0 /∈ s-liGn(ω) for all ω ∈ .
By Riezs’s theorem, we have that for each f ∈ X∗, there exists a ∈ 2 such that f (x) =

(a|x) for all x ∈ X. On the other hand, a = ∞
n=1(a|en).en ∈ 2. This series converges to

a. It implies that the general term (a|en) converges to 0 as n→∞, which is equivalent
to lim f (en) = f (0). It follows that en

w→ 0 as n→∞. Since then, 0 ∈ w-lsGn(ω) for all
ω ∈ .
Since the above statements, we do not obtain the SLLN for the triangular array {Xni :

n ≥ 1, 1 ≤ i ≤ n} with respect to Mosco convergence.
In Theorems 3.7 and 3.11, we use a condition which is general stronger than the

condition (i) of Lemma 3.5, that is,

z(l,j)ki → 0 as k→∞ for each i. (iii)

However, the condition (ii) is also necessary in this case. Indeed, the following example
shows that if the condition (i) is replaced by the condition (iii) then Lemma 3.5 without
condition (ii) is also not true.

Example 4: Let {xni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of elements in R and it is
de ned as follows:

xni =
n2 if i = n,
1
n
otherwise.
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This means that

xni
n≥1,1≤i≤n

=





12

1
2 22

1
3

1
3 32

...
...
...
. . .

1
n
1
n
1
n
. . . n2

...
...
... . . .

...
. . .





It is clear that limn→∞ xni = 0 for each i; namely, the condition (iii) is satis ed.
Moreover, xnn = n2→∞ as n→∞. This means that the condition (ii) of Lemma 3.5

is not satis ed.
However,

1
n

n

i=1
xni =

1
n
(
n− 1
n
+ n2) = n− 1

n2
+ n→∞ as n→∞.

Now, we extend the previous theorems to fuzzy-valued random sets.

Theorem 3.12: Let {X̃ni : n ≥ 1, 1 ≤ i ≤ n} be a triangular array of row-wise exchangeable
fuzzy random sets such that for each α ∈ (0, 1], the triangular array of random sets {LαX̃ni :
n ≥ 1, 1 ≤ i ≤ n} satis es all the conditions of one of three Theorems 3.7, 3.9 and 3.11. Then,

M- lim
1
n
cl
n

i=1
X̃ni(ω) = IcoX a.s.,

where IcoX is the indicator function of coX.

Proof: Let G̃n(ω) = 1ncl
n
i=1 X̃ni(ω). By virtue of the suitable theorem (one of three

Theorems 3.7, 3.9 and 3.11), we have that M- limLαG̃n(ω) = coX a.s. for every xed
α ∈ (0, 1], in particular, for every α = r ∈ Q, where Q is the set of all rational num-
bers. Since countable setQ is dense in [0, 1] and LαG̃n(ω) = limr↑α,r∈Q LrG̃n(ω), we have
M- limLαG̃n(ω) = coX, for every α ∈ (0, 1], a.s.
Next, for each C ∈ c(X), there exists a unit (with probability one) fuzzy-valued random

set Ỹ satisfying LαỸ(ω) = C, for all α ∈ (0, 1], a.s. Indeed, it is easy to check that LαIC =
C, for all α ∈ (0, 1]. Suppose that the fuzzy random set Ỹ satisfying LαỸ(ω) = C for all
α ∈ (0, 1] a.s. For each ω ∈ N with P(N) = 1, put u = Ỹ(ω). It follows from the sets Lαu,
α ∈ (0, 1] are non-increasing monotonic ordered by inclusion as α ↑ that Lαu = C for all
α ∈ (0, 1] is equivalent to

L0+u ⊂ C ⊂ L1u,
where L0+u = {x ∈ X | u(x) > 0}.
Since then, it is not hard to prove that u = IC, which implies Ỹ(ω) = IC a.s.
Hence,M- limLαG̃n(ω) = LαIcoX for every α ∈ (0, 1], a.s., that is,M- lim G̃n(ω) = IcoX

a.s.
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