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Lê Vǎn Thành

Department of Mathematics, Vinh
University, Nghe An, Vietnam

Correspondence
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Abstract
Li, Qi, and Rosalsky (Trans. Amer. Math. Soc., 368 (2016), no. 1, 539–561)
introduced a refinement of the Marcinkiewicz–Zygmund strong law of large
numbers (SLLN), the so-called (𝑝, 𝑞)-type SLLN, where 0 < 𝑝 < 2 and 𝑞 > 0.
They obtained sets of necessary and sufficient conditions for this new type SLLN
for two cases: 0 < 𝑝 < 1, 𝑞 > 𝑝, and 1 ≤ 𝑝 < 2, 𝑞 ≥ 1. Results for the case where
0 < 𝑞 ≤ 𝑝 < 1 and 0 < 𝑞 < 1 ≤ 𝑝 < 2 remain open problems. This paper gives a
complete solution to these problems.We consider randomvariables taking values
in a real separable Banach space𝐁, but the results are new evenwhen𝐁 is the real
line. Furthermore, the conditions for a sequence of random variables {𝑋𝑛, 𝑛 ≥ 1}

satisfying the (𝑝, 𝑞)-type SLLN are shown to provide an exact characterization of
stable type 𝑝 Banach spaces.

KEYWORDS
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1 INTRODUCTION ANDMAIN RESULTS

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of random variables defined on a probability space (Ω, , ℙ), and taking values in a real
separable Banach space 𝐁 with norm ‖ ⋅ ‖. Let 𝑛 = 𝜎(𝑋1, … , 𝑋𝑛), 𝑛 ≥ 1. The sequence {𝑋𝑛,𝑛, 𝑛 ≥ 1} is said to be a
quasimartingale (see, e.g., Pisier [21, p. 55]) if 𝔼(‖𝑋𝑛‖) < ∞ for all 𝑛 ≥ 1, and

∞∑
𝑛=1

𝔼(‖𝔼(𝑋𝑛+1|𝑛) − 𝑋𝑛‖) < ∞.

If the random variables are independent with mean zero, then it is easy to see that {(𝑋1 +⋯+ 𝑋𝑛)∕𝑛
𝛼,𝑛, 𝑛 ≥ 1}, 𝛼 > 0,

is a quasimartingale if and only if

∞∑
𝑛=1

𝔼(‖𝑋1 +⋯+ 𝑋𝑛‖)
𝑛1+𝛼

< ∞.

The study of limit theorems for random variables taking values in a Banach space is usually linked to the notion of
“type” of the space. We refer to Giné and Zinn [5], Hoffmann-Jørgensen and Pisier [8], Kuelbs and Zinn [10], Ledoux and
Talagrand [12], Marcus and Woyczyński [18], and Pisier [20] for definitions, equivalent characterizations, properties of a
Banach space being of Rademacher type 𝑝 or of stable type 𝑝, 1 ≤ 𝑝 ≤ 2.
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Assume that {𝑋, 𝑋𝑛, 𝑛 ≥ 1} is a sequence of independent identically distributed (i.i.d.) 𝐁-valued random variables, and
1 ≤ 𝑝 < 2. In order to answer the question “when is

{
(𝑋1 +⋯+ 𝑋𝑛)∕𝑛

1∕𝑝,𝑛, 𝑛 ≥ 1
}
a quasimartingale?” Henchner [6]

and Hechner and Heinkel [7] proved the following striking result. Here and thereafter, ln 𝑥 denotes the natural logarithm
of a positive real number 𝑥.

Proposition 1.1 (Henchner [6], Hechner and Heinkel [7]). Let 1 ≤ 𝑝 < 2 and {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. mean
zero 𝐁-valued random variables. Suppose that the Banach space 𝐁 is of stable type 𝑝. Then,

∞∑
𝑛=1

𝔼
(‖‖‖∑𝑛

𝑘=1
𝑋𝑘

‖‖‖)
𝑛1+1∕𝑝

< ∞ (1.1)

if and only if

⎧⎪⎨⎪⎩
𝔼(‖𝑋‖ ln(1 + ‖𝑋‖)) < ∞ if 𝑝 = 1,

∫
∞

0

ℙ1∕𝑝(‖𝑋‖ > 𝑡)d𝑡 < ∞ if 1 < 𝑝 < 2.

Motivated by the above result, Li, Qi, and Rosalsky [14, 15] provided conditions for

∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖∑𝑛

𝑘=1
𝑋𝑘

‖‖‖
𝑛1∕𝑝

⎞⎟⎟⎠
𝑞

< ∞ (1.2)

for 0 < 𝑝 < 2 and 𝑞 > 0. Clearly, (1.2) implies that

∞∑
𝑛=1

1

𝑛

(‖∑𝑛

𝑘=1
𝑋𝑘‖

𝑛1∕𝑝

)𝑞

< ∞ almost surely (a.s.). (1.3)

Li, Qi, and Rosalsky [15] proved that if (1.3) holds, then∑𝑛

𝑘=1
𝑋𝑘

𝑛1∕𝑝
⟶ 0 a.s., (1.4)

that is, the sequence {𝑋, 𝑋𝑛, 𝑛 ≥ 1} obeys the Marcinkiewicz–Zygmund strong law of large numbers (SLLN). It is well
known that if 1 ≤ 𝑝 < 2 and 𝐁 is of Rademacher type 𝑝, then (1.4) holds if and only if 𝔼(‖𝑋‖𝑝) < ∞ and 𝔼(𝑋) = 0 (see,
e.g., de Acosta [2]). For the case where 0 < 𝑞 < 𝑝 < 2, Li, Qi, and Rosalsky [15, Theorem 3] proved that (1.3) implies
∫ ∞

0
ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞, which is stronger than𝔼(‖𝑋‖𝑝) < ∞. Precisely, Li, Qi, and Rosalsky [15] proved the following

result.

Proposition 1.2 (Li, Qi, and Rosalsky [15]). Let 0 < 𝑝 < 2, 𝑞 > 0, and let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random
variables taking values in a real separable Banach space 𝐁. Then (1.2) is equivalent to (1.3) and

⎧⎪⎪⎨⎪⎪⎩
∫

∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞ if 𝑞 < 𝑝,

𝔼(‖𝑋‖𝑝 ln(1 + ‖𝑋‖)) < ∞ if 𝑞 = 𝑝,

𝔼(‖𝑋‖𝑞) < ∞ if 𝑞 > 𝑝.

(1.5)

Furthermore, each of (1.2) and (1.3) implies the Marcinkiewicz–Zygmund SLLN (1.4). For 0 < 𝑞 < 𝑝 < 2, (1.2) and (1.3) are
equivalent so that each of them implies that (1.4) and (1.5) hold.
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Motivated by the results in [7, 14, 15], Li, Qi, and Rosalsky [16] introduced an interesting type of SLLN as follows:

Definition 1.3 (Li, Qi, and Rosalsky [16]). Let 0 < 𝑝 < 2, 𝑞 > 0, and let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. 𝐁-random
variables. We say that 𝑋 satisfies the (𝑝, 𝑞)-type SLLN (and write 𝑋 ∈ SLLN(𝑝, 𝑞)) if (1.3) holds.

Li, Qi, and Rosalsky [16] obtained sets of necessary and sufficient conditions for 𝑋 ∈ SLLN(𝑝, 𝑞) for two cases: 0 <
𝑝 < 1, 𝑞 > 𝑝 and 1 ≤ 𝑝 < 2, 𝑞 ≥ 1 ([16, Theorems 2.1, 2.2 and 2.3]). For other cases, necessary and sufficient conditions for
𝑋 ∈ SLLN(𝑝, 𝑞) remain open problems even when𝐁 = ℝ as noted by Li, Qi, and Rosalsky [16, p. 541]. In this note, we give
a complete solution to these open problems by providing the necessary and sufficient conditions for the (𝑝, 𝑞)-type SLLN
for the remaining cases: 0 < 𝑞 ≤ 𝑝 < 1 and 0 < 𝑞 < 1 ≤ 𝑝 < 2. Our main results for the real-valued random variable case
can be summarized in the following theorem. In this paper, the indicator function of a set 𝐴 will be denoted by 𝟏(𝐴).

Theorem 1.4. Let 0 < 𝑝 < 2 and 𝑞 > 0. Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent copies of a real-valued random variable
𝑋, and 𝑢𝑛 the quantile of order 1 − 1∕𝑛 of |𝑋|, 𝑛 ≥ 1. The following two statements are equivalent:

(i) 𝑋 ∈ SLLN(𝑝, 𝑞).
(ii)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∞

0

ℙ𝑞∕𝑝(|𝑋|𝑞 > 𝑡)d𝑡 < ∞ if 0 < 𝑞 < 𝑝 < 1,

𝔼(|𝑋|𝑝) < ∞ and
∞∑
𝑛=1

𝔼
(|𝑋|𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < |𝑋|𝑝 ≤ 𝑛)

)
𝑛

< ∞ if 0 < 𝑞 = 𝑝 < 1,

𝔼(𝑋) = 0 and ∫
∞

0

ℙ𝑞∕𝑝(|𝑋|𝑞 > 𝑡)d𝑡 < ∞ if 0 < 𝑞 < 1 ≤ 𝑝 < 2.

The following two statements are equivalent:

(iii)
∑∞

𝑛=1

1

𝑛
𝔼

(|∑𝑛

𝑖=1
𝑋𝑖|

𝑛1∕𝑝

)𝑞

< ∞.

(iv) ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
∞

0

ℙ𝑞∕𝑝(|𝑋|𝑞 > 𝑡)d𝑡 < ∞ if 0 < 𝑞 < 𝑝 < 1,

𝔼(|𝑋|𝑝 ln(1 + |𝑋|)) < ∞ if 0 < 𝑞 = 𝑝 < 1,

𝔼(𝑋) = 0 and ∫
∞

0

ℙ𝑞∕𝑝(|𝑋|𝑞 > 𝑡)d𝑡 < ∞ if 0 < 𝑞 < 1 ≤ 𝑝 < 2.

Versions of the above results in the Banach space setting are also given, and, especially, the conditions for the sequence
{𝑋𝑛, 𝑛 ≥ 1} satisfying the (𝑝, 𝑞)-type SLLN are shown to provide an exact characterization of stable type 𝑝 Banach spaces.
The latter result was not discovered by Li, Qi, and Rosalsky [16] even for the case 1 ≤ 𝑝 < 2, 𝑞 ≥ 1. The results are obtained
by developing some techniques in Hechner and Heinkel [7], and in Li, Qi, and Rosalsky [14–16], and by using some results
regarding the notion of complete convergence in mean of order 𝑝 developed by Rosalsky, Thanh, and Volodin [22].
In the rest of the paper, we always consider random variables that take values in a real separable Banach space 𝐁 if no

further clarification is needed. For a random variable 𝑋 and for each 𝑛 ≥ 1, 𝑢𝑛 denotes the quantile of order 1 − 1∕𝑛 of‖𝑋‖, that is,
𝑢𝑛 = inf

{
𝑡 ∶ ℙ(‖𝑋‖ ≤ 𝑡) > 1 −

1

𝑛

}
= inf

{
𝑡 ∶ ℙ(‖𝑋‖ > 𝑡) <

1

𝑛

}
.

We now present Banach space versions of Theorem 1.4. Theorem 1.5 provides the necessary and sufficient conditions
for 𝑋 ∈ SLLN(𝑝, 𝑞) for the case where 0 < 𝑞 ≤ 𝑝 < 1, while Theorem 1.7 deals with the case where 0 < 𝑞 < 1 ≤ 𝑝 < 2.



THÀNH 405

Theorem 1.5. Let 0 < 𝑞 ≤ 𝑝 < 1 and let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables. Then,

𝑋 ∈ SLLN(𝑝, 𝑞) (1.6)

if and only if

⎧⎪⎪⎨⎪⎪⎩
∫

∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞ if 𝑞 < 𝑝,

𝔼(‖𝑋‖𝑝) < ∞ and∑∞

𝑛=1

𝔼
(‖𝑋‖𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < ‖𝑋‖𝑝 ≤ 𝑛)

)
𝑛

< ∞ if 𝑞 = 𝑝.

(1.7)

Remark 1.6. We make some comments on Theorem 1.5 as follows.

(i) As noted by Li, Qi, and Rosalsky [15], if 𝑋 ∈ SLLN(𝑝, 𝑞) for some 𝑞 > 0, then 𝑋 ∈ SLLN(𝑝, 𝑞1) for all 𝑞1 > 𝑞. By
Theorem 1.5 we will show that, for 0 < 𝑝 < 1, there exists a random variable 𝑋 such that 𝑋 ∈ SLLN(𝑝, 𝑝) but 𝑋 ∉

SLLN(𝑝, 𝑞) for all 0 < 𝑞 < 𝑝 (see Example 4.3 in Section 4).
(ii) For the case where 𝑞 = 𝑝, each of two conditions 𝔼(‖𝑋‖𝑝) < ∞ and

∞∑
𝑛=1

𝔼
(‖𝑋‖𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < ‖𝑋‖𝑝 ≤ 𝑛)

)
𝑛

< ∞

do not imply each other (see Examples 4.4 and 4.5 in Section 4).

Theorem 1.7. Let 0 < 𝑞 < 1 ≤ 𝑝 < 2 and let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables taking values in a real
separable Banach space 𝐁. If 𝐁 is of stable type 𝑝, then

𝑋 ∈ SLLN(𝑝, 𝑞) (1.8)

if and only if

𝔼(𝑋) = 0 and ∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞. (1.9)

Li, Qi, and Rosalsky [16] also provided necessary and sufficient conditions for

∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖∑𝑛

𝑘=1
𝑋𝑘

‖‖‖
𝑛1∕𝑝

⎞⎟⎟⎠
𝑞

< ∞ (1.10)

for the case where 0 < 𝑝 < 1, 𝑞 > 𝑝 and for the case where 1 ≤ 𝑝 < 2, 𝑞 ≥ 1 (see [16, Theorem 2.1 and Corollaries 2.2 and
2.3]). From Theorems 1.5 and 1.7, we have the following corollary.

Corollary 1.8. Let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables taking values in a real separable Banach space
𝐁.

(i) If 0 < 𝑞 ≤ 𝑝 < 1, then (1.10) is equivalent to

⎧⎪⎨⎪⎩∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞ if 𝑞 < 𝑝,

𝔼(‖𝑋‖𝑝 ln(1 + ‖𝑋‖)) < ∞ if 𝑞 = 𝑝.

(1.11)
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(ii) If 0 < 𝑞 < 1 ≤ 𝑝 < 2, and 𝐁 is of stable type 𝑝, then (1.10) is equivalent to

𝔼(𝑋) = 0 and ∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞. (1.12)

By combining Theorems 1.5 and 1.7, and Corollary 1.8, we obtain Theorem 1.4. Characterizations of SLLN in Banach
spaces was proved by Hoffmann-Jørgensen and Pisier [8], de Acosta [2], and Mikosch and Norvaiša [19]. Ledoux and
Talagrand [11], and more recently Einmahl and Li [3], discovered characterizations of the law of the iterated logarithm for
Banach-valued random variables. Our Theorems 1.5 and 1.7, Corollary 1.8, and the findings by Li, Qi, and Rosalsky [16],
and Hechner and Heinkel [7] complete a picture of characterizations of the (𝑝, 𝑞)-type SLLN in Banach spaces, as well as
characterizations of

∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖∑𝑛

𝑘=1
𝑋𝑘

‖‖‖
𝑛1∕𝑝

⎞⎟⎟⎠
𝑞

< ∞, 0 < 𝑝 < 2, 𝑞 > 0.

The rest of the paper is organized as follows. In Section 2, we prove that the (𝑝, 𝑞)-type SLLN implies theMarcinkiewicz–
Zygmund SLLN without assuming that the random variables are identically distributed. This result allows us to provide
an exact characterization of stable type 𝑝 Banach spaces through the (𝑝, 𝑞)-type SLLN, which we present and prove in
Section 3. In Section 4, we will prove Theorems 1.5, 1.7, and Corollary 1.8. Finally, the paper is concluded with further
remarks in Section 5.

2 THE (𝒑, 𝒒)-TYPE SLLN IMPLIES THEMARCINKIEWICZ–ZYGMUND SLLN

A sequence of random variables {𝑋𝑛, 𝑛 ≥ 1} is said to be stochastically dominated by a random variable 𝑋 if

sup
𝑛≥1 ℙ(‖𝑋𝑛‖ > 𝑡) ≤ ℙ(‖𝑋‖ > 𝑡), 𝑡 ≥ 0. (2.1)

It is well known that for a sequence of independent mean zero random variables {𝑋𝑛, 𝑛 ≥ 1} taking values in a real sep-
arable stable type 𝑝 Banach space 𝐁, 1 ≤ 𝑝 < 2, the condition that {𝑋𝑛, 𝑛 ≥ 1} are stochastically dominated by a random
variable 𝑋 with 𝔼(‖𝑋‖𝑝) < ∞ implies the Marcinkiewicz–Zygmund SLLN, that is,

lim
𝑛→∞

∑𝑛

𝑖=1
𝑋𝑖

𝑛1∕𝑝
= 0 a.s.

However, this is no longer true if𝐁 is of Rademacher type𝑝 only. To see this, let 1 ≤ 𝑝 < 2, and𝓁𝑝 denote the real separable
Rademacher type 𝑝 Banach space of absolute 𝑝th power summable real sequences 𝑣 = {𝑣𝑖, 𝑖 ≥ 1} with norm

‖𝑣‖ = (
∞∑
𝑖=1

|𝑣𝑖|𝑝)1∕𝑝

,

and define a sequence {𝑉𝑛, 𝑛 ≥ 1} of independent random variables in 𝓁𝑝 by requiring the {𝑉𝑛, 𝑛 ≥ 1} to be independent
with

ℙ(𝑉𝑛 = −𝑣(𝑛)) = ℙ(𝑉𝑛 = 𝑣(𝑛)) =
1

2
, 𝑛 ≥ 1,

where for 𝑛 ≥ 1, 𝑣(𝑛) is the element of 𝓁𝑝 having 1 in its 𝑛th position and 0 elsewhere. Then, the sequence {𝑉𝑛, 𝑛 ≥ 1}

is stochastically dominated by 𝑉1 with 𝔼(‖𝑉1‖)𝑝 = 1. However, {𝑉𝑛, 𝑛 ≥ 1} does not obey the Marcinkiewicz–Zygmund
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SLLN since for all 𝑛 ≥ 1,

‖∑𝑛

𝑖=1
𝑉𝑖‖

𝑛1∕𝑝
= 1.

In this section, we will prove that for 1 ≤ 𝑝 < 2, 𝑞 > 0, and for a sequence of independent mean zero random variables
{𝑋𝑛, 𝑛 ≥ 1}, which is stochastically dominated by a random variable 𝑋 with 𝔼(‖𝑋‖𝑝) < ∞, the (𝑝, 𝑞)-type SLLN implies
the Marcinkiewicz–Zygmund SLLN. Li, Qi, and Rosalsky [15, Lemma 3] proved this result for i.i.d. random variables
{𝑋, 𝑋𝑛, 𝑛 ≥ 1} by using a generalization of Ottaviani’s inequality developed by Li and Rosalsky [13] and the strong sta-
tionary property of the sequence {𝑋𝑛, 𝑛 ≥ 1} without assuming that 𝔼(‖𝑋‖𝑝) < ∞. In our setting, {𝑋𝑛, 𝑛 ≥ 1} is no longer
stationary. Themethodwepresent here is completely different from that of Li,Qi, andRosalsky [15, Lemma3].We involve a
symmetrization argument and some techniques regarding the notion of complete convergence in mean of order 𝑝 devel-
oped by Rosalsky, Thanh, and Volodin [22]. The result of this section will be used to show that the conditions for the
sequence {𝑋𝑛, 𝑛 ≥ 1} satisfying the (𝑝, 𝑞)-type SLLN in Theorem 1.7 are shown to provide an exact characterization of
stable type 𝑝 Banach spaces.
First, we will need the following two lemmas. The first lemma is a simple modification of Theorems 1 and 2 of Etemadi

[4].

Lemma 2.1. Let 𝛼 > 0, and let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent random variables. Then,

lim
𝑛→∞

∑𝑛

𝑖=1
𝑋𝑖

𝑛𝛼
= 0 a.s. (2.2)

if and only if

∞∑
𝑛=1

1

𝑛
ℙ

(‖‖‖‖‖‖
2𝑛∑

𝑖=𝑛+1

𝑋𝑖

‖‖‖‖‖‖ > 𝑛𝛼𝜀

)
< ∞ for all 𝜀 > 0 (2.3)

and

lim
𝑛→∞

∑𝑛

𝑖=1
𝑋𝑖

𝑛𝛼
= 0 in probability. (2.4)

If we assume further that {𝑋𝑛, 𝑛 ≥ 1} are symmetric random variables, then (2.2) and (2.3) are equivalent.

Proof. The proof of the first part is the same as that of Theorem 2 of Etemadi [4]. The proof of the last part is the same as
that of Theorem 1 of Etemadi [4]. □

The next lemma shows that for independent (not necessary identically distributed) random variables {𝑋, 𝑋𝑛, 𝑛 ≥ 1},
(1.10) implies a SLLN. When 𝛼 = 1 and 1 ≤ 𝑞 ≤ 2, Lemma 2.2 is Theorem 3 of Rosalsky, Thanh, and Volodin [22]. The
double sum version of Theorem 3 of Rosalsky, Thanh, and Volodin [22] was proved in [23].

Lemma 2.2. Let 𝛼 > 0, 𝑞 ≥ 1, and let {𝑋𝑛.𝑛 ≥ 1} be a sequence of independent mean zero random variables. If

∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖∑𝑛

𝑘=1
𝑋𝑘

‖‖‖
𝑛𝛼

⎞⎟⎟⎠
𝑞

< ∞, (2.5)

then ∑𝑛

𝑖=1
𝑋𝑖

𝑛𝛼

𝑞
⟶ 0, and

∑𝑛

𝑖=1
𝑋𝑖

𝑛𝛼
a.s.
⟶0. (2.6)
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Proof. For 𝑛 ≥ 1, set

𝑆𝑛 =

𝑛∑
𝑖=1

𝑋𝑖.

Then, {𝔼‖𝑆𝑛‖𝑞, 𝑛 ≥ 1} is a nondecreasing sequence (see, e.g., [22, Lemma 2]). Therefore, by applying (2.5), we have

𝔼

(‖‖‖‖𝑆𝑛𝑛𝛼 ‖‖‖‖
𝑞)

≤ 𝛼𝑞

∞∑
𝑚=𝑛

1

𝑚1+𝛼𝑞
𝔼(‖𝑆𝑛‖𝑞)

≤ 𝛼𝑞

∞∑
𝑚=𝑛

1

𝑚1+𝛼𝑞
𝔼(‖𝑆𝑚‖𝑞) → 0 as 𝑛 → ∞,

(2.7)

thereby proving the first half of (2.6). Moreover, it follows from (2.5) and Markov’s inequality that for arbitrary 𝜀 > 0,

∞∑
𝑛=1

1

𝑛
ℙ

(‖‖‖‖‖‖
2𝑛∑

𝑖=𝑛+1

𝑋𝑖

‖‖‖‖‖‖ > 𝑛𝛼𝜀

)

≤
(
2

𝜀

)𝑞
(

∞∑
𝑛=1

1

𝑛
𝔼

(‖‖‖‖𝑆2𝑛𝑛𝛼 ‖‖‖‖
𝑞)

+

∞∑
𝑛=1

1

𝑛
𝔼

(‖‖‖‖𝑆𝑛𝑛𝛼 ‖‖‖‖
𝑞))

< ∞.

(2.8)

The second half of (2.6) then follows from the first part of Lemma 2.1, (2.8), and the first part of (2.6). □

The main result of this section is the following proposition.

Proposition 2.3. Let 1 ≤ 𝑝 < 2 and 𝑞 > 0, and let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent mean zero random variables,
which is stochastically dominated by a random variable𝑋 with 𝔼(‖𝑋‖𝑝) < ∞. We assume further that the random variables
𝑋𝑛, 𝑛 ≥ 1 are symmetric when 0 < 𝑞 < 1. If

∞∑
𝑛=1

1

𝑛

(‖𝑆𝑛‖
𝑛1∕𝑝

)𝑞

< ∞ a.s., (2.9)

then

lim
𝑛→∞

𝑆𝑛

𝑛1∕𝑝
= 0 a.s. (2.10)

Proof. Set

𝑌𝑛 = 𝑋𝑛𝟏(‖𝑋𝑛‖𝑝 ≤ 𝑛), 𝑆
(1)
𝑛 =

𝑛∑
𝑖=1

𝑌𝑖, 𝑛 ≥ 1.

Since 𝔼(‖𝑋‖𝑝) < ∞ and the sequence {𝑋𝑛, 𝑛 ≥ 1} is stochastically dominated by 𝑋,

∞∑
𝑛=1

ℙ(‖𝑋𝑛‖𝑝 > 𝑛) ≤
∞∑
𝑛=1

ℙ(‖𝑋‖𝑝 > 𝑛) < ∞. (2.11)

By the Borel–Cantelli lemma, it follows from (2.11) that

ℙ(‖𝑋𝑛‖𝑝 > 𝑛 i.o. (𝑛)) = 0. (2.12)
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Combining (2.9) and (2.12), we have

∞∑
𝑛=1

1

𝑛

(‖𝑆(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞ a.s. (2.13)

To prove (2.10), recalling (2.12), it suffices to show that

lim
𝑛→∞

𝑆
(1)
𝑛

𝑛1∕𝑝
= 0 a.s. (2.14)

For 𝑛 ≥ 1, set

𝑎𝑛 =
1

𝑛1+𝑞∕𝑝
, 𝑏𝑛 =

∞∑
𝑘=𝑛

𝑎𝑘.

Then,

𝔼

(
sup
𝑛≥1 𝑏𝑛‖𝑌𝑛‖𝑞

)
≤ 𝔼

(
sup
𝑛≥1

(
1 +

𝑝

𝑞

)‖𝑌𝑛‖𝑞
𝑛𝑞∕𝑝

)
≤ 1 +

𝑞

𝑝
. (2.15)

First, we consider the case where 0 < 𝑞 < 1. Since {𝑋𝑛, 𝑛 ≥ 1} are symmetric random variables, {𝑌𝑛, 𝑛 ≥ 1} are also
symmetric. By applying inequality (11) in Theorem 7 of Li, Qi, and Rosalsky [15], we conclude from (2.13) and (2.15) that

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞. (2.16)

It follows from (2.16) and Markov’s inequality that for arbitrary 𝜀 > 0,

∞∑
𝑛=1

1

𝑛
ℙ

(‖‖‖‖‖‖
2𝑛∑

𝑖=𝑛+1

𝑌𝑖

‖‖‖‖‖‖ > 𝑛1∕𝑝𝜀

)

≤
(
2

𝜀

)𝑞⎛⎜⎜⎝
∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖‖‖‖
𝑆
(1)
2𝑛

𝑛1∕𝑝

‖‖‖‖‖‖
𝑞⎞⎟⎟⎠ +

∞∑
𝑛=1

1

𝑛
𝔼

⎛⎜⎜⎝
‖‖‖‖‖‖
𝑆
(1)
𝑛

𝑛1∕𝑝

‖‖‖‖‖‖
𝑞⎞⎟⎟⎠
⎞⎟⎟⎠ < ∞.

(2.17)

The conclusion (2.14) then follows from the last part of Lemma 2.1.
Next, we consider the case where 𝑞 ≥ 1. Let

{
𝑋

′
, 𝑋

′

𝑛, 𝑛 ≥ 1
}
be an independent copy of {𝑋, 𝑋𝑛, 𝑛 ≥ 1}. For 𝑛 ≥ 1, set

𝑉𝑛 = 𝑌𝑛 − 𝑋
′

𝑛𝟏(‖𝑋′

𝑛‖𝑝 ≤ 𝑛),

and

�̂�
(1)
𝑛 =

𝑛∑
𝑖=1

𝑉𝑖.

By (2.13), we have

∞∑
𝑛=1

1

𝑛

(‖�̂�(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞ a.s. (2.18)
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Similar to the proof of (2.16), (2.18) leads to

∞∑
𝑛=1

1

𝑛
𝔼

(‖�̂�(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞. (2.19)

By Lemma 4 of Li, Qi, and Rosalsky [15], under (2.18), (2.19) is equivalent to

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞. (2.20)

This implies

∞∑
𝑛=1

1

𝑛
𝔼

(‖∑𝑛

𝑖=1
(𝑌𝑖 − 𝔼(𝑌𝑖))‖
𝑛1∕𝑝

)𝑞

≤ 2𝑞−1
∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆(1)𝑛 ‖
𝑛1∕𝑝

)𝑞

< ∞. (2.21)

By Lemma 2.2, we have from (2.21) that ∑𝑛

𝑖=1
(𝑌𝑖 − 𝔼(𝑌𝑖))

𝑛1∕𝑝
→ 0 a.s. (2.22)

Since 𝔼(𝑋𝑛) = 0 and {𝑋𝑛, 𝑛 ≥ 1} is stochastically dominated by 𝑋 with 𝔼(‖𝑋‖𝑝) < ∞, it is routine to prove that

lim
𝑛→∞

‖‖‖‖‖‖
∑𝑛

𝑖=1
𝔼(𝑌𝑖)

𝑛1∕𝑝

‖‖‖‖‖‖ ≤ lim
𝑛→∞

∑𝑛

𝑖=1
𝔼(‖𝑋‖𝟏(‖𝑋‖𝑝 > 𝑖))

𝑛1∕𝑝
= 0. (2.23)

Combining (2.22) and (2.23), we obtain (2.14). □

3 CHARACTERIZATIONS OF STABLE TYPE 𝒑 BANACH SPACES

This section shows that for the sufficiency part of Theorem 1.7, we can relax the identically distributed condition of the
random variables {𝑋𝑛, 𝑛 ≥ 1}. Furthermore, the conditions for the sequence {𝑋𝑛, 𝑛 ≥ 1} satisfying the (𝑝, 𝑞)-type SLLN
are shown to provide an exact characterization of stable type 𝑝 Banach spaces.

Theorem3.1. Let 0 < 𝑞 < 1 ≤ 𝑝 < 2 and let𝐁 be a separable Banach space. Then, the following statements are equivalent.

(i) 𝐁 is of stable type 𝑝.
(ii) For every sequence {𝑋𝑛, 𝑛 ≥ 1} of independent mean zero 𝐁-valued random variables, which is stochastically dominated

by a random variable 𝑋, the condition

∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞ (3.1)

implies

∞∑
𝑛=1

1

𝑛

(‖𝑆𝑛‖
𝑛1∕𝑝

)𝑞

< ∞ a.s. (3.2)

To prove Theorem 3.1, we first present some preliminaries. Let {𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑛} be 𝑛 independent real-valued random
variables and {𝑋∗

𝑘
, 1 ≤ 𝑘 ≤ 𝑛} the nonincreasing rearrangement of the sequence {|𝑋𝑘|, 1 ≤ 𝑘 ≤ 𝑛}. Then, theMarcus–Pisier
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inequality [17] (see also Pisier [20, Lemma 4.11]) asserts that for all 𝑟 ≥ 1,

ℙ

(
sup
1≤𝑘≤𝑛

𝑘1∕𝑟𝑋∗
𝑘
> 𝑢

)
≤ 2e

𝑢𝑟
sup
𝑡>0

(
𝑡𝑟

𝑛∑
𝑘=1

ℙ(|𝑋𝑘| > 𝑡)

)
for all 𝑢 > 0. (3.3)

When 𝑞 = 1, the following lemma is Lemma 1 of Hechner andHeinkel [7]. Li, Qi, and Rosalsky [16] generalized Lemma
1 of Hechner andHeinkel [7] for the case where 1 ≤ 𝑞 < 𝑟 < 2 (see Lemma 3.1 Li, Qi, and Rosalsky [16]). Lemma 3.2 shows
that their results also hold when 0 < 𝑞 ≤ 1 < 𝑟 < 2.

Lemma3.2. Let 0 < 𝑞 ≤ 1 < 𝑟 < 2and let𝐁 be aBanach space of stable type 𝑟. Then, for every finite sequence {𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑛}

of independent𝐁-valued random variables withmax1≤𝑘≤𝑛 𝔼(‖𝑋𝑘‖𝑞) < ∞, there exists a constant𝐶(𝑞, 𝑟) > 0 depending only
on 𝑞 and 𝑟 such that

𝔼

(‖‖‖‖‖
𝑛∑

𝑘=1

(𝑋𝑘 − 𝐸𝑋𝑘)
‖‖‖‖‖
𝑞)

≤ 𝐶(𝑞, 𝑟)

(
sup
𝑡>0

𝑡𝑟∕𝑞
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖𝑞 > 𝑡)

)𝑞∕𝑟

. (3.4)

Proof. Since 0 < 𝑞 ≤ 1 < 𝑟 < 2, we have

𝔼

(‖‖‖‖‖
𝑛∑

𝑘=1

(𝑋𝑘 − 𝐸𝑋𝑘)
‖‖‖‖‖
𝑞)

≤
(
𝔼
‖‖‖‖‖

𝑛∑
𝑘=1

(𝑋𝑘 − 𝐸𝑋𝑘)
‖‖‖‖‖
)𝑞

≤
⎛⎜⎜⎝𝐶(𝑟)

(
sup
𝑡>0

𝑡𝑟
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖ > 𝑡)

)1∕𝑟⎞⎟⎟⎠
𝑞

= (𝐶(𝑟))𝑞

(
sup
𝑡>0

𝑡𝑟
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖ > 𝑡)

)𝑞∕𝑟

∶= 𝐶(𝑞, 𝑟)

(
sup
𝑡>0

𝑡𝑟∕𝑞
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖𝑞 > 𝑡)

)𝑞∕𝑟

,

(3.5)

where we have applied Liapunov’s inequality in the first inequality and Lemma 1 of Hechner andHeinkel [7] in the second
inequality. This completes the proof of Lemma 3.2. □

The following result is a variation of Lemma 3.2 for the case where 0 < 𝑞 < 𝑟 < 1.

Lemma 3.3. Let 0 < 𝑞 < 𝑟 < 1. Then for every finite sequence {𝑋𝑘, 1 ≤ 𝑘 ≤ 𝑛} of independent random variables with
max1≤𝑘≤𝑛 𝔼 (‖𝑋𝑘‖𝑞) < ∞, we have

𝔼

(‖‖‖‖‖
𝑛∑

𝑘=1

𝑋𝑘

‖‖‖‖‖
𝑞)

≤ 𝐶1(𝑞, 𝑟)

(
sup
𝑡>0

𝑡𝑟∕𝑞
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖𝑞 > 𝑡)

)𝑞∕𝑟

, (3.6)

where

𝐶1(𝑞, 𝑟) =

(
1

1 − 𝑟

)𝑞(
1 +

2𝑞e

𝑟 − 𝑞

)
.
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Proof. Let {‖𝑋𝑘‖∗, 1 ≤ 𝑘 ≤ 𝑛} be the nonincreasing rearrangement of {‖𝑋𝑘‖, 1 ≤ 𝑘 ≤ 𝑛}. Since 0 < 𝑞 < 𝑟 < 1,

𝔼

(‖‖‖‖‖
𝑛∑

𝑘=1

𝑋𝑘

‖‖‖‖‖
𝑞)

≤ 𝔼

(
𝑛∑

𝑘=1

‖𝑋𝑘‖)𝑞

= 𝔼

(
𝑛∑

𝑘=1

(
𝑘1∕𝑟‖𝑋𝑘‖∗)𝑘−1∕𝑟)𝑞

≤ 𝔼

⎛⎜⎜⎝ sup1≤𝑘≤𝑛
(
𝑘𝑞∕𝑟(‖𝑋𝑘‖∗)𝑞)( 𝑛∑

𝑘=1

𝑘−1∕𝑟

)𝑞⎞⎟⎟⎠
= 𝔼

⎛⎜⎜⎝ sup1≤𝑘≤𝑛
(
𝑘𝑞∕𝑟(‖𝑋𝑘‖𝑞)∗)( 𝑛∑

𝑘=1

𝑘−1∕𝑟

)𝑞⎞⎟⎟⎠
≤
(

1

1 − 𝑟

)𝑞

𝔼

(
sup
1≤𝑘≤𝑛

(
𝑘𝑞∕𝑟(‖𝑋𝑘‖𝑞)∗))

=

(
1

1 − 𝑟

)𝑞

∫
∞

0

ℙ

(
sup
1≤𝑘≤𝑛

(
𝑘𝑞∕𝑟(‖𝑋𝑘‖𝑞)∗) > 𝑢

)
d𝑢.

(3.7)

Let Δ = sup𝑡>0 𝑡
𝑟∕𝑞 ∑𝑛

𝑘=1
ℙ (‖𝑋𝑘‖𝑞 > 𝑡). Applying (3.3), we have

∫
∞

0

ℙ

(
sup
1≤𝑘≤𝑛

(
𝑘𝑞∕𝑟(‖𝑋𝑘‖𝑞)∗) > 𝑢

)
d𝑢

=

(
∫

Δ𝑞∕𝑟

0

+∫
∞

Δ𝑞∕𝑟

)
ℙ

(
sup
1≤𝑘≤𝑛

(
𝑘𝑞∕𝑟(‖𝑋𝑘‖𝑞)∗) > 𝑢

)
d𝑢

≤ Δ𝑞∕𝑟 + 2e∫
∞

Δ𝑞∕𝑟

Δ

𝑢𝑟∕𝑞
d𝑢

=

(
1 +

2𝑞e

𝑟 − 𝑞

)
Δ𝑞∕𝑟.

(3.8)

Combining (3.7) and (3.8), we obtain (3.6). □

Motivated by Lemma 3.4 of Li, Qi, and Rosalsky [16], which considered the case where 1 ≤ 𝑞 ≤ 𝑝 < 2 and i.i.d. random
variables, we have the following lemma.

Lemma 3.4. Let 0 < 𝑞 ≤ 𝑝 < 2, and let {𝑋𝑛} be a sequence of independent𝐁-valued random variables. Suppose that {𝑋𝑛, 𝑛 ≥
1} is stochastically dominated by a random variable 𝑋 satisfying

∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞. (3.9)

For each 𝑛 ≥ 1, let the quantile 𝑢𝑛 of order 1 − 1∕𝑛 of ‖𝑋‖ be defined as in Section 1, and set
𝑌𝑛,𝑘 = 𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑢𝑛), 𝑍𝑛,𝑘 = 𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑛),

𝑈𝑛,𝑘 =

𝑘∑
𝑖=1

𝑍𝑛,𝑖, 𝑈
(1)

𝑛,𝑘
=

𝑘∑
𝑖=1

𝑌𝑛,𝑖, 𝑈
(2)

𝑛,𝑘
= 𝑈𝑛,𝑘 − 𝑈

(1)

𝑛,𝑘
.
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Then the following statement holds.

(i) If 0 < 𝑝 < 1, then

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛‖𝑞)
𝑛1+𝑞∕𝑝

< ∞. (3.10)

(ii) If 1 ≤ 𝑝 < 2 and 𝐁 is of stable type 𝑝, then

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛 − 𝔼𝑈
(1)
𝑛,𝑛‖𝑞)

𝑛1+𝑞∕𝑝
< ∞. (3.11)

In particular, if 𝔼(‖𝑋‖𝑝) < ∞, then the following statement holds.

(iii) If 0 < 𝑝 < 1, then

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛‖𝑝)
𝑛2

< ∞. (3.12)

(iv) If 1 ≤ 𝑝 < 2 and 𝐁 is of stable type 𝑝, then

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛 − 𝔼𝑈
(1)
𝑛,𝑛‖𝑝)

𝑛2
< ∞. (3.13)

Proof. First, we consider the case where 0 < 𝑞 ≤ 𝑝 < 1. Let 𝑝 < 𝑟 < 1, and 𝐶1(𝑞, 𝑟) be as in Lemma 3.3. By applying
Lemma 3.3, we obtain

𝔼
(‖‖‖𝑈(1)

𝑛,𝑛
‖‖‖𝑞) ≤ 𝐶1(𝑞, 𝑟)

(
sup
𝑡>0

𝑡𝑟∕𝑞
𝑛∑

𝑘=1

ℙ(‖𝑋𝑘‖𝑞𝐼{‖𝑋𝑘‖ ≤ 𝑢𝑛} > 𝑡)

)𝑞∕𝑟

= 𝐶1(𝑞, 𝑟)

(
sup

0≤𝑡≤𝑢𝑞𝑛
𝑡𝑟∕𝑞

𝑛∑
𝑘=1

ℙ(‖𝑋𝑘‖𝑞𝐼{‖𝑋𝑘‖ ≤ 𝑢𝑛} > 𝑡)

)𝑞∕𝑟

≤ 𝐶1(𝑞, 𝑟)

(
𝑛 sup
0≤𝑡≤𝑢𝑞𝑛

𝑡𝑟∕𝑞ℙ(‖𝑋‖𝑞 > 𝑡)

)𝑞∕𝑟

= 𝐶1(𝑞, 𝑟)

⎛⎜⎜⎝𝑛 sup
0≤𝑡≤𝑢𝑞𝑛

(
∫

𝑡

0

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑡)d𝑥

)𝑟∕𝑞⎞⎟⎟⎠
𝑞∕𝑟

≤ 𝐶1(𝑞, 𝑟)

⎛⎜⎜⎝𝑛 sup
0≤𝑡≤𝑢𝑞𝑛

(
∫

𝑡

0

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥

)𝑟∕𝑞⎞⎟⎟⎠
𝑞∕𝑟

= 𝐶1(𝑞, 𝑟)𝑛
𝑞∕𝑟 ∫

𝑢
𝑞
𝑛

0

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥

= 𝐶1(𝑞, 𝑟)𝑛
𝑞∕𝑟

𝑛∑
𝑘=1

∫
𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥.

(3.14)
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For 𝑘 ≥ 1 and 𝑢𝑞
𝑘−1

≤ 𝑥 < 𝑢
𝑞

𝑘
, we have ℙ(‖𝑋‖𝑞 > 𝑥) ≥ 1∕𝑘. It thus follows from (3.14) that

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛‖𝑞)
𝑛1+𝑞∕𝑝

≤ 𝐶1(𝑞, 𝑟)

∞∑
𝑛=1

1

𝑛1+𝑞∕𝑝−𝑞∕𝑟

𝑛∑
𝑘=1

∫
𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥

= 𝐶1(𝑞, 𝑟)

∞∑
𝑘=1

(
∫

𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥

)(
∞∑
𝑛=𝑘

1

𝑛1+𝑞∕𝑝−𝑞∕𝑟

)

≤
(
1 +

𝑝𝑟

𝑞(𝑟 − 𝑝)

)
𝐶1(𝑞, 𝑟)

∞∑
𝑘=1

1

𝑘𝑞∕𝑝−𝑞∕𝑟 ∫
𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑟(‖𝑋‖𝑞 > 𝑥)d𝑥

≤
(
1 +

𝑝𝑟

𝑞(𝑟 − 𝑝)

)
𝐶1(𝑞, 𝑟)

∞∑
𝑘=1

∫
𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑥)d𝑥

=

(
1 +

𝑝𝑟

𝑞(𝑟 − 𝑝)

)
𝐶1(𝑞, 𝑟)∫

∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑥)d𝑥 < ∞,

thereby proving (3.10) for the case where 0 < 𝑞 ≤ 𝑝 < 1.
For the casewhere 1 ≤ 𝑞 ≤ 𝑝 < 2, Li, Qi, andRosalsky [16] proved (3.10) under a stronger assumption that {𝑋, 𝑋𝑛, 𝑛 ≥ 1}

are identically distributed random variables (see [16, Lemma 3.4]). When the sequence {𝑋𝑛, 𝑛 ≥ 1} is stochastically domi-
nated by𝑋, their proof will be unchanged except for some simplemodifications and thereforewe conclude that Lemma 3.4
holds for the case where 1 ≤ 𝑞 ≤ 𝑝 < 2.
Next, we consider the case where 0 < 𝑞 < 1 ≤ 𝑝 < 2. Li, Qi, and Rosalsky [16] proved their Lemma 3.4 ([16, p. 548]) by

applying (3.4) for 1 ≤ 𝑞 < 𝑟 < 2. In our Lemma 3.2, we have showed that (3.4) holds for the case where 0 < 𝑞 < 1 < 𝑟 < 2.
Then, by using the same argument as in the proof of Lemma 3.4 of Li, Qi, and Rosalsky [16], we obtain (3.10) for the case
where 0 < 𝑞 < 1 ≤ 𝑝 < 2.
Finally, by taking 𝑞 = 𝑝, (3.9) holds if and only if 𝔼(‖𝑋‖𝑝) < ∞, and (3.10) coincides with (3.12), (3.11) coincides with

(3.13). Therefore, the last part of the lemma follows from the first part. This completes the proof. □

Proof of Theorem 3.1. First, we verify the implication (i)⇒(ii). For each 𝑛 ≥ 1, let the quantile 𝑢𝑛 of order 1 − 1∕𝑛 of ‖𝑋‖
be defined as in Section 1, and set for 1 ≤ 𝑘 ≤ 𝑛,

𝑌𝑛,𝑘 = 𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑢𝑛), 𝑈
(1)

𝑛,𝑘
=

𝑘∑
𝑖=1

𝑌𝑛,𝑖.

By following the proof of Lemma 3.3 of Li, Qi, and Rosalsky [16] and noting that every real separable Banach space is of
Rademacher type 𝑞 for all 0 < 𝑞 ≤ 1, we have

∞∑
𝑛=1

𝔼

(‖‖‖‖(𝑆𝑛 − 𝑈
(1)
𝑛,𝑛

)
− 𝔼

(
𝑆𝑛 − 𝑈

(1)
𝑛,𝑛

)‖‖‖‖
𝑞)

𝑛1+𝑞∕𝑝
< ∞. (3.15)

Noting that 1 ≤ 𝑝 < 2 and therefore applying (3.11), we have

∞∑
𝑛=1

𝔼
(‖‖‖𝑈(1)

𝑛,𝑛 − 𝔼𝑈
(1)
𝑛,𝑛

‖‖‖𝑞)
𝑛1+𝑞∕𝑝

< ∞. (3.16)

Combining (3.15) and (3.16) and noting that 𝔼(𝑆𝑛) = 0, we obtain

∞∑
𝑛=1

𝔼(‖𝑆𝑛‖𝑞)
𝑛1+𝑞∕𝑝

< ∞,

which yields (3.2).
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We will now prove the implication (ii)⇒(i). Let {𝜀𝑘, 𝑘 ≥ 1} be a Rademacher sequence and let {𝑥𝑘, 𝑘 ≥ 1} be a sequence
of elements in 𝐁 such that

𝑋 ∶= sup
𝑘≥1

‖𝑥𝑘‖ < ∞. (3.17)

By Theorem V.9.3 in [24], (i) will holds if

lim
𝑛→∞

1

𝑛1∕𝑝

𝑛∑
𝑘=1

𝑥𝑘𝜀𝑘 = 0 a.s. (3.18)

Set

𝑋𝑘 = 𝑥𝑘𝜀𝑘, 𝑘 ≥ 1.

Then, {𝑋𝑘, 𝑘 ≥ 1} is a sequence of independent symmetric 𝐁-valued random variables, stochastically dominated by 𝑋.
Since 𝑋 is bounded, (3.1) holds. Therefore, by (ii), we have

∞∑
𝑛=1

1

𝑛

(‖∑𝑛

𝑘=1
𝑋𝑘‖

𝑛1∕𝑝

)𝑞

< ∞ a.s. (3.19)

By applying Proposition 2.3, we obtain (3.18). □

Now,we consider the casewhere 𝑞 ≥ 1 and 1 ≤ 𝑝 < 2. Li, Qi, andRosalsky [16] provided a set of necessary and sufficient
conditions for the (𝑝, 𝑞)-SLLN. Theorem 2.2 of Li, Qi, and Rosalsky [16] is as follows.

Proposition 3.5 (Theorem 2.2 of [16]). Let 1 < 𝑝 < 2, 𝑞 ≥ 1, and let {𝑋, 𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables
taking values in a real separable stable type 𝑝 Banach space 𝐁. Then, 𝑋 ∈ SLLN(𝑝, 𝑞) if and only if 𝔼(𝑋) = 0 and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞ if 𝑞 < 𝑝,

𝔼(‖𝑋‖𝑝) < ∞,

∞∑
𝑛=1

∫ 𝑛

min
{
𝑢
𝑝
𝑛 ,𝑛

} ℙ(‖𝑋‖𝑝 > 𝑡)d𝑡

𝑛
< ∞ if 𝑞 = 𝑝,

𝔼(‖𝑋‖𝑝) < ∞ if 𝑞 > 𝑝.

(3.20)

Similar to Theorem 3.1, the following theorem is a complement of Proposition 3.5 (i.e., Theorem 2.2 of Li, Qi, and
Rosalsky [16]).

Theorem 3.6. Let 1 < 𝑝 < 2, 𝑞 ≥ 1, and let 𝐁 be a real separable Banach space. Then the following statements are
equivalent.

(i) 𝐁 is of stable type 𝑝.
(ii) For every sequence {𝑋𝑛, 𝑛 ≥ 1} of independent mean zero 𝐁-valued random variables, which is stochastically dominated

by a random variable 𝑋, condition (3.20) implies

∞∑
𝑛=1

1

𝑛

(‖𝑆𝑛‖
𝑛1∕𝑝

)𝑞

< ∞ a.s.

Proof. The proof of the implication (ii)⇒(i) is exactly the same as that of Theorem 3.1. The proof of the implication (i)⇒(ii)
is similar to that of the sufficient part of Theorem 2.2 of Li, Qi and Rosalsky [16] with some simple changes. We omit the
details. □

Similarly, we have the following theorem for the case where 𝑝 = 1. It is a complement of Theorem 2.3 of Li, Qi, and
Rosalsky [16].
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Theorem 3.7. Let 𝑞 ≥ 1, and let 𝐁 be a real separable Banach space. Then, the following statements are equivalent.

(i) 𝐁 is of stable type 1.
(ii) For every sequence {𝑋𝑛, 𝑛 ≥ 1} of independent mean zero 𝐁-valued random variables, which is stochastically dominated

by a random variable 𝑋, the conditions

𝔼(‖𝑋‖) < ∞,

∞∑
𝑛=1

1

𝑛2

(
𝑛∑
𝑖=1

‖𝔼(𝑋𝑖𝟏(‖𝑋𝑖‖ ≤ 𝑛))‖𝑞) < ∞

and

∞∑
𝑛=1

𝟏({𝑞 = 1}) ∫ 𝑛

min {𝑢𝑛,𝑛}
ℙ(‖𝑋‖ > 𝑡)d𝑡

𝑛
< ∞

imply

∞∑
𝑛=1

1

𝑛

(‖𝑆𝑛‖
𝑛

)𝑞

< ∞ a.s. (3.21)

(iii) For every sequence {𝑋𝑛, 𝑛 ≥ 1} of independent symmetric 𝐁-valued random variables, which is stochastically dominated
by a random variable 𝑋, the conditions 𝔼(‖𝑋‖) < ∞ and

∞∑
𝑛=1

𝟏({𝑞 = 1}) ∫ 𝑛

min {𝑢𝑛,𝑛}
ℙ(‖𝑋‖ > 𝑡)d𝑡

𝑛
< ∞

imply (3.21).

4 PROOF OF THEMAIN RESULTS

In this section, we will prove Theorems 1.5 and 1.7. The following lemma generalizes Lemma 5.4 of [14].

Lemma 4.1. Let 𝑌1,… , 𝑌𝑛 be i.i.d. nonnegative real-valued random variables such that

ℙ(𝑌1 > 0) ≤ 𝐾

𝑛
for some constant 𝐾 ≥ 1. (4.1)

Then,

𝔼

(
max
1≤𝑘≤𝑛 𝑌𝑘

)
≥ 𝑛

2𝐾
𝔼(𝑌1). (4.2)

Proof. For all 𝑡 ≥ 0, we have

ℙ

(
max
1≤𝑘≤𝑛 𝑌𝑘 > 𝑡

)
= 1 − (1 − ℙ(𝑌1 ≤ 𝑡))

𝑛 ≥ 1 − e−𝑛ℙ(𝑌1>𝑡). (4.3)

Elementary calculus shows that

1 − e−𝑥 ≥ 𝑥

2𝐾
for all 0 ≤ 𝑥 ≤ 𝐾.

It thus follows from (4.1) and (4.3) that

ℙ

(
max
1≤𝑘≤𝑛 𝑌𝑘 > 𝑡

)
≥ 𝑛

2𝐾
ℙ(𝑌1 > 𝑡) for all 𝑡 ≥ 0,

which implies (4.2). □
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The next lemma is a special case of Lemma 3.2 of Li and Rosalsky [13]. This useful result will be used in our
symmetrization procedure.

Lemma 4.2. Let 𝑔 ∶ 𝐁 → [0,∞] be a measurable even function such that for all 𝑥, 𝑦 ∈ 𝐁,

𝑔(𝑥 + 𝑦) ≤ 𝛽(𝑔(𝑥) + 𝑔(𝑦)),

where 𝛽 ≥ 1 is a constant, depending only on the function 𝑔. If 𝑉 is a 𝐁-valued random variable and �̂� is a symmetrized
version of 𝑉 , then for all 𝑡 ≥ 0, we have that

ℙ(𝑔(𝑉) ≤ 𝑡)𝔼(𝑔(𝑉)) ≤ 𝔼(𝑔(�̂�)) + 𝛽𝑡.

Proof of Theorem 1.5 (Sufficiency). First, we consider the case where 0 < 𝑞 < 𝑝 < 1. We will prove that

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆𝑛‖
𝑛1∕𝑝

)𝑞

< ∞. (4.4)

For each 𝑛 ≥ 1, let the quantile 𝑢𝑛 of order 1 − 1∕𝑛 of ‖𝑋‖ be defined as in Section 1. For 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛, set

𝑌𝑛,𝑘 = 𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑢𝑛), 𝑍𝑛,𝑘 = 𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑛),

and

𝑈𝑛,𝑘 =

𝑘∑
𝑖=1

𝑍𝑛,𝑖, 𝑈
(1)

𝑛,𝑘
=

𝑘∑
𝑖=1

𝑌𝑛,𝑖, 𝑈
(2)

𝑛,𝑘
= 𝑈𝑛,𝑘 − 𝑈

(1)

𝑛,𝑘
.

By (3.10) in Lemma 3.4, (4.4) holds if we can show that

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆𝑛 − 𝑈
(1)
𝑛,𝑛‖

𝑛1∕𝑝

)𝑞

< ∞. (4.5)

Since 0 < 𝑞 < 1, we have

𝔼
(‖𝑆𝑛 − 𝑈

(1)
𝑛,𝑛‖𝑞) ≤ 𝑛𝔼

(‖𝑋‖𝑞𝟏(‖𝑋‖𝑞 > 𝑢
𝑞
𝑛)
)

= 𝑛𝑢
𝑞
𝑛ℙ(‖𝑋‖𝑞 > 𝑢

𝑞
𝑛) + 𝑛 ∫

∞

𝑢
𝑞
𝑛

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡

≤ 𝑢
𝑞
𝑛 + 𝑛 ∫

∞

𝑢
𝑞
𝑛

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡.

(4.6)

Noting that for 𝑛 ≥ 1, 𝑢𝑞𝑛 is the quantile of order 1 − 1∕𝑛 of ‖𝑋‖𝑞. Letting 𝑢0 = 0, it thus follows from (4.6) that

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑆𝑛 − 𝑈
(1)
𝑛,𝑛‖

𝑛1∕𝑝

)𝑞

≤
∞∑
𝑛=1

𝑢
𝑞
𝑛

𝑛1+𝑞∕𝑝
+

∞∑
𝑛=1

1

𝑛𝑞∕𝑝 ∫
∞

𝑢
𝑞
𝑛

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡

≤
∞∑
𝑛=1

1

𝑛1+𝑞∕𝑝

𝑛∑
𝑘=1

(𝑢
𝑞

𝑘
− 𝑢

𝑞

𝑘−1
) +

∞∑
𝑛=1

1

𝑛𝑞∕𝑝

∞∑
𝑘=𝑛

∫
𝑢
𝑞

𝑘+1

𝑢
𝑞

𝑘

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡

=

∞∑
𝑘=1

(𝑢
𝑞

𝑘
− 𝑢

𝑞

𝑘−1
)

(
∞∑
𝑛=𝑘

1

𝑛1+𝑞∕𝑝

)
+

∞∑
𝑘=1

∫
𝑢
𝑞

𝑘+1

𝑢
𝑞

𝑘

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡

(
𝑘∑

𝑛=1

1

𝑛𝑞∕𝑝

)

≤
(
1 +

𝑝

𝑞

) ∞∑
𝑘=1

1

𝑘𝑞∕𝑝
(𝑢

𝑞

𝑘
− 𝑢

𝑞

𝑘−1
) +

𝑝

𝑝 − 𝑞

∞∑
𝑘=1

𝑘1−𝑞∕𝑝 ∫
𝑢
𝑞

𝑘+1

𝑢
𝑞

𝑘

ℙ(‖𝑋‖𝑞 > 𝑡)d𝑡
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≤
(
1 +

𝑝

𝑞

) ∞∑
𝑘=1

∫
𝑢
𝑞

𝑘

𝑢
𝑞

𝑘−1

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 +
𝑝

𝑝 − 𝑞

∞∑
𝑘=1

∫
𝑢
𝑞

𝑘+1

𝑢
𝑞

𝑘

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡

≤
(
1 +

𝑝

𝑞
+

𝑝

𝑝 − 𝑞

)
∫

∞

0

ℙ𝑞∕𝑝(‖𝑋‖𝑞 > 𝑡)d𝑡 < ∞,

thereby proving (4.5).
Now we consider the case where 0 < 𝑞 = 𝑝 < 1. Since 𝔼(‖𝑋‖𝑝) < ∞, it is easy to see that

lim
𝑛→∞

𝑢𝑛

𝑛1∕𝑝
= 0 (4.7)

and

∞∑
𝑛=1

ℙ(‖𝑋𝑛‖𝑝 > 𝑛) =

∞∑
𝑛=1

ℙ(‖𝑋‖𝑝 > 𝑛) < ∞. (4.8)

From (4.7), we can assume that 𝑢𝑛 < 𝑛1∕𝑝 for all 𝑛 ≥ 1. We then write

𝑆𝑛 = 𝑈
(1)
𝑛,𝑛 + 𝑈

(2)
𝑛,𝑛 +

𝑛∑
𝑘=1

𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 > 𝑛), 𝑛 ≥ 1.

By the Borel–Cantelli lemma, it follows from (4.8) that

ℙ(‖𝑋𝑛‖𝑝 > 𝑛 i.o.(𝑛)) = 0

and hence,

ℙ

(
max
1≤𝑘≤𝑛 ‖𝑋𝑘‖𝑝 > 𝑛 i.o.(𝑛)

)
= 0.

We thus have

∞∑
𝑛=1

1

𝑛

⎛⎜⎜⎝
‖‖‖∑𝑛

𝑘=1
𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 > 𝑛)

‖‖‖
𝑛1∕𝑝

⎞⎟⎟⎠
𝑝

< ∞ a.s. (4.9)

By using (4.9), (1.6) (with 0 < 𝑞 = 𝑝 < 1) holds if we can show that

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑈(1)
𝑛,𝑛‖

𝑛1∕𝑝

)𝑝

< ∞ (4.10)

and

∞∑
𝑛=1

1

𝑛
𝔼

(‖𝑈(2)
𝑛,𝑛‖

𝑛1∕𝑝

)𝑝

< ∞. (4.11)

By (3.12) in Lemma 3.4, we have

∞∑
𝑛=1

1

𝑛2
𝔼(‖𝑈(1)

𝑛,𝑛‖𝑝) < ∞,
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which proves (4.10). Since 0 < 𝑝 < 1, it follows from (1.7) (with 𝑝 = 𝑞) that

∞∑
𝑛=1

1

𝑛2
𝔼
(‖𝑈(2)

𝑛,𝑛‖𝑝) =

∞∑
𝑛=1

1

𝑛2
𝔼

(‖‖‖‖‖
𝑛∑

𝑘=1

𝑋𝑘𝟏
(
𝑢𝑛 < ‖𝑋𝑘‖ ≤ 𝑛1∕𝑝

)‖‖‖‖‖
𝑝)

≤
∞∑
𝑛=1

1

𝑛
𝔼
(‖𝑋‖𝑝𝟏(𝑢𝑛 < ‖𝑋‖ ≤ 𝑛1∕𝑝

))
< ∞,

which proves (4.11). □

Proof of Theorem 1.5 (Necessity). By Proposition 1.2, we only need to prove for the case where 0 < 𝑞 = 𝑝 < 1. Also by
applying Proposition 1.2, we have from (1.6) that

lim
𝑛→∞

𝑆𝑛

𝑛1∕𝑝
= 0 a.s.,

which ensures 𝔼(‖𝑋‖𝑝) < ∞. Therefore, we only need to show that (1.6) implies

∞∑
𝑛=1

𝔼(‖𝑋‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋‖𝑝 ≤ 𝑛))

𝑛
< ∞. (4.12)

Since 0 < 𝑝 < 1,

∞∑
𝑛=1

1

𝑛2
𝔼

(‖‖‖‖‖𝑈𝑛,𝑛 −

𝑛∑
𝑘=1

𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑘)
‖‖‖‖‖
𝑝)

≤
∞∑
𝑛=1

1

𝑛2

𝑛∑
𝑘=1

𝔼
(‖𝑋𝑘‖𝑝𝟏(𝑘 < ‖𝑋𝑘‖𝑝 ≤ 𝑛)

)
=

∞∑
𝑛=1

1

𝑛2

𝑛∑
𝑘=1

𝑛∑
𝑗=𝑘+1

𝔼
(‖𝑋‖𝑝𝟏(𝑗 − 1 < ‖𝑋‖𝑝 ≤ 𝑗)

)
≤

∞∑
𝑛=1

1

𝑛2

𝑛∑
𝑗=1

𝑗𝔼
(‖𝑋‖𝑝𝟏(𝑗 − 1 < ‖𝑋‖𝑝 ≤ 𝑗)

)
=

∞∑
𝑗=1

𝑗𝔼
(‖𝑋‖𝑝𝟏(𝑗 − 1 < ‖𝑋‖𝑝 ≤ 𝑗)

)( ∞∑
𝑛=𝑗

1

𝑛2

)

≤ 2

∞∑
𝑗=1

𝔼
(‖𝑋‖𝑝𝟏(𝑗 − 1 < ‖𝑋‖𝑝 ≤ 𝑗)

)
= 2𝔼(‖𝑋‖𝑝) < ∞.

(4.13)

Using the same argument of proof of (3.3) in [16, p. 556], we have

∞∑
𝑛=1

𝔼
(‖∑𝑛

𝑘=1
𝑋𝑘𝟏(‖𝑋𝑘‖𝑝 ≤ 𝑘)‖𝑝)

𝑛2
< ∞. (4.14)

Combining (4.13) and (4.14), we have

∞∑
𝑛=1

𝔼
(‖‖𝑈𝑛,𝑛

‖‖𝑝)
𝑛2

< ∞. (4.15)
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It follows from (4.15) and (3.12) of Lemma 3.4 that

∞∑
𝑛=1

𝔼
(‖𝑈(2)

𝑛,𝑛‖𝑝)
𝑛2

=

∞∑
𝑛=1

𝔼
(‖𝑈𝑛,𝑛 − 𝑈

(1)
𝑛,𝑛‖𝑝)

𝑛2

≤
∞∑
𝑛=1

𝔼
(‖𝑈𝑛,𝑛‖𝑝)

𝑛2
+

∞∑
𝑛=1

𝔼
(‖𝑈(1)

𝑛,𝑛‖𝑝)
𝑛2

< ∞.

(4.16)

Let
{
𝑋

′
, 𝑋

′

𝑛, 𝑛 ≥ 1
}
be an independent copy of {𝑋, 𝑋𝑛, 𝑛 ≥ 1}. For 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛, set

𝑉𝑛,𝑘 = 𝑋𝑘𝟏(𝑢
𝑝
𝑛 < ‖𝑋𝑘‖𝑝 ≤ 𝑛) − 𝑋

′

𝑘
𝟏(𝑢

𝑝
𝑛 < ‖𝑋′

𝑘
‖𝑝 ≤ 𝑛), �̂�

(2)

𝑛,𝑘
=

𝑘∑
𝑗=1

𝑉𝑛,𝑗, �̂�
(2)
𝑛,0

= 0.

It follows from (4.16) that

∞∑
𝑛=1

𝔼
(‖�̂�(2)

𝑛𝑛‖𝑝)
𝑛2

< ∞. (4.17)

For 𝑛 ≥ 1, applying Lévy’s inequality (see, e.g., [12, pp. 47–48]) for independent symmetric random variables{
𝑉𝑛,𝑘, 1 ≤ 𝑘 ≤ 𝑛

}
, we have

𝔼

(
max
1≤𝑘≤𝑛 ‖𝑉𝑛,𝑘‖𝑝

)
= 𝔼

(
max
1≤𝑘≤𝑛

‖‖‖�̂�(2)

𝑛,𝑘
− �̂�

(2)

𝑛,(𝑘−1)

‖‖‖𝑝
)

≤ 2𝔼

(
max
1≤𝑘≤𝑛

‖‖‖�̂�(2)

𝑛,𝑘

‖‖‖𝑝
)

≤ 4𝔼
(‖‖‖�̂�(2)

𝑛,𝑛
‖‖‖𝑝).

(4.18)

Since

ℙ(‖𝑉𝑛,1‖𝑝 > 0) ≤ ℙ(‖𝑋1‖ > 𝑢𝑛) + ℙ(‖𝑋′

1
‖ > 𝑢𝑛) <

2

𝑛
,

by applying Lemma 4.1 with the constant 𝐾 = 2, we obtain

𝔼(‖𝑉𝑛,1‖𝑝) ≤ 4

𝑛
𝔼

(
max
1≤𝑘≤𝑛 ‖𝑉𝑛,𝑘‖𝑝

)
(4.19)

Combining (4.17)–(4.19), we have

∞∑
𝑛=1

𝔼(‖𝑉𝑛,1‖𝑝)
𝑛

≤
∞∑
𝑛=1

16𝔼
(‖�̂�(2)

𝑛,𝑛‖𝑝)
𝑛2

< ∞. (4.20)

We see that 𝑉𝑛1 is a symmetrized version of 𝑋1𝟏(𝑢
𝑝
𝑛 < ‖𝑋1‖𝑝 ≤ 𝑛), 𝑛 ≥ 1. Applying Lemma 4.2 with 𝑡 = 1∕𝑛 and 𝑔(𝑥) =‖𝑥‖𝑝, 𝑥 ∈ 𝐁, we have

ℙ

(‖𝑋1‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋1‖𝑝 ≤ 𝑛) ≤ 1

𝑛

)
𝔼(‖𝑋1‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋1‖𝑝 ≤ 𝑛)) ≤ 𝔼(‖𝑉𝑛,1‖𝑝) + 1

𝑛
. (4.21)

Since

1 −
1

𝑛
≤ ℙ(‖𝑋‖ ≤ 𝑢𝑛) ≤ ℙ

(‖𝑋‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋‖𝑝 ≤ 𝑛) ≤ 1

𝑛

)
= ℙ

(‖𝑋1‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋1‖𝑝 ≤ 𝑛) ≤ 1

𝑛

)
for all 𝑛 ≥ 1,
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it follows from (4.21) that (
1 −

1

𝑛

)
𝔼(‖𝑋‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋‖𝑝 ≤ 𝑛)) ≤ 𝔼(‖𝑉𝑛1‖𝑝) + 1

𝑛
, 𝑛 ≥ 1. (4.22)

Combining (4.20) and (4.22), we have

∞∑
𝑛=2

1

2𝑛
𝔼(‖𝑋‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋‖𝑝 ≤ 𝑛)) ≤

∞∑
𝑛=2

1

𝑛

(
1 −

1

𝑛

)
𝔼(‖𝑋‖𝑝𝟏(𝑢𝑝𝑛 < ‖𝑋‖𝑝 ≤ 𝑛))

≤
∞∑
𝑛=2

1

𝑛

(
𝔼
(‖𝑉𝑛,1‖𝑝) + 1

𝑛

)
< ∞,

thereby completing the proof of (4.12). □

Proof of Theorem 1.7. Since 0 < 𝑞 < 1 ≤ 𝑝 < 2, the necessity follows immediately from Proposition 1.2 and the fact that
(1.4) implies 𝔼(𝑋) = 0. The sufficiency follows from the implication (i)⇒(ii) of Theorem 3.1 in Section 3. □

Proof of Corollary 1.8. Recalling Proposition 1.2, if 0 < 𝑞 < 𝑝 < 2, then (1.10) is equivalent to 𝑋 ∈ SLLN(𝑝, 𝑞). Therefore,
the case where 0 < 𝑞 < 𝑝 < 1 follows from Theorem 1.5, and the case where 0 < 𝑞 < 1 ≤ 𝑝 < 2 follows from Theorem 1.7.
We now consider the case where 0 < 𝑞 = 𝑝 < 1. If (1.10) holds, then by applying Proposition 1.2 again, we obtain (1.11)

(with 𝑞 = 𝑝). Conversely, if (1.11) (with 𝑞 = 𝑝) holds, then by following the proof of Lemma 5.6 of Li, Qi, and Rosalsky [14]
with ‖𝑋‖𝑝 in the place of ‖𝑋‖, we obtain

∞∑
𝑛=1

𝔼
(‖𝑋‖𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < ‖𝑋‖𝑝 ≤ 𝑛)

)
𝑛

< ∞.

Therefore, (1.7) (with 𝑞 = 𝑝) holds, and by applying Theorem 1.5, we have 𝑋 ∈ SLLN(𝑝, 𝑝), that is, (1.6) holds with 𝑞 = 𝑝.
The conclusion (1.10) then follows from Proposition 1.2. □

We close this section by presenting three simple examples to illustrate Theorem 1.5, as mentioned in Remark 1.6. The
first example shows that, for 0 < 𝑝 < 1, there exists a random variable 𝑋 such that 𝑋 ∈ SLLN(𝑝, 𝑝) but 𝑋 ∉ SLLN(𝑝, 𝑞)

for all 0 < 𝑞 < 𝑝.

Example 4.3. Let 0 < 𝑝 < 1. For 𝑞 > 0, let 𝑋 be a real-valued random variable such that its tail probability function is

ℙ(𝑋 > 𝑡) = 𝟏{𝑡 ≤ e} +
e𝑞

𝑡𝑞(ln 𝑡)2𝑝∕𝑞
𝟏{𝑡 > e}, 𝑡 ∈ ℝ.

Then, for all 𝑡 > e𝑞, we have

ℙ(|𝑋|𝑞 > 𝑡) = ℙ(𝑋 > 𝑡1∕𝑞) =
e𝑞

𝑡(ln 𝑡1∕𝑞)2𝑝∕𝑞
.

Therefore,

∫
∞

0

ℙ𝑞∕𝑝(|𝑋|𝑞 > 𝑡)d𝑡 = ∞ if 𝑞 < 𝑝.

For 𝑞 = 𝑝, elementary calculus also shows that

𝔼
(|𝑋|𝑝 ln1∕2(1 + |𝑋|𝑝)) < ∞. (4.23)

The proof of Lemma 5.6 of Li, Qi, and Rosalsky [14] shows that, for any random variable 𝑋, if

𝔼
(‖𝑋‖ ln𝛿(1 + ‖𝑋‖)) < ∞ for some 𝛿 > 0,
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then
∞∑
𝑛=1

𝔼(‖𝑋‖𝟏(min{𝑢𝑛, 𝑛} < ‖𝑋‖ ≤ 𝑛))

𝑛
< ∞.

It thus follows from (4.23) that (1.7) holds for 𝑞 = 𝑝. By Theorem 1.5, we see that, for this example, 𝑋 ∈ SLLN(𝑝, 𝑝) but
𝑋 ∉ SLLN(𝑝, 𝑞) for all 0 < 𝑞 < 𝑝.

The next two examples show that each of the two conditions that appeared in (1.7) (for the case where 𝑝 = 𝑞) does not
imply each other. Examples 4.4 and 4.5 are inspired by Examples 5.2 and 5.3 of Li, Qi, and Rosalsky [14], respectively.

Example 4.4. Let 0 < 𝑝 < 1 and let 𝑋 be a real-valued random variable such that its tail probability function is

ℙ(𝑋 > 𝑡) = 𝟏{𝑡 ≤ ee} +
ee𝑝+1

𝑡𝑝(ln 𝑡)(ln ln 𝑡)2
𝟏{𝑡 > ee}, 𝑡 ∈ ℝ.

Then, 𝔼(|𝑋|𝑝) < ∞ and by the same calculation as in Lemma 5.2 of Li, Qi, and Rosalsky [14], we have

∞∑
𝑛=1

𝔼
(|𝑋|𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < |𝑋|𝑝 ≤ 𝑛)

)
𝑛

= ∞.

Example 4.5. Let 0 < 𝑝 < 1 and let 𝑋 be a real-valued random variable such that its tail probability function is

ℙ(𝑋 > 𝑡) = 𝟏{𝑡 ≤ 1} +
1

𝑡𝑝
𝟏{𝑡 > 1}, 𝑡 ∈ ℝ.

Then, 𝔼(|𝑋|𝑝) = ∞ and

∞∑
𝑛=1

𝔼
(|𝑋|𝑝𝟏(min{𝑢𝑝𝑛 , 𝑛} < |𝑋|𝑝 ≤ 𝑛)

)
𝑛

= 0

since 𝑢𝑝𝑛 = 𝑛.

5 FURTHER REMARKS

This work has been devoted to (𝑝, 𝑞)-type SLLN and related results for one-parameter processes. As noted by Khosh-
nevisan [9], “there are a number of compelling reasons for studying random fields, one of which is that, if and when
possible, multiparameter processes are a natural extension of existing one-parameter processes.” Some of the tools used in
this paper such as the generalization of Ottaviani’s inequality developed by Li and Rosalsky [13] or Lemma 2.2 are available
for multiparameter processes (see [1, 23]), but it is unclear whether the methods of this paper can be pushed through.
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