
J. Math. Anal. Appl. 521 (2023) 126896
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

The Hsu–Robbins–Erdös theorem for the maximum partial sums 

of quadruplewise independent random variables
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Etemadi (1981) [10] and Rio (1995) [27] provided proofs of the Kolmogorov–
Marcinkiewicz–Zygmund strong law of large numbers under optimal moment 
conditions without using the Kolmogorov-type maximal inequalities. While this 
famous result holds for sequences of pairwise independent identically distributed 
real-valued random variables, a closely related result, the Hsu–Robbins–Erdös 
strong law of large numbers may fail if the underlying random variables are only 
assumed to be pairwise independent identically distributed. This note develops Rio’s 
method and uses an approximation technique to establish the Hsu–Robbins–Erdös 
strong law of large numbers for the maximum partial sums of quadruplewise 
independent identically distributed random variables. We consider random variables 
taking values in a real separable Banach space X , but the main result is new even 
when X is the real line. Previous contributions so far considered the complete 
convergence of the partial sums or restricted to dependence structures satisfying 
a Kolmogorov-type maximal inequality.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction and the main result

The concept of complete convergence was introduced by Hsu and Robbins [14]. A sequence {Xn, n ≥ 1}
of random variables is said to converge completely to a random variable X if

∞∑
n=1

P (|Xn −X| > ε) < ∞ for all ε > 0.

Let {Xn, n ≥ 1} be a sequence of independent identically distributed (i.i.d.) random variables. The so-called 
Hsu–Robbins–Erdös strong law of large numbers (SLLN) provides the necessary and sufficient conditions 
for complete convergence of the sample means (X1 + · · ·+Xn)/n, n ≥ 1. The sufficiency was proved by Hsu 
and Robbins [14] and the necessity was proved by Erdös [9].
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Proposition 1.1 (Hsu and Robbins [14] and Erdös [9]). Let {Xn, n ≥ 1} be a sequence of i.i.d. random 
variables. Then

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣ > εn

)
< ∞ for all ε > 0 (1.1)

if and only if

E(X1) = 0, E(X2
1 ) < ∞. (1.2)

Let k ≥ 2 be a given integer. A sequence {Xn, n ≥ 1} is said to be k-tuplewise independent if for every 
choice of k distinct positive integers i1, . . . , ik, the random variables Xi1 , . . . , Xik are independent. For the 
case where k = 2, we say that the sequence {Xn, n ≥ 1} is pairwise independent. The term “k-tuplewise 
independence” is also expressed as “triplewise independence” and “quadruplewise independence” for the case 
where k = 3 and k = 4, respectively. It is worth noting that “k-tuplewise independence” is an important 
concept in probability and statistics [11,18] and has many applications in algorithm design and computer 
science [3,19,24]. For example, in [24], Peled et al. discussed, inter alia, the important role of “k-tuplewise 
independence” in computer science by giving examples in which k-tuplewise independent distributions are 
used for derandomization.

On the limit theorems in probability, an interesting research direction is to know if the fundamental 
limit theorems such as the laws of large numbers and the central limit theorems fail or hold under “k-
tuplewise independence” (see, e.g., [7,10,27,30] and the references therein). While the classical Kolmogorov–
Marcinkiewicz–Zygmund SLLN still holds for sequences of pairwise independent identically distributed 
(p.i.i.d.) random variables (see Etemadi [10] and Rio [27]), it was pointed out by Szynal [30] that the 
Hsu–Robbins–Erdös SLLN can fail if the independence assumption is weakened to pairwise independence. 
Szynal [30] also proved that for a sequence {Xn, n ≥ 1} of quadruplewise independent identically distributed 
(q.i.i.d.) random variables, condition (1.2) implies (1.1). Since (1.1) does not involve the maximum partial 
sums, the usual proofs of the sufficiency would be carried out without using Kolmogorov-type maximal 
inequalities. On the other hand, under the quadruplewise independence assumption, it is not clear how can 
one prove the necessity. Szynal’s result, therefore, raises a natural question: Under the q.i.i.d. setting, is 
(1.2) necessary and sufficient for

∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
Xi

∣∣∣∣∣ > εn

)
< ∞ for all ε > 0?

In the present paper, by using a totally different approach which is based on Rio’s method [27] and an 
approximation technique, we establish the Hsu–Robbins–Erdös SLLN for the maximum partial sums of 
q.i.i.d. random variables, thereby giving a positive answer to this question.

The Hsu–Robbins–Erdös SLLN for Banach space-valued random variables was studied by many authors, 
see, e.g., [15,16,21] and the references therein, but only few of them consider complete convergence for 
maximal normed partial sums which is of special interest. The aforementioned works are often connected 
with various geometric conditions on the Banach space [15,16], and often dealt with independent random 
variables or martingales [15,16,21]. For the case of real-valued random variables, previous contributions so 
far considered complete convergence of the partial sums or restricted to dependence structures satisfying 
a maximal inequality, see, e.g., [13,21,25,26,34]. Some of these works considered the problem for random 
fields (see, e.g., Gut and Stadtmüller [13], Peligrad and Gut [25]). We also refer to Section 11, Chapter 6 of 
monograph [12] for an excellent survey on results and methods concerning complete convergence for the i.i.d. 
case. To our best knowledge, there is no work in the literature that establishes the Hsu–Robbins–Erdös SLLN 



L.V. Thành / J. Math. Anal. Appl. 521 (2023) 126896 3
for the maximum partial sums under optimal moment conditions without using maximal inequalities or a 
general Rosenthal-type inequality. On the other hand, for processes that do not enjoy a maximal inequality, 
it is a challenge to prove limit theorems for the maximum partial sums, and usually further conditions 
have to be assumed. For example, when dealing with weighted sums of ϕ-mixing sequences with arbitrary 
mixing rate, Chen and Sung [8] recently imposed a strong condition on the weights to obtain a weighted 
Marcinkiewicz–Zygmund-type SLLN. In this line of research, Wu et al. [34] required a stronger moment 
condition of the random variables comparing to the one of the cases where a maximal inequality is available 
(see Theorems 3.1–3.3 in [34]). By applying Lemmas 2.4 and 2.5 of Chen and Sung [8] and techniques in 
the proof of Theorem 2.2, we can show that the Hsu–Robbins SLLN holds for ϕ-mixing sequences under an 
optimal moment condition without any assumptions on the mixing rate.

The following theorem is the main result of the paper. It is new even when the underlying Banach space 
is the real line.

Theorem 1.2. Let {Xn, n ≥ 1} be a sequence of q.i.i.d. random variables taking values in a real separable 
Banach space X . Then

∞∑
n=1

P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
Xi

∥∥∥∥∥ > nε

)
< ∞ for all ε > 0 (1.3)

if and only if

E(X1) = 0, E‖X1‖2 < ∞. (1.4)

We note that in Theorem 1.2, no geometric conditions are imposed on the Banach space. Our proof 
of Theorem 1.2 is completely different from that of the aforementioned works. Firstly, we develop Rio’s 
method [27] to prove the Hsu–Robbins–Erdös SLLN for general dependent real-valued random variables 
with regularly varying normalizing sequences without using the maximal inequalities. Then, we apply an 
approximation technique to deal with the underlying Banach space-valued random variables. The proof of 
Theorem 1.2 is presented in Section 3.

The Marcinkiewicz–Zygmund SLLN with regularly varying normalizing sequences was studied in [4] by 
using a Kolmogorov-type maximal inequality. Let ρ ∈ R. A real-valued function R(·) is said to be regularly 
varying (at infinity) with index of regular variation ρ if it is a positive and measurable function on [A, ∞)
for some A ≥ 0, and for each λ > 0,

lim
x→∞

R(λx)
R(x) = λρ.

A regularly varying function with the index of regular variation ρ = 0 is called slowly varying (at infinity). 
We refer to Bingham et al. [5], Jessen and Mikosch [17] for definition, properties of regularly varying functions 
and their important role in probability and analysis.

Let L(·) be a slowly varying function. By Theorem 1.5.13 in Bingham et al. [5], there exists a slowly 
varying function L̃(·), unique up to asymptotic equivalence, satisfying

lim
x→∞

L(x)L̃ (xL(x)) = 1 and lim
x→∞

L̃(x)L
(
xL̃(x)

)
= 1. (1.5)

The function L̃ is called the de Bruijn conjugate of L (see p. 29 in Bingham et al. [5]). Bojanić and Seneta 
[6] showed that for most of “nice” slowly varying functions, we can choose (up to asymptotic equivalence) 
L̃(x) = 1/L(x). Especially, if L(x) = logγ x or L(x) = logγ(log x) for some γ ∈ R, then L̃(x) = 1/L(x).
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Notation. Throughout this paper, C denotes a generic constant (0 < C < ∞) which is not necessarily 
the same one in each appearance. For a set S, 1(S) denotes the indicator function of S, and |S| denotes the 
cardinality of S. For x ≥ 0, log x denotes the natural logarithm (base e) of max{x, e}. For a slowly varying 
function L(·) defined on [0, ∞), we denote the Brujin conjugate of L(·) by L̃(·).

General assumptions on slowly varying functions. By using a suitable asymptotic equivalence version (see 
Lemma 2.2 and Lemma 2.3 (i) in Anh et al. [4]), we can assume in this paper, without loss of generality, 
that every slowly varying function L(·) is continuous on [0, ∞), differentiable on [a, ∞) for some large a, 
and xαL(x) is strictly increasing on [0, ∞) and x−αL(x) is strictly decreasing on [0, ∞) for all α > 0.

2. The Hsu–Robbins–Erdös SLLN for dependent real-valued random variables: regularly varying 
normalizing sequences

In this section, we establish the Hsu–Robbins–Erdös SLLN for real-valued random variables with regu-
larly varying normalizing sequences. We consider a dependence structure which is much more general than 
quadruplewise independence, defined as follows:

Condition (H). A family of random variables {Xλ, λ ∈ Λ} is said to satisfy Condition (H) if for all finite 
subset I ⊂ Λ and for all family of nondecreasing functions {fλ, λ ∈ I} with E(fλ(Xλ)) = 0 for all λ ∈ I, 
there exists a finite constant C0 such that

E

(∑
λ∈I

fλ(Xλ)
)4

≤ C0

(
|I|max

λ∈I
E
(
f4
λ(Xλ)

)
+ |I|2 max

λ∈I

(
E
(
f2
λ(Xλ)

))2) (2.1)

provided the expectations are finite.
It is easy to see that quadruplewise independent random variables satisfy Condition (H). This condition 

is also fulfilled for many other weak dependence structures, including m-extended negative dependence (Wu 
and Wang [33, Lemma 3.3]), and various mixing processes such as ϕ-mixing (Chen and Sung [8, Lemma 2.4]), 
ρ∗-mixing (Peligrad and Gut [25, Theorem 1]), ρ-mixing (Shao [29, Theorem 1.1]), and others. Recently, Wu 
et al. [34] established various strong limit theorems for weighted sums by assuming very general conditions 
which are much stronger than (2.1) (see Equations (1) and (2) in [34]). Especially, the dependence structures 
assumed by Wu et al. [34] are not fulfilled for quadruplewise independent random variables. Also, for non-
identical distributed ρ-mixing random variables with mixing rate 

∑∞
n=1 ρ

1/2(2n) < ∞, Condition (H) is 
satisfied (see Theorem 1.1 of Shao [29]) while, as far as we know, there is no available Rosenthal-type 
inequality for such processes to guarantee the dependence structures assumed in [34] (see also [34, Remark 
1.1]).

Remark 2.1. The Referee so kindly brought to our attention an interesting dependence structure so-called 
multiplicative orthogonal system which is much weaker than independence. A sequence {Xn, n ≥ 1} of 
random variables is said to be a multiplicative orthogonal system (see, e.g., Alexits and Sharma [2]) if

E (Xi1Xi2 · · ·Xim) = 0

for any m ≥ 1 and for every choice of distinct positive integers i1, . . . , im. A sequence {Xn, n ≥ 1} of random 
variables is said to be a strongly multiplicative orthogonal system (Alexits [1]) if

E
(
Xr1

i1
Xr2

i2
· · ·Xrm

im

)
= 0

for any m ≥ 1 and for every choice of distinct positive integers i1, . . . , im, rk = 1 or 2 and at least one rk = 1. 
We refer to [1,2,22] for sequences of multiplicative orthogonal and strongly multiplicative orthogonal random 
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variables which are not independent. Some fundamental limit theorems hold for strongly multiplicative 
orthogonal systems such as the Khintchine–Kolmogorov convergence theorem (Alexits [1, Theorem 1]), the 
central limit theorem and the (weak form of) the law of the iterated logarithm (Móricz [22, Theorems 5 
and 6]). Following Szynal [30, Definition 2], we say that a sequence {Xn, n ≥ 1} of random variables is a 
quadruple-wise strongly multiplicative orthogonal system if

E
(
Xr1

i1
Xr2

i2
Xr3

i3
Xr4

i4

)
= 0

for every i1 < i2 < i3 < i4, rk = 0, 1, or 2 and at least one element of rk is 1. It is clear that if {Xn, n ≥ 1}
is a sequence of pairwise independent and quadruple-wise strongly multiplicative orthogonal mean random 
variables, then we have (see the proof of Theorem 3 in Szynal [30])

E

(∑
λ∈I

Xλ

)4

≤ C

(
|I|max

λ∈I
EX4

λ + |I|2 max
λ∈I

(
EX2

λ

)2)

for any finite set I ⊂ {1, 2, . . .} provided the expectations are finite. In order to ensure that Condition (H)
is fulfilled, we would have to require that the sequence {fn(Xn), n ≥ 1} is also a quadruple-wise strongly 
multiplicative orthogonal system for all non-decreasing function fn, n ≥ 1. It would be interesting to find 
non-trivial sequences of random variables satisfying this requirement. �

The main result of this section is the following theorem. This is new even when L(x) ≡ L̃(x) ≡ 1.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of identically distributed random variables satisfying Condition 
(H). Let L(·) be a slowly varying function satisfying L(x) ≥ 1 for all x ≥ 0. Then

∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
Xi

∣∣∣∣∣ > εnL̃(n)
)

< ∞ for all ε > 0 (2.2)

if and only if

E(X1) = 0 and E
(
X2

1L
2(|X1|)

)
< ∞. (2.3)

A family of random variables {Xλ, λ ∈ Λ} is said to be stochastically dominated by a random variable X
if

sup
λ∈Λ

P (|Xλ| > t) ≤ P (|X| > t), for all t ∈ R. (2.4)

For all r, b > 0 and λ ∈ Λ, it follows from integration by parts and (2.4) that

E(|Xλ|r1(|Xλ| > b)) ≤ E(|X|r1(|X| > b)), (2.5)

and

E (|Xλ|r1(|Xλ| ≤ b)) ≤ E (|X|r1(|X| ≤ b)) + brP (|X| > b). (2.6)

We will use (2.5) and (2.6) in the proofs without further mention. The sufficiency part of Theorem 2.2
follows from the following general proposition.
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Proposition 2.3. Let {Xn, n ≥ 1} be a sequence of random variables satisfying Condition (H). Let L(·) be 
a slowly varying function satisfying L(x) ≥ 1 for all x ≥ 0. Assume that {Xn, n ≥ 1} is stochastically 
dominated by a random variable X. If

E
(
X2L2(|X|)

)
< ∞, (2.7)

then

∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
(Xi − E(Xi))

∣∣∣∣∣ > εnL̃(n)
)

< ∞ for all ε > 0. (2.8)

Proof. Since {X+
n , n ≥ 1} and {X−

n , n ≥ 1} satisfy the assumptions of the theorem, we can assume, without 
loss of generality, that Xn ≥ 0 for all n ≥ 1. For n ≥ 1, set bn = nL̃(n),

Xi,n = Xi1(Xi ≤ bn) + bn1(Xi > bn), 1 ≤ i ≤ n, (2.9)

and

Yi,m =
(
Xi,2m −Xi,2m−1

)
− E

(
Xi,2m −Xi,2m−1

)
, m ≥ 1, i ≥ 1. (2.10)

It is easy to see that (2.8) is equivalent to

∞∑
n=1

2nP
(

max
1≤j<2n

∣∣∣∣∣
j∑

i=1
(Xi − E(Xi))

∣∣∣∣∣ > εb2n

)
< ∞ for all ε > 0. (2.11)

Using argument as in Rio [27, Proposition 1] (see also the proof of Theorem 1 in Thành [31]), the proof of 
(2.11) will be completed if we can show that

∞∑
n=1

2nP
(

max
1≤j<2n

∣∣∣∣∣
j∑

i=1
(Xi,2n − EXi,2n)

∣∣∣∣∣ > εb2n

)
< ∞ for all ε > 0. (2.12)

For m ≥ 0, set S0,m = 0 and

Sj,m =
j∑

i=1
(Xi,2m − E (Xi,2m)), j ≥ 1.

Then (see [31, Equation (28)])

max
1≤j<2n

|Sj,n| ≤
n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
k2m+2m−1∑
i=k2m+1

(
Xi,2m−1 − E(Xi,2m−1)

)∣∣∣∣∣∣
+

n∑
m=1

max
0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ +
n∑

m=1
2m+1E (|X|1(|X| > b2m−1)) .

(2.13)

It follows from Toeplitz’s lemma, (2.7), and the Lebesgue dominated convergence theorem that

lim
∑n

m=1 2m+1E (|X|1(|X| > b2m−1))
= 0. (2.14)
n→∞ b2n
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By using (2.13) and (2.14), to prove (2.12), it remains to show that

∞∑
n=1

2nP

⎛
⎝ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
k2m+2m−1∑
i=k2m+1

(
Xi,2m−1 − E(Xi,2m−1)

)∣∣∣∣∣∣ > εb2n

⎞
⎠ < ∞ for all ε > 0, (2.15)

and

∞∑
n=1

2nP

⎛
⎝ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ > εb2n

⎞
⎠ < ∞ for all ε > 0. (2.16)

Let ε1 > 0 be arbitrary, let a and b be constants satisfying

a + b = 1, 0 < b < 1/4, (2.17)

and let

λm,n = ε12bm2anL̃(2n), n ≥ 1, 1 ≤ m ≤ n. (2.18)

Then

n∑
m=1

λm,n ≤ 2bε1b2n

2b − 1 := C1(b)ε1b2n . (2.19)

Therefore

P

⎛
⎝ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ ≥ C1(b)ε1b2n

⎞
⎠ ≤

n∑
m=1

P

⎛
⎝ max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ ≥ λm,n

⎞
⎠

≤
n∑

m=1
λ−4
m,nE

⎛
⎝ max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣
⎞
⎠

4

≤
n∑

m=1
λ−4
m,n

2n−m−1∑
k=0

E

⎛
⎝ (k+1)2m∑

i=k2m+1

Yi,m

⎞
⎠

4

≤ C0

n∑
m=1

λ−4
m,n

2n−m−1∑
k=0

(
2m max

k2m+1≤i≤(k+1)2m
EY 4

i,m + 22m max
k2m+1≤i≤(k+1)2m

(
EY 2

i,m

)2)
,

(2.20)

where we have applied (2.19) in the first inequality, Markov’s inequality in the second inequality, (2.1) in 
the last inequality. By (2.9) and (2.10), we have

Yi,m ≤ (Xi − b2m−1)1(b2m−1 < Xi ≤ b2m) + (b2m − b2m−1)1(Xi > b2m−1)

≤ b2m1(Xi > b2m−1), m ≥ 1, i ≥ 1.

Since {Xn, n ≥ 1} is stochastically dominated by X with E(X2L2(|X|)) < ∞ and L(x) ≥ 1 for all x ≥ 0, it 
thus follows that

sup EY 2
i,m ≤ E(X2) < ∞, (2.21)
i≥1,m≥1



8 L.V. Thành / J. Math. Anal. Appl. 521 (2023) 126896
and

sup
i≥1

EY 4
i,m ≤ b42mP (|X| > b2m−1), m ≥ 1. (2.22)

Combining (2.20)–(2.22) yields

P

⎛
⎝ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ ≥ C1(b)ε1b2n

⎞
⎠ ≤ C

n∑
m=1

λ−4
m,n2n

(
b42mP (|X| > b2m−1) + 2m

)
. (2.23)

By applying Lemmas A.1 and A.2, we have from (2.23), (2.17)–(2.18), and (2.7) that

∞∑
n=1

2nP

⎛
⎝ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣∣
(k+1)2m∑
i=k2m+1

Yi,m

∣∣∣∣∣∣ ≥ C1(b)ε1b2n

⎞
⎠

≤ C
∞∑

n=1
22n

(
2−4anL̃−4(2n)

n∑
m=1

24m(1−b)L̃4(2m)P (|X| > b2m−1) + 2−4anL̃−4(2n)
n∑

m=1
2m(1−4b)

)

≤ C

∞∑
m=1

( ∞∑
n=m

2n(2−4a)L̃−4(2n)
)

24m(1−b)L̃4(2m)P (|X| > b2m−1) + C

∞∑
n=1

2−nL̃−4(2n)

≤ C

( ∞∑
m=1

22mP (|X| > b2m−1) + 1
)

≤ C
(
E(X2L2(|X|)) + 1

)
< ∞

thereby proving (2.16) since ε1 > 0 is arbitrary. By using a similar argument, we obtain (2.15). The proof 
of the proposition is completed. �
Remark 2.4.

(i) By using Theorem 1 of Shao [29], Proposition 2.3 holds for ρ-mixing sequences with mixing rate ∑∞
n=1 ρ

1/2(2n) < ∞.
(ii) Along the same lines as the proof of Proposition 2.3, and by using Lemmas 2.4 and 2.5 of Chen and 

Sung [8], we see that Proposition 2.3 holds for ϕ-mixing sequences without any further requirements on 
the mixing rate. �

The following technical result is used in the proof of the necessity part of Theorem 2.2 and may be of 
independent interest. The proof is presented in the Appendix. When the random variables are m-extended 
negatively dependent, a related result was recently established by Wu and Wang [33, Lemma 3.5].

Proposition 2.5. Let {Ai, 1 ≤ i ≤ n} be events and let ξi = 1(Ai) − P (Ai), 1 ≤ i ≤ n. If there exist a 
positive integer r and a positive constant C1 such that

E

(
n∑

ξi

)2r

≤ C1 max
{

n∑
P (Ai),

(
n∑

P (Ai)
)r}

, (2.24)

i=1 i=1 i=1
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then (
1 − P

(
n⋃

i=1
Ai

))2 n∑
i=1

P (Ai) ≤ C2P

(
n⋃

i=1
Ai

)
, (2.25)

where C2 is a positive constant depending only on r and C1.

Proof of Theorem 2.2. The sufficiency part follows immediately from Proposition 2.3. We now prove the 
necessity part. Assume that (2.2) holds. Then

lim
n→∞

max1≤k≤n

∣∣∣∑k
i=1 Xi

∣∣∣
nL̃(n)

= 0 almost surely (a.s.), (2.26)

and so

lim
n→∞

max1≤i≤n |Xi|
nL̃(n)

= lim
n→∞

max1≤i≤n

(
X+

i + X−
i

)
nL̃(n)

= 0 a.s. (2.27)

This implies

lim
n→∞

P

(
n⋃

i=1

(
X+

i > nL̃(n)
))

= lim
n→∞

P

(
max

1≤i≤n
X+

i > nL̃(n)
)

= 0. (2.28)

For fixed n, let

Ai = (X+
i > nL̃(n)), and ξi = 1(X+

i > nL̃(n)) − P (X+
i > nL̃(n)), 1 ≤ i ≤ n.

Since the sequence {Xn, n ≥ 1} satisfies Condition (H) and P (A1) = · · · = P (An), (2.24) holds for r = 2. 
Applying Proposition 2.5, we have

(
1 − P

(
max
k≤n

X+
k > nL̃(n)

))2 n∑
k=1

P (X+
k > nL̃(n)) ≤ CP

(
max
k≤n

X+
k > nL̃(n)

)
. (2.29)

It follows from (2.28) and (2.29) that there exists n0 such that

nP (X+
1 > nL̃(n)) =

n∑
k=1

P (X+
k > nL̃(n))

≤ CP

(
max
k≤n

X+
k > nL̃(n)

) (2.30)

whenever n ≥ n0. Combining (2.2) and (2.30) yields

∑
n≥1

nP (X+
1 > nL̃(n)) ≤ C + C

∑
n≥n0

P

(
max
k≤n

X+
k > nL̃(n)

)

≤ C + C
∑
n≥n0

P

(
max
k≤n

|Xk| > nL̃(n)
)

≤ C + C
∑
n≥n0

P

(
2 max

k≤n

∣∣∣∣∣
k∑

i=1
Xi

∣∣∣∣∣ > nL̃(n)
)

< ∞.

(2.31)
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By using the same arguments, we also have
∑
n≥1

nP (X−
1 > nL̃(n)) < ∞. (2.32)

Combining (2.31) and (2.32) yields

∑
n≥1

nP (|X1|/2 > nL̃(n)) ≤
∑
n≥1

nP (X+
1 > nL̃(n)) +

∑
n≥1

nP (X−
1 > nL̃(n)) < ∞. (2.33)

Applying Lemma A.2 with p = 2 and α = 1, we have from (2.33) that E 
(
|X1|2L2 (|X1|)

)
< ∞, i.e., the 

second half of (2.3) is satisfied.
From the second half of (2.3), we can apply Proposition 2.3 to obtain

lim
n→∞

(∑n
i=1 Xi

nL̃(n)
− E(X1)

L̃(n)

)
= 0 a.s. (2.34)

On the other hand, we have from (2.2) that

lim
n→∞

∑n
i=1 Xi

nL̃(n)
= 0 a.s. (2.35)

From (1.5) and the assumption that L(x) ≥ 1 for all x ≥ 0, we have L̃−1(n) ∼ L(nL̃(n)) ≥ 1. It thus follows 
from (2.34) and (2.35) that E(X1) = 0, i.e., the first half of (2.3) is satisfied. �
3. Proof of Theorem 1.2

In this section, we will present the proof of Theorem 1.2. An open problem is also discussed.

Proof of Theorem 1.2. Firstly, we prove the sufficiency. Assume that (1.4) holds. Let ε > 0 be arbitrary. 
By [20, p. 42], there exists a compact subset K of X such that

sup
n≥1

E‖Xn‖1(Xn /∈ K) = E‖X1‖1(X1 /∈ K) < ε/6. (3.1)

For n ≥ 1, set

Vn = Xn1(Xn ∈ K), Wn = Xn1(Xn /∈ K).

By (3.1), we have

n∑
i=1

E ‖Wi‖ ≤ εn/6, n ≥ 1. (3.2)

Since Vi takes values in K ∪ {0} for all i ≥ 1, there exist a finite set {x1, . . . , xt} ⊂ K and Borel subsets 
{A1, . . . , At} of X such that (see, e.g., [23, Lemma 1])

∥∥∥∥∥Vi −
t∑

r=1
xr1(Vi ∈ Ar)

∥∥∥∥∥ < ε/6 for all i ≥ 1. (3.3)

Set
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Yi =
t∑

r=1
xr1(Vi ∈ Ar), i ≥ 1.

It follows from (3.3) that for all n ≥ 1,

n∑
i=1

‖Vi − Yi‖ ≤ εn/6 (3.4)

and so

n∑
i=1

E ‖Vi − Yi‖ ≤ εn/6. (3.5)

Combining (3.2), (3.4), (3.5), and noting that E(Xi) ≡ 0, we have

∞∑
n=1

P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
Xi

∥∥∥∥∥ > εn

)
≤

∞∑
n=1

P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Wi − EWi)

∥∥∥∥∥ > εn/2
)

+
∞∑

n=1
P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Vi − EVi)

∥∥∥∥∥ > εn/2
)

≤
∞∑

n=1
P

(
n∑

i=1
(‖Wi‖ + E‖Wi‖) > εn/2

)

+
∞∑

n=1
P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Yi − EYi)

∥∥∥∥∥ > εn/6
)

≤
∞∑

n=1
P

(
n∑

i=1
(‖Wi‖ − E‖Wi‖) > εn/6

)

+
∞∑

n=1
P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Yi − EYi)

∥∥∥∥∥ > εn/6
)
.

(3.6)

Noting that E (‖W1‖ − E‖W1‖)2 ≤ 4E (‖W1‖)2 ≤ 4E (‖X1‖)2 < ∞. Applying Proposition 2.3 for L(x) ≡ 1
and for the sequence of q.i.i.d. real-valued random variables {‖Wn‖ − E‖Wn‖, n ≥ 1}, we obtain

∞∑
n=1

P

(
n∑

i=1
(‖Wi‖ − E‖Wi‖) > εn/6

)
< ∞. (3.7)

Set

A(n)
r = (Vn ∈ Ar), 1 ≤ r ≤ t, n ≥ 1.

For all n ≥ 1, we have

P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Yi − EYi)

∥∥∥∥∥ > εn/6
)

= P

(
max

1≤k≤n

∥∥∥∥∥
k∑ t∑

xr(1(A(i)
r ) − P (A(i)

r ))

∥∥∥∥∥ > εn/6
)

(3.8)

i=1 r=1
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≤ P

(
t∑

r=1
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
xr(1(A(i)

r ) − P (A(i)
r ))

∥∥∥∥∥ > εn/6
)

≤
∑

‖xr‖	=0

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
(1(A(i)

r ) − P (A(i)
r ))

∣∣∣∣∣ > εn

6t‖xr‖

)
.

For each 1 ≤ r ≤ t with ‖xr‖ �= 0, applying Proposition 2.3 for the sequence of q.i.i.d. random variables 
{1(A(n)

r ) − E1(A(n)
r ), n ≥ 1}, we obtain

∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
(1(A(i)

r ) − P (A(i)
r ))

∣∣∣∣∣ > εn

6t‖xr‖

)
< ∞. (3.9)

Combining (3.8) and (3.9) yields

∞∑
n=1

P

(
max

1≤k≤n

∥∥∥∥∥
k∑

i=1
(Yi − EYi)

∥∥∥∥∥ > εn/6
)

< ∞. (3.10)

The conclusion (1.3) follows from (3.6), (3.7) and (3.10).
By proceeding in a similar manner as the proof of the necessity part of Theorem 2.2 with noting that 

the events (‖Xi‖ > n), 1 ≤ i ≤ n are quadruplewise independent for each n ≥ 1, we obtain the necessity 
part of Theorem 1.2. �
Remark 3.1. While no geometric conditions are imposed on the Banach space in Theorem 1.2, it is well 
known that the Marcinkiewicz–Zygmund SLLN for i.i.d. Banach space-valued random variables may fail if 
the Banach space is not of Rademacher type p, 1 < p < 2. It is an open problem as to whether or not the 
Marcinkiewicz–Zygmund SLLN holds for pairwise i.i.d. random variables taking values in a Rademacher 
type p Banach space. We expect that the techniques developed in this paper may help to shed some light 
on solving this problem.

4. On the stochastic domination condition

The stochastic domination condition is an extension of the identical distribution condition. In [32, The-
orem 2.6] and [28, Theorem 2.5], it was shown that bounded moment type conditions on a family of 
random variables can accomplish stochastic domination. Based on Theorem 2.6 in [32] and Proposition 2.3, 
we have the following result. Proposition 4.1 provides an almost optimal moment condition for the Hsu–
Robbins–Erdös SLLN. Hereafter, for x ≥ 0, and for a fixed positive integer ν, we let

logν(x) := (log x)(log log x) . . . (log · · · log x), (4.1)

and

log(2)
ν (x) := (log x)(log log x) . . . (log · · · log x)2, (4.2)

where in both (4.1) and (4.2), there are ν factors. For example, log2(x) = (log x)(log log x), log(2)
3 (x) =

(log x)(log log x)(log log log x)2, and so on.

Proposition 4.1. Let {Xn, n ≥ 1} be a sequence of random variables satisfying Condition (H). Let L(·) be a 
slowly varying function satisfying L(x) ≥ 1 for all x ≥ 0, and let ν be a fixed positive integer. If
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sup
n≥1

E
(
X2

nL
2(|Xn|) log(2)

ν (|Xn|)
)
< ∞, (4.3)

then

∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
(Xi − E(Xi))

∣∣∣∣∣ > εnL̃(n)
)

< ∞. (4.4)

Proof. By using a similar argument to that of Theorem 2.6 in [32] (see Theorem 2.5 (iii) in [28] for a 
slightly weaker version), it follows from (4.3) that there exists a nonnegative random variable X such that 
{Xn, n ≥ 1} is stochastically dominated by X and

E
(
X2L2(X)

)
< ∞. (4.5)

By applying Proposition 2.3, (4.4) follows from (4.5). �
The following simple example, however, shows that in the Banach space-valued case, even for independent 

and bounded random variables, we cannot weaken the identical distribution condition to the stochastic 
domination condition in Theorem 1.2. To see this, consider the real separable Banach space 
1 consisting of 
absolutely summable real sequences v = {vk, k ≥ 1} with norm ‖v‖ =

∑∞
k=1 |vk|. Let v(k) denote the element 

of 
1 having 1 in its kth position and 0 elsewhere, k ≥ 1. Let {Xn, n ≥ 1} be a sequence of independent 
random variables in 
1 by requiring the {Xn, n ≥ 1} to be independent with

P
(
Xn = v(n)

)
= P

(
Xn = −v(n)

)
= 1

2 , n ≥ 1.

Then Xn, n ≥ 1 are not identically distributed but are stochastically dominated by ‖X1‖ and

sup
n≥1

‖Xn‖ ≤ 1 a.s.

Note that (1.4) holds but (1.3) fails since for all n ≥ 1,

max1≤k≤n ‖
∑k

i=1 Xi‖
n

≥ ‖
∑n

i=1 Xi‖
n

= n

n
= 1 a.s.

Comparing with the necessary and sufficient condition (2.3) in the Theorem 2.2, we see that (4.3) is 
nearly optimal for (4.4) to hold. Moreover, in view of Example 4.3 in [28], we conjecture that, even for the 
independence case, (4.3) is almost impossible to improve in the sense that Corollary 4.1 may fail if (4.3) is 
weakened to

sup
n≥1

E
(
X2

nL
2(|Xn|) logν(|Xn|)

)
< ∞.

We formulate the case L(x) ≡ 1 as follows.

Conjecture 4.2. Let ν be a fixed positive integer. Then there exists a sequence {Xn, n ≥ 1} of independent 
real-valued random variables satisfying

sup
n≥1

E
(
X2

n logν(|Xn|)
)
< ∞,

and
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∞∑
n=1

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1
(Xi − E(Xi))

∣∣∣∣∣ > εn

)
= ∞

for some ε > 0.
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Appendix A

In this section, we will present two technical lemmas and the proof of Proposition 2.5.
The first lemma is a direct consequence of Karamata’s theorem (see Proposition 1.5.10 in Bingham et 

al. [5]).

Lemma A.1. Let 0 < a < 1, b ≥ 1, and let L(·) be a slowly varying function. Then

∞∑
k=n

akL(bk) ≤ CanL(bn).

The following lemma gives simple criteria for E (|X|pLp(|X|)) < ∞, and its proof is standard (see, e.g., 
Lemma 4 in Thành [31]).

Lemma A.2. Let p ≥ 1, αp ≥ 1, and X be a random variable. Let L(x) be a slowly varying function defined 
on [0, ∞), and bn = nαL̃ (nα), n ≥ 1. Assume that x1/αL1/α(x) and xαL̃(xα) are strictly increasing on 
[A, ∞) for some A > 0. Then E (|X|pLp(|X|)) < ∞ if and only if either

∞∑
n=1

nαp−1P (|X| > bn) < ∞,

or

∞∑
n=1

2nαpP (|X| > b2n−1) < ∞.

Finally, we present the proof of Proposition 2.5.
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Proof of Proposition 2.5. Let A =
⋃n

i=1 Ai. We only need to prove the proposition for the case p := P (A) <
1 since (2.25) is trivial otherwise. Applying Hölder’s inequality and (2.24), we have

(1 − p)
n∑

i=1
P (Ai) = E

(
1 (A)

n∑
i=1

ξi

)

≤ (E (1(A)))(2r−1)/(2r)

⎛
⎝E

(
n∑

i=1
ξi

)2r
⎞
⎠

1/(2r)

≤ C
1/(2r)
1 p(2r−1)/(2r) max

⎧⎨
⎩
(

n∑
i=1

P (Ai)
)1/(2r)

,

(
n∑

i=1
P (Ai)

)1/2
⎫⎬
⎭ .

(A.1)

Since 0 ≤ p < 1, (A.1) implies

(1 − p)
n∑

i=1
P (Ai) ≤ max

⎧⎨
⎩
(

(C2p)2r−1
n∑

i=1
P (Ai)

)1/(2r)

,

(
C2p

n∑
i=1

P (Ai)
)1/2

⎫⎬
⎭ , (A.2)

where C2 = max{1, C1/r
1 }. By applying the Cauchy–Schwarz inequality, we have

(
(C2p)2r−1

n∑
i=1

P (Ai)
)1/(2r)

≤ 1
2r

(
(2r − 1)C2p

(1 − p)1/(2r−1) + (1 − p)
n∑

i=1
P (Ai)

)
, (A.3)

and
(
C2p

n∑
i=1

P (Ai)
)1/2

≤ 1
2

(
C2p

(1 − p) + (1 − p)
n∑

i=1
P (Ai)

)
. (A.4)

By using (A.2)–(A.4), and elementary computations, we have

(1 − p)
n∑

i=1
P (Ai) ≤ max

{
C2p

(1 − p)1/(2r−1) ,
C2p

1 − p

}
= C2p

1 − p
(A.5)

thereby proving (2.25). �
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