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Abstract
Consider a sequence of positive integers {kn, n ≥ 1}, and an array of nonnegative
real numbers {an,i , 1 ≤ i ≤ kn, n ≥ 1} satisfying supn≥1

∑kn
i=1 an,i = C0 ∈ (0,∞).

This paper introduces the concept of {an,i }-stochastic domination. We develop some
techniques concerning this concept and apply them to remove an assumption in a
strong law of large numbers of Chandra and Ghosal (Acta Math Hung 71(4):327–
336, 1996). As a by-product, a considerable extension of a recent result of Boukhari
(J Theor Probab, 2021. https://doi.org/10.1007/s10959-021-01120-6) is established
and proved by a different method. The results on laws of large numbers are new even
when the summands are independent. Relationships between the concept of {an,i }-
stochastic domination and the concept of {an,i }-uniform integrability are presented.
Two open problems are also discussed.

Keywords Stochastic domination · Uniform integrability · Strong law of large
numbers · Weak law of large numbers · Weighted sum · Cesàro stochastic domination

Mathematics Subject Classification 60E15 · 60F05 · 60F15

1 Introduction andmotivation

Let 1 ≤ p < 2. The classical Marcinkiewicz–Zygmund strong law of large numbers
(SLLN) states that for a sequence {Xn, n ≥ 1} of independent identically distributed
mean zero random variables, condition E(|X1|p) < ∞ is necessary and sufficient for

lim
n→∞

∑n
i=1 Xi

n1/p
= 0 almost surely (a.s.). (1.1)
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Now, let us recall a weak dependence structure introduced in Chandra and Ghosal
(1996a) as follows.A sequence of randomvariables {Xn, n ≥ 1} is said to be asymptot-
ically almost negatively associated (AANA) if there exists a sequence of nonnegative
real numbers {qn, n ≥ 1} with limn→∞ qn = 0 such that

Cov( f (Xn), g(Xn+1, . . . , Xn+k)) ≤ qn (Var( f (Xn))Var(g(Xn+1, . . . , Xn+k)))
1/2 ,

for all n ≥ 1, k ≥ 1 and for all coordinatewise nondecreasing continuous functions f
and g provided the right side of the above inequality is finite. The qn, n ≥ 1 are called
mixing coefficients. The starting point of the current investigation is the following
SLLN established by Chandra and Ghosal (1996a).

Theorem 1.1 (Chandra and Ghosal 1996a) Let 1 ≤ p < 2 and let {Xn, n ≥ 1}
be a sequence of AANA mean zero random variables with the sequence of mixing
coefficients satisfying

∑∞
n=1 q

2
n < ∞. Let

G(x) = sup
n≥1

1

n

n∑

i=1

P(|Xi | > x), x ∈ R.

If

∫ ∞

0
x p−1G(x) d x < ∞, (1.2)

and

∞∑

n=1

P(|Xn|p > n) < ∞, (1.3)

then the Marcinkiewicz–Zygmund SLLN (1.1) is obtained.

The above result of Chandra and Ghosal (1996a) weakens the assumptions in the
classicalMarcinkiewicz–Zygmund SLLN not only by considering a weak dependence
structure, but also by relaxing the identical distribution condition. We refer to (1.2)
and (1.3) as the Chandra–Ghosal conditions. It is clear that for a sequence {Xn, n ≥ 1}
of random variables with a common law, (1.2) and (1.3) are equivalent since each of
them is equivalent to E(|X1|p) < ∞. This leads to a natural question in this context
is whether (1.2) or (1.3) can be removed. The current work is an attempt to answer
this question. More precisely, we shall prove the following theorem.

Theorem 1.2 Theorem 1.1 holds without Condition (1.3).

To prove Theorem 1.2, we develop some results concerning a new concept of
stochastic domination which leads to the concept of the Cesàro stochastic domination
as a particular case.
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Let {kn, n ≥ 1} be a sequence of positive integers. An array {Xn,i , 1 ≤ i ≤ kn, n ≥
1} of random variables is said to be stochastically dominated by a random variable X
if

sup
1≤i≤kn ,n≥1

P(|Xn,i | > x) ≤ P(|X | > x), for all x ∈ R. (1.4)

This conceptwas extended to the concept of the so-calledCesàro stochastic domination
by Gut (1992) as follows. An array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} of random variables is
said to be stochastically dominated in the Cesàro sense (or weakly mean dominated)
by a random variable X if

sup
n≥1

1

kn

kn∑

i=1

P(|Xn,i | > x) ≤ CP(|X | > x), for all x ∈ R, (1.5)

where C > 0 is a constant. It was shown by Gut [1992, Example 2.1] that (1.5) is
strictly weaker than (1.4).

We will now introduce a new concept of stochastic domination. Let {an,i , 1 ≤ i ≤
kn, n ≥ 1} be an array of nonnegative real numbers satisfying

sup
n≥1

kn∑

i=1

an,i = C0 ∈ (0,∞). (1.6)

An array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} of random variables is said to be
{an,i }-stochastically dominated by a random variable X if

sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x) ≤ C0P(|X | > x), for all x ∈ R. (1.7)

In view of Gut’s definition in (1.5), one may be tempted to give an apparently weaker
definition of {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} being {an,i }-stochastically dominated by a
random variable Y , namely that

sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x) ≤ CP(|Y | > x), for all x ∈ R, (1.8)

for some finite constant C > 0. However, it will be shown in Theorem 2.2 that (1.7)
and (1.8) are indeed equivalent. Therefore, concerning Gut’s definition of the Cesàro
stochastic domination, we can simply choose C = 1 in (1.5). If an,i = 1/kn, 1 ≤
i ≤ kn, n ≥ 1, then it is obvious that C0 = 1, and the concept of {an,i }-stochastic
domination reduces to the concept of stochastic domination in the Cesàro sense.

If 0 < p < 1 and {Xn, n ≥ 1} is a sequence of random variables satisfying (1.2)
and (1.3), then the Marcinkiewicz–Zygmund SLLN (1.1) is valid irrespective of any
dependence structure (see Remark 3 in Chandra and Ghosal 1996a). Boukhari (2021)
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recently used techniques from martingales theory to prove that a similar result holds
true for the weak law of large numbers (WLLN) for maximal partial sums with general
normalizing sequences. The tools developed in this paper also allow us to establish an
extension of Theorem 1.2 of Boukhari (2021). A special case of ourWLLNs in Sect. 4
is the following theorem.

Theorem 1.3 Let {Xn, n ≥ 1} be a sequence of random variables, G(·) as in Theo-
rem 1.1 and let {bn, n ≥ 1} be a nondecreasing sequence of positive real numbers
such that

n∑

i=1

bi
i2

= O

(
bn
n

)

. (1.9)

If

lim
k→∞ kG(bk) = 0, (1.10)

then the WLLN

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣
∣

P→ 0 as n → ∞ (1.11)

is obtained.

Remark 1.4 Boukhari [2021, Theorem 1.2] proved Theorem 1.3 under a stronger
condition that the sequence {Xn, n ≥ 1} is stochastically dominated by a random
variable X satisfying

lim
k→∞ kP(|X | > bk) = 0.

An example in Sect. 4 shows that for 0 < p < 1 and bn = n1/p, there exists a sequence
of random variables {Xn, n ≥ 1} with no stochastically dominating random variable,
but (1.10) is satisfied and therefore theWLLN (1.11) is valid.Our proof of Theorem1.3
is simpler than that of Theorem 1.2 of Boukhari (2021) in the sense that we do not use
the Doob maximal inequality for martingales as was done in Boukhari (2021). The
WLLN for dependent random variables and random vectors was also studied in Hien
and Thành (2015), Kruglov (2011), Rosalsky and Thành (2009), among others.

The rest of the paper is organized as follows. In Sect. 2, we prove the equivalence
between the definitions of {an,i }-stochastic domination given in (1.7) and (1.8). It is
also shown that certain bounded moment conditions on an array of random variables
{Xn,i , 1 ≤ i ≤ kn, n ≥ 1} can accomplish the concept of {Xn,i , 1 ≤ i ≤ kn, n ≥ 1}
being {an,i }-stochastically dominated. Section 3 discusses about relationships between
the concept of {an,i }-stochastic domination and the concept of {an,i }-uniform integra-
bility. Strong andweak laws of large numbers for triangular arrays of random variables
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are presented in Sect. 4. From these general results, Theorems 1.2 and 1.3 follow.
Section 5 contains further remarks and two open problems.
Notation: Throughout this paper, {kn, n ≥ 1} is assumed to be a sequence of positive
integers. For a set A, 1(A) denotes the indicator function of A. For x ≥ 0, let log x
denote the logarithm base 2 of max{2, x}. For x ≥ 0 and for a fixed positive integer
ν, let

logν(x) := (log x)(log log x) . . . (log · · · log x), (1.12)

and

log(2)
ν (x) := (log x)(log log x) . . . (log · · · log x)2, (1.13)

where in both (1.12) and (1.13), there are ν factors. For example, log2(x) =
(log x)(log log x), log(2)

3 (x) = (log x)(log log x)(log log log x)2, and so on.

2 On the concept of {an,i}-stochastic domination

In this section, we employ some properties of slowly varying functions as well as
techniques in Rosalsky and Thành (2021) to prove some results on the concept of
{an,i }-stochastic domination. We note that all results in Sects. 2 and 3 are stated
for a triangular array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} of random variables but they still
hold for a sequence of random variables {Xn, n ≥ 1} by considering Xn,i = Xi ,
1 ≤ i ≤ kn, n ≥ 1.

The following theorem is a simple result and its proof is similar to that of Theorem
2.1 of Rosalsky and Thành (2021). It plays a useful role in proving the laws of large
numbers in Sect. 4.

Theorem 2.1 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables, let
{an,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of nonnegative real numbers satisfying (1.6)
and let

F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x), x ∈ R.

Then, F(·) is the distribution function of a random variable X if and only if
limx→∞ F(x) = 1. In such a case, {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically
dominated by X.

Proof It is clear that F(·) is nondecreasing, and

lim
x→−∞ F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,i = 0.
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Let ε > 0 be arbitrary. For a ∈ R, let n0 ≥ 1 be such that

1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > a) >
1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > a) − ε/2,

or equivalently,

1 − 1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > a) < F(a) + ε/2. (2.1)

Since the function

x �→ 1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > x), x ∈ R,

is nonincreasing and right continuous, there exists δ > 0 such that

−ε/2 <
1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > x) − 1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > a)

≤ 0 for all x such that 0 ≤ x − a < δ.

Therefore, for x satisfying 0 ≤ x − a < δ, we have

F(x) − ε = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x) − ε

≤ 1 − 1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > x) − ε

< 1 − 1

C0

kn0∑

i=1

an0,iP(|Xn0,i | > a) − ε/2

< F(a) (by (2.1))

and so |F(x)−F(a)| < ε. Thus, limx→a+ F(x) = F(a). Since a ∈ R is arbitrary, this
implies that F is right continuous onR. Since F(·) is nondecreasing, right continuous
and limx→−∞ F(x) = 0, it is the distribution function of a random variable X if
and only if limx→∞ F(x) = 1. By definition of F(·), {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is
{an,i }-stochastically dominated by X . �	

The next theorem establishes the equivalence between the definitions of {an,i }-
stochastic domination given in (1.7) and (1.8). A similar result concerning the concept
of stochastic domination was proved by Rosalsky and Thành (2021).
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Theorem 2.2 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables and let
{an,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of nonnegative real numbers satisfying (1.6).
Then, there exists a random variable X satisfying (1.7) if and only if there exist a
random variable Y and a finite constant C > 0 satisfying (1.8).

Moreover, (i) if g : [0,∞) → [0,∞) is a measurable function with g(0) = 0
which is bounded on [0, A] and differentiable on [A,∞) for some A ≥ 0 or (ii) if
g : [0,∞) → [0,∞) is a continuous function which is eventually nondecreasing with
limx→∞ g(x) = ∞, then the condition E(g(|Y |)) < ∞ where Y is as in (1.8) implies
that E(g(|X |)) < ∞ where X is as in (1.7).

Proof The necessity half is immediate by taking Y = X and C = C0. Conversely, if
there exist a nonnegative random variable Y and a finite constant C > 0 satisfying
(1.8), then

lim
x→∞ sup

n≥1

kn∑

i=1

an,iP(|Xn,i | > x) ≤ C lim
x→∞P(|Y | > x) = 0,

and so by Theorem 2.1, there exists a random variable X with distribution function

F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x), x ∈ R.

This implies

sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x) = C0(1 − F(x)) = C0P(X > x), x ∈ R

thereby verifying (1.7).
The rest of the proof proceeds in a similar manner as that of Theorem 2.4 (i) and

(ii) in Rosalsky and Thành (2021). The details will be omitted. �	
The following result is a direct consequence of Theorem 2.2 by choosing an,i =

1/kn for all 1 ≤ i ≤ kn , n ≥ 1. It says that in the Cesàro stochastic domination
definition, (1.5) can be simplified to

sup
n≥1

1

kn

kn∑

i=1

P(|Xn,i | > x) ≤ P(|Y | > x), for all x ∈ R, (2.2)

for some random variable Y (surprisingly, this was not noticed by Gut 1992).

Corollary 2.3 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables. Then,
there exist a random variable X and a finite constant C > 0 satisfying (1.5) if and only
if there exists a random variable Y satisfying (2.2). Moreover, if g is a measurable
function satisfying assumptions in Theorem 2.2, then the condition E(g(|X |)) < ∞
where X is as in (1.5) implies that E(g(|Y |)) < ∞ where Y is as in (2.2).
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By using integration by parts, we have from (2.2) that for all r > 0 and x ≥ 0

sup
n≥1

1

kn

kn∑

i=1

E
(|Xn,i |r1(|Xn,i | ≤ x)

) ≤ E
(|Y |r1(|Y | ≤ x)

) + xrP(|Y | > x), (2.3)

and

sup
n≥1

1

kn

kn∑

i=1

E
(|Xn,i |r1(|Xn,i | > x)

) ≤ E
(|Y |r1(|Y | > x)

)
. (2.4)

We will use (2.3) and (2.4) in our proofs without further mention.
The following consequence of Theorem 2.1 is also useful in proving the laws of

large numbers.

Corollary 2.4 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables and let

F(x) = 1 − sup
n≥1

1

kn

kn∑

i=1

P(|Xn,i | > x), x ∈ R.

Then, F is the distribution function of a random variable X if and only if
limx→∞ F(x) = 1. In such a case, {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically
dominated in the Cesàro sense by X.

In view of (2.2), if {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically dominated in
the Cesàro sense by a random variable Y , then it is {an,i }-stochastically dominated
by Y with an,i = 1/kn , 1 ≤ i ≤ kn , n ≥ 1. The following example shows that the
concept of {an,i }-stochastic domination is strictlyweaker than the concept of stochastic
domination in the Cesàro sense.

Example 2.5 Let kn ≡ n and let mn be the greatest integer number which is less than
or equal to n/2. Let an,i = 1/mn for 1 ≤ i ≤ mn, n ≥ 2 and an,i = 1/n2 for
mn < i ≤ n, n ≥ 1. Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables
such that

P(Xn,i = −1) = P(Xn,i = 1) = 1/2, 1 ≤ i ≤ mn, n ≥ 2

and

P(Xn,i = −n) = P(Xn,i = n) = 1/2, mn < i ≤ n, n ≥ 1.

Then, for x ≥ 1, we have

1

n

n∑

i=1

P(|Xn,i | > x) =
⎧
⎨

⎩

0 if n ≤ x,
n − mn

n
if n > x .

123



A new concept of stochastic domination and the laws of large numbers

This implies

sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x) ≥ 1

2
, for all x ≥ 1.

Thus, by Corollary 2.4, there is no random variable Y such that {Xn,i , 1 ≤ i ≤ n, n ≥
1} is stochastically dominated in the Cesàro sense by Y . Now, we have

1 < C0 = sup
n≥1

n∑

i=1

an,i = sup
n≥2

(

1 + n − mn

n2

)

≤ 2,

and for x ≥ 1 and n ≥ 1,

n∑

i=1

an,iP(|Xn,i | > x) =
n∑

i=mn+1

1

n2
P(|Xn,i | > x) =

⎧
⎨

⎩

0 if n ≤ x,
n − mn

n2
≤ 1

n
if n > x .

Thus,
∑n

i=1 an,iP(|Xn,i | > x) → 0 as x → ∞. By Theorem 2.1, {Xn,i , 1 ≤ i ≤
n, n ≥ 1} is {an,i }-stochastically dominated by a random variable X with distribution
function

F(x) = 1 − 1

C0
sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x), x ∈ R.

This shows that the concept of {an,i }-stochastic domination is strictly weaker than the
concept of stochastic domination in the Cesàro sense.

Recall that a real-valued function L(·) is said to be slowly varying (at infinity) if it
is a positive and measurable function on [A,∞) for some A ≥ 0, and for each λ > 0,

lim
x→∞

L(λx)

L(x)
= 1.

If L(·) is a slowly varying function, then there exists a slowly varying function L̃(·),
unique up to an asymptotic equivalence, satisfying

lim
x→∞ L(x)L̃ (xL(x)) = 1 and lim

x→∞ L̃(x)L
(
x L̃(x)

)
= 1. (2.5)

The function L̃(·) is called the de Bruijn conjugate of L(·) (see Bingham et al. [1989, p.
29]). For many “nice” slowly varying functions L(·), we can choose L̃(x) = 1/L(x).
Especially, if L(x) = (log x)γ or L(x) = (log log x)γ for some γ ∈ R, then L̃(x) =
1/L(x).

Let L(·) be a slowly varying function and let α > 0. By using a suitable asymptotic
equivalence version (see Lemmas 2.2 and 2.3 (i) in Anh et al. 2021), we can firstly
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assume that L(·) is positive and differentiable on [a,∞), and xαL(x) is strictly increas-
ing on [a,∞) for some large a. Next, let L1(·) be a slowly varying function satisfying
L1(x) = L(a)x/a if 0 ≤ x < a and L1(x) = L(x) if x ≥ a (i.e., L1(0) = 0 with
a linear growth to L(a) over [0, a), and L1(x) ≡ L(x) on [a,∞)). Then, (i) L1(x)
is continuous on [0,∞) and differentiable on [a,∞), and (ii) xαL1(x) is strictly
increasing on [0,∞). In this paper, we will assume, without loss of generality, that
these properties are fulfilled for the underlying slowly varying functions.

The next theorem shows that bounded moment conditions on an array of random
variables {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} with respect to weights {an,i , 1 ≤ i ≤ kn, n ≥ 1}
can accomplish {an,i }-stochastic domination.

Theorem 2.6 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables,
{an,i , 1 ≤ i ≤ kn, n ≥ 1} an array of nonnegative real numbers satisfying (1.6).
Let p > 0 and let ν be a fixed positive integer. Let L(·) be a slowly varying function.
If

sup
n≥1

kn∑

i=1

an,iE

(
|Xn,i |pL(|Xn,i |) log(2)

ν (|Xn,i |)
)

< ∞, (2.6)

then there exists a random variable X with distribution function

F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x), x ∈ R (2.7)

such that {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically dominated by X, and

E
(|X |pL(|X |)) < ∞. (2.8)

Remark 2.7 A weaker version of Theorem 2.6 for stochastic domination (without the
appearance of the slowly varying function L(·)) was proved by Rosalsky and Thành
(2021) (seeTheorem2.5 (ii) and (iii) inRosalsky andThành2021).Typical examples of
slowly varying functions L(·) for (2.6) are L(x) ≡ 1 and L(x) ≡ L1(x)(log

(2)
ν (x))−1,

where L1(·) is another slowly varying function. Theorem 2.6 is proved by employing
an idea from Galambos and Seneta (1973).

Before proving Theorem 2.6, we recall a simple result on the expectation of a
nonnegative random variable, see Rosalsky and Thành (2021) for a proof.

Lemma 2.8 Let h : [0,∞) → [0,∞) be a measurable function with h(0) = 0 which
is bounded on [0, A] and differentiable on [A,∞) for some A ≥ 0. If ξ is a nonnegative
random variable, then

E(h(ξ)) = E(h(ξ)1(ξ ≤ A)) + h(A) +
∫ ∞

A
h′(x)P(ξ > x) d x .
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Proof of Theorem 2.6. Set

g(x) = x pL(x) log(2)
ν (x), and h(x) = x pL(x), x ≥ 0.

Since limx→∞ g(x) = ∞ and g(·) is strictly increasing on [0,∞) as we have assumed
before, we have from Markov’s inequality and (2.6) that

0 ≤ lim
x→∞ sup

n≥1

kn∑

i=1

an,iP(|Xn,i | > x) ≤ lim
x→∞

1

g(x)
sup
n≥1

kn∑

i=1

an,iE(g(|Xn,i |)) = 0.

ByTheorem2.1, the array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically dominated
by a random variable X with distribution function F(·) given in (2.7).

Next, we prove (2.8).We firstly consider the case where the slowly varying function
L(·) is differentiable on an infinite interval far enough from 0, and

lim
x→∞

xL ′(x)
L(x)

= 0. (2.9)

By (2.9), there exists B ≥ 0 such that

∣
∣
∣
∣
xL ′(x)
L(x)

∣
∣
∣
∣ ≤ p

2
, x > B.

It follows that

h′(x) = px p−1L(x) + x pL ′(x) = x p−1L(x)

(

p + xL ′(x)
L(x)

)

≤ 3px p−1L(x)

2
, x ≥ B. (2.10)

Therefore, there exists a constant C1 such that

E(h(X)) = E(h(X)1(X ≤ B)) + h(B) +
∫ ∞

B
h′(x)P(X > x)dx

≤ C1 + 3p

2

∫ ∞

B
x p−1L(x)P(X > x)dx

= C1 + 3p

2C0

∫ ∞

B
x p−1L(x) sup

n≥1

kn∑

i=1

an,iP(|Xn,i | > x)dx

≤ C1 + 3p

2C0

∫ ∞

B

1

x log(2)
ν (x)

sup
n≥1

kn∑

i=1

an,iE
(
g(|Xn,i |)

)
dx

= C1 + 3p

2C0
sup
n≥1

kn∑

i=1

an,iE
(
g(|Xn,i |)

)
∫ ∞

B

dx

x log(2)
ν (x)

< ∞,

123



L. V. Thành

where we have applied Lemma 2.8 in the first equality, (2.10) in the first inequality,
Markov’s inequality in the second inequality, and (2.6) in the last inequality. Thus, we
obtain (2.8) in this case.

For general slowly varying function L(·), by a result from page 111 of Galambos
and Seneta (1973), there exists a slowly varying function L1(·) which is differentiable
on [B1,∞) for some B1 large enough, and satisfies

lim
x→∞

L1(x)

L(x)
= 1 (2.11)

and

lim
x→∞

xL ′
1(x)

L1(x)
= 0.

For n ≥ 1, 1 ≤ i ≤ n, we have from (2.11) that for all B2 large enough

E

(
|Xn,i |pL1(|Xn,i |) log(2)

ν (|Xn,i |)
)

= E

(
|Xn,i |pL1(|Xn,i |) log(2)

ν (|Xn,i |)1(|Xn,i | ≤ B2)
)

+ E

(
|Xn,i |pL1(|Xn,i |) log(2)

ν (|Xn,i |)1(|Xn,i | > B2)
)

≤ C2 + 2E
(
|Xn,i |pL(|Xn,i |) log(2)

ν (|Xn,i |)1(|Xn,i | > B2)
)

,

(2.12)

where C2 is a finite constant. Combining (2.6) and (2.12) yields

sup
n≥1

kn∑

i=1

an,iE

(
|Xn,i |pL1(|Xn,i |) log(2)

ν (|Xn,i |)
)

< ∞. (2.13)

Proceeding exactly the same manner as the first case with L(·) is replaced by L1(·),
we obtain (2.8). The proof of the theorem is completed. �	

The following corollary follows immediately from Theorem 2.6.

Corollary 2.9 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables, and let
L(·) be a slowly varying function. Let p > 0 and let ν be a fixed positive integer. If

sup
n≥1

1

kn

kn∑

i=1

E

(
|Xn,i |pL(|Xn,i |) log(2)

ν (|Xn,i |)
)

< ∞,

then there exists a random variable X with distribution function

F(x) = 1 − sup
n≥1

1

kn

kn∑

i=1

P(|Xn,i | > x), x ∈ R
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such that {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically dominated in the Cesàro sense
by X, and

E
(|X |pL(|X |)) < ∞.

3 Relationships between {an,i}-stochastic domination and
{an,i}-uniform integrability

The concept of {an,i }-uniform integrability was introduced by Ordóñez Cabrera
(1994). Let {an,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of nonnegative real numbers
satisfying (1.6). An array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} of random variables is said to be
{an,i }-uniformly integrable if

lim
a→∞

kn∑

i=1

an,iE(|Xn,i |1(|Xn,i | > a)) = 0.

Similar to the classical characterization of the uniform integrability, it was proved by
Ordóñez Cabrera (1994) that an array of random variables {Xn,i , 1 ≤ i ≤ kn, n ≥ 1}
is {an,i }-uniformly integrable if and only if

sup
n≥1

kn∑

i=1

an,iE(|Xn,i |) < ∞

and for each ε > 0, there exists δ > 0 such that whenever {An,i , 1 ≤ i ≤ kn, n ≥ 1}
is an array of events satisfying

sup
n≥1

kn∑

i=1

an,iP(An,i ) < δ,

then

sup
n≥1

kn∑

i=1

an,iE(|Xn,i |1(An,i )) < ε.

If an,i = 1/kn, 1 ≤ i ≤ kn, n ≥ 1, then it reduces to the concept of {Xn,i , 1 ≤
i ≤ kn, n ≥ 1} being uniformly integrable in the Cesàro sense which was introduced
in Chandra (1989). The de La Vallée–Poussin criterion for uniform integrability in
the Cesàro sense, and for {an,i }-uniform integrability was proved, respectively, by
Chandra and Goswami (1992), and Ordóñez Cabrera (1994). The former is a special
case of the latter, which reads as follows: An array of random variables {Xn,i , 1 ≤
i ≤ kn, n ≥ 1} is {an,i }-uniformly integrable if and only if there exists a measurable
function g : [0,∞) → [0,∞) with g(0) = 0, g(x)/x → ∞ as x → ∞, and
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sup
n≥1

kn∑

i=1

an,iE(g(|Xn,i |)) < ∞.

Moreover, g can be selected to be convex and such that g(x)/x is nondecreasing.
The next theorem establishes relationships between the concept of {an,i }-stochastic

domination and the concept of {an,i }-uniform integrability.

Theorem 3.1 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables, and let
{an,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of nonnegative real numbers satisfying (1.6).
Let p > 0 and let L̃(·) be the Bruijn conjugate of a slowly varying function L(·).
(i) If {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically dominated by a random

variable X withE(|X |pL(|X |p)) < ∞, then {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ kn, n ≥
1} is {an,i }-uniformly integrable.

(ii) If {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-uniformly integrable, then
there exists a random variable X with distribution function

F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x), x ∈ R,

such that {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically dominated by X,

E

(
|X |pL(|X |p)(log(2)

ν (|X |))−1
)

< ∞ for all fixed positive integer ν, (3.1)

and

lim
x→∞ xP

(
|X | > x1/p L̃1/p(x)

)
= 0. (3.2)

Proof Let f (x) = x pL(x p), g(x) = x1/p L̃1/p(x), x ≥ 0. Recalling that we assume,
without loss of generality, that f and g are strictly increasing on [0,∞).

(i) Since E(|X |pL(|X |p)) < ∞, it follows from the classical de La Vallée Poussin
criterion for uniform integrability that there exists a continuous and strictly
increasing function h : [0,∞) → [0,∞) with h(0) = 0, limx→∞ h(x)/x = ∞,
and E(h(|X |pL(|X |p))) < ∞. Since f (x) is strictly increasing on [0,∞), the
{an,i }-stochastic domination assumption ensures that for all n ≥ 1,

kn∑

i=1

an,iP(|Xn,i | > f −1(h−1(x))) ≤ C0P(|X | > f −1(h−1(x))), x ∈ R

or, equivalently,

kn∑

i=1

an,iP(|Xn,i |pL(|Xn,i |p) > h−1(x)) ≤ C0P(|X |pL(|X |p) > h−1(x)), x ∈ R
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which, in turn, is equivalent to

kn∑

i=1

an,iP(h(|Xn,i |pL(|Xn,i |p)) > x) ≤ C0P(h(|X |pL(|X |p)) > x), x ∈ R.

It follows that

sup
n≥1

kn∑

i=1

an,iE(h(|Xn,i |pL(|Xn,i |p)))

= sup
n≥1

kn∑

i=1

an,i

∫ ∞

0
P(h(|Xn,i |pL(|Xn,i |p)) > x) d x

≤ C0

∫ ∞

0
P(h(|X |pL(|X |p)) > x) d x

= C0E(h(|X |pL(|X |p))) < ∞.

By the de La Vallée Poussin criterion for {an,i }-uniform integrability (Ordóñez
Cabrera (1994)), {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-uniformly
integrable.

(ii) Since {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-uniformly integrable,

sup
n≥1

kn∑

i=1

an,iE
(|Xn,i |pL(|Xn,i |p)

)
< ∞,

and so by Theorem 2.6, {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is {an,i }-stochastically
dominated by a random variable X with distribution function

F(x) = 1 − 1

C0
sup
n≥1

kn∑

i=1

an,iP(|Xn,i | > x), x ∈ R,

and (3.1) holds.

Finally, by using the de La Vallée Poussin criterion for {an,i }-uniform integrability
again, there exists a nondecreasing function h defined on [0,∞) with h(0) = 0 such
that

lim
x→∞

h(x)

x
= ∞, (3.3)

and

sup
n≥1

kn∑

i=1

an,iE(h(|Xn,i |pL(|Xn,i |p))) < ∞. (3.4)
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By applying Lemma 2.1 in Anh et al. (2021), we have f (g(x))/x → 1 as x → ∞,
and therefore

f (g(x)) > x/2 for all large x . (3.5)

We thus have from (3.3), (3.4), (3.5) and Markov’s inequality that

lim
x→∞ xP (|X | > g(x)) = 1

C0
lim
x→∞ x sup

n≥1

kn∑

i=1

an,iP(|Xn,i | > g(x))

≤ 1

C0
lim
x→∞ x sup

n≥1

kn∑

i=1

an,iP( f (|Xn,i |) ≥ f (g(x)))

≤ 1

C0
lim
x→∞ x sup

n≥1

kn∑

i=1

an,iP( f (|Xn,i |) ≥ x/2)

≤ 1

C0
lim
x→∞ x sup

n≥1

kn∑

i=1

an,iP(h( f (|Xn,i |)) ≥ h(x/2))

≤ 1

C0
lim
x→∞ x sup

n≥1

kn∑

i=1

an,i
E(h( f (|Xn,i |)))

h(x/2)

= 2

C0
sup
n≥1

kn∑

i=1

an,iE(h( f (|Xn,i |))) lim
x→∞

x/2

h(x/2)
= 0,

thereby proving (3.2). �	
The following corollary is a direct consequence of Theorem 3.1. It plays an impor-

tant role in establishing the weak laws of large numbers with general normalizing
sequences under the Cesàro uniform integrability condition in Sect. 4.

Corollary 3.2 Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of random variables. Let
p > 0 and let L(·) be a slowly varying function.

(i) If {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically dominated in the Cesàro sense by
a random variable X with E(|X |pL(|X |p)) < ∞, then {|Xn,i |pL(|Xn,i |p), 1 ≤
i ≤ kn, n ≥ 1} is uniformly integrable in the Cesàro sense.

(ii) If {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ kn, n ≥ 1} is uniformly integrable in the Cesàro
sense, then there exists a random variable X with distribution function

F(x) = 1 − sup
n≥1

1

kn

kn∑

i=1

P(|Xn,i | > x), x ∈ R,

such that {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated in the Cesàro
sense by X, and (3.1) and (3.2) hold.
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4 Laws of large numbers for triangular arrays and proofs
of Theorems 1.2 and 1.3

In this section, we establish strong and weak laws of large numbers for triangular
arrays of random variables. We say that a collection {Xi , 1 ≤ i ≤ N } of random
variables satisfies condition (H) if for all a > 0, there exists a constant C such that

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

m+k∑

i=m+1

(
X (a)
i − EX (a)

i

)
∣
∣
∣
∣
∣

)2

≤ C
m+n∑

i=m+1

E(X (a)
i )2, m ≥ 0, n ≥ 1,m + n ≤ N , (4.1)

where

X (a)
i = −a1(Xi < −a) + Xi1(|Xi | ≤ a) + a1(Xi > a), 1 ≤ i ≤ N .

An infinite sequence of random variables {Xi , i ≥ 1} is said to satisfy condition (H)

if every finite subsequence satisfies condition (H). Many dependence structures meet
this condition. For example, condition (H) holds for negatively associated sequences,
negatively superadditive dependent sequences, AANA sequences with the sequence of
mixing coefficients is in 	2 (the mixing coefficients qn, n ≥ 1 satisfying

∑∞
n=1 q

2
n <

∞). In Adler andMatuła (2018), the authors used a similar condition to establish exact
SLLNs (see Theorems 3.2 and 4.1 in Adler and Matuła 2018).

Throughout this section, the symbol C denotes a positive universal constant which
is not necessarily the same in each appearance. We shall let the indices kn in the
previous sections be kn ≡ n.

The following theorem establishes the rate of convergence in SLLN for maximal
partial sums from triangular arrays of dependent random variables under the Chandra–
Ghosal-type condition (see Condition (4.2)).

Theorem 4.1 Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of mean zero random variables
such that for each n ≥ 1 fixed, the collection {Xn,i , 1 ≤ i ≤ n} satisfies condition
(H), and let

G(x) = sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x), x ∈ R.

Let L(·) be a slowly varying function and let 1 ≤ p < 2. When p = 1, we further
assume that L(·) is nondecreasing and L(x) ≥ 1 for all x ≥ 0. If

∫ ∞

0
x p−1L p(x)G(x) d x < ∞, (4.2)
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then

∞∑

n=1

n−1
P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xn,i

∣
∣
∣
∣
∣
> εn1/p L̃(n1/p)

)

< ∞ for all ε > 0, (4.3)

where L̃(·) is the Bruijn conjugate of L(·).

Proof Since L(·) is a slowly varying function and L(x) ≥ 1 for all x ≥ 0 when
p = 1, it follows from (4.2) that limx→∞ G(x) = 0. By Corollary 2.4, the array
{Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated in the Cesàro sense by a random
variable X with distribution function F(x) = 1 − G(x), x ∈ R. Thus,

G(x) = sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x) = P(|X | > x), x ∈ R. (4.4)

Using the same arguments as in the proof of Theorem 2.6, we can assume, without
loss of generality, that the function L(·) satisfies

lim
x→∞

xL ′(x)
L(x)

= 0. (4.5)

Let h(x) = x pL p(x), x ≥ 0. Then, it follows from (4.5) that for all large x ,

h′(x) = px p−1L p(x)

(

1 + xL ′(x)
L(x)

)

≤ 3

2
px p−1L p(x). (4.6)

Applying Lemma 2.8, it thus follows from (4.2), (4.4) and (4.6) that

E(h(|X |)) = E
(|X |pL p(|X |)) < ∞. (4.7)

We have proved that the array {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated
in the Cesàro sense by a random variable X satisfying (4.7). For n ≥ 1, set bn =
n1/p L̃(n1/p),

Yn,i = −bn1(Xn,i < −bn) + Xn,i1(|Xn,i | ≤ bn) + bn1(Xn,i > bn), 1 ≤ i ≤ n,

and

Sn,k =
k∑

i=1

(Yn,i − E(Yn,i )), 1 ≤ k ≤ n.
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We will now follow the proof of the implication ((i)⇒(ii)) of Theorem 3.1 in Anh
et al. (2021). Let ε > 0 be arbitrary. For n ≥ 1,

P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xn,i

∣
∣
∣
∣
∣
> εbn

)

≤ P

(

max
1≤k≤n

|Xn,k | > bn

)

+ P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Yn,i

∣
∣
∣
∣
∣
> εbn

)

≤ P

(

max
1≤k≤n

|Xn,k | > bn

)

+ P

(

max
1≤k≤n

|Sn,k | > εbn −
n∑

i=1

∣
∣E(Yn,i )

∣
∣

)

.

(4.8)

Since the array {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated in the Cesàro
sense by a random variable X satisfying (4.7), we have from Proposition 2.6 in Anh
et al. (2021) that

∞∑

n=1

n−1
P

(

max
1≤k≤n

|Xn,k | > bn

)

≤
∞∑

n=1

n−1
n∑

k=1

P
(|Xn,k | > bn

)

≤
∞∑

n=1

P(|X | > bn) < ∞.

(4.9)

For n ≥ 1, it follows from the assumption E(Xn,i ) ≡ 0 and the Cesàro stochastic
domination condition that

∑n
i=1 |E(Yn,i )|

bn
≤

∑n
i=1

(∣
∣E(Xn,i1(|Xn,i | ≤ bn))

∣
∣ + bnP(|Xn,i | > bn)

)

bn

=
∑n

i=1

(∣
∣E(Xn,i1(|Xn,i | > bn))

∣
∣ + bnP(|Xn,i | > bn)

)

bn

≤ 2
∑n

i=1 E(|Xn,i |1(|Xn,i | > bn))

bn

≤ 2nE (|X |1(|X | > bn))

bn
.

(4.10)

For n large enough and for ω ∈ (|X | > bn), we have (see (3.10) in Anh et al. 2021)

n

bn
≤ C |X(ω)|p−1L p(|X(ω)|). (4.11)

Applying (4.10), (4.11), (4.7) and the dominated convergence theorem, we have

∑n
i=1 |E(Yn,i )|

bn
≤ CE

(|X |αL p(|X |)1 (|X | > bn)
) → 0 as n → ∞. (4.12)
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From (4.8), (4.9) and (4.12), to obtain (4.3), it remains to show that

∞∑

n=1

n−1
P

(

max
1≤k≤n

|Sn,k | > bnε/2

)

< ∞. (4.13)

Applying Markov’s inequality, condition (H ), and the Cesàro stochastic domination
condition yields

∞∑

n=1

1

n
P

(

max
1≤k≤n

|Sn,k | > bnε/2

)

≤
∞∑

n=1

4

ε2nb2n
E

(

max
1≤k≤n

|Sn,k |
)2

≤
∞∑

n=1

C

nb2n

n∑

i=1

E

(
Y 2
n,i

)

≤ C
∞∑

n=1

(
E

(
X21(|X | ≤ bn)

) + b2nP(|X | > bn)
)

b2n

= C
∞∑

n=1

(

P(|X | > bn) + E(X21(|X | ≤ bn))

b2n

)

.

(4.14)

Using the last four lines of (3.13) of Anh et al. (2021) and (3.14) of Anh et al. (2021),
we have

∞∑

n=1

(

P(|X | > bn) + E(X21(|X | ≤ bn))

b2n

)

≤ C + CE(|X |pL p(|X |)). (4.15)

Combining (4.14), (4.15), and (4.7) yields (4.13). �	
The following corollary establishes rate of convergence in a Marcinkiewicz–

Zygmund-type SLLN for arrays of random variables under a uniformly bounded
moment condition.

Corollary 4.2 Let 1 ≤ p < 2 and let ν be a fixed positive integer. Let {Xn,i , 1 ≤ i ≤
n, n ≥ 1} be an array of mean zero random variables such that for each n ≥ 1 fixed,
the collection {Xn,i , 1 ≤ i ≤ n} satisfies condition (H). If

sup
n≥1

1

n

n∑

i=1

E

(
|Xn,i |pL p(|Xn,i |) log(2)

ν (|Xn,i |)
)

< ∞, (4.16)

then (4.3) is obtained.

Proof By applying Corollary 2.9, we have from (4.16) that the array {Xn,i , 1 ≤ i ≤
n, n ≥ 1} is stochastically dominated in the Cesàro sense by a random variable X with
E(|X |pL p(|X |)) < ∞, that is, (4.2) is satisfied. Applying Theorem 4.1, we obtain
(4.3). �	
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The moment condition (4.16) is almost optimal. The following example shows that
there exists an array of random variables {Xn,i , 1 ≤ i ≤ n, n ≥ 1} such that

sup
n≥1

1

n

n∑

i=1

E
(|Xn,i |p logν(|Xn,i |)

)
< ∞ (4.17)

for every fixed positive integer ν, but (4.3) fails with L̃(x) ≡ L(x) ≡ 1.

Example 4.3 Let ν be an arbitrary fixed positive integer and let 1 ≤ p < 2. Let
{Xn, n ≥ 1} be a sequence of independent random variables with

P(Xn = 0) = 1 − 1

n logν(n)
, P

(
Xn = ±(n + 1)1/p

)
= 1

2n logν(n)
, n ≥ 1

and let Xn,i = Xi , 1 ≤ i ≤ n, n ≥ 1. Then, (4.17) is satisfied, and

∞∑

n=1

P(|Xn| > n1/p) =
∞∑

n=1

1

n logν(n)
= ∞. (4.18)

If (4.3) (with L̃(x) ≡ L(x) ≡ 1) holds, then

∞∑

n=1

1

n
P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣
∣
> εn1/p

⎞

⎠ < ∞ for all ε > 0.

This implies that

lim
n→∞

∑n
i=1 Xi

n1/p
= 0 a.s,

and thus

lim
n→∞

Xn

n1/p
= 0 a.s. (4.19)

Applying the Borel–Cantelli lemma, we have from (4.19) that

∞∑

n=1

P(|Xn| > n1/p) < ∞

contradicting (4.18). Therefore, (4.3) (with L̃(x) ≡ L(x) ≡ 1) must fail.

If we consider sequences of random variables instead of triangular arrays, we
obtain the following Marcinkiewicz–Zygmund-type SLLN with general normalizing
sequences.
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Corollary 4.4 Let {Xn, n ≥ 1} be a sequence of mean zero random variables satisfying
condition (H). Let L(·) be a slowly varying function and let 1 ≤ p < 2. When p = 1,
we further assume that L(·) is nondecreasing and L(x) ≥ 1 for all x ≥ 0. If

∫ ∞

0
x p−1L p(x)

(

sup
n≥1

1

n

n∑

i=1

P(|Xi | > x)

)

d x < ∞, (4.20)

then

lim
n→∞

∑n
i=1 Xi

n1/p L̃(n1/p)
= 0 a.s., (4.21)

where L̃(·) is the Bruijn conjugate of L(·).
Proof Set

Xn,i = Xi , 1 ≤ i ≤ n, n ≥ 1.

Then, (4.20) coincides with (4.2). Applying Theorem 4.1, we have

∞∑

n=1

1

n
P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣
∣
> εn1/p L̃(n1/p)

⎞

⎠ < ∞ for all ε > 0. (4.22)

The Marcinkiewicz–Zygmund-type SLLN (4.21) follows from (4.22). �	
Proof of Theorem 1.2. Since {Xn, n ≥ 1} is a sequence of AANA random variables
with the sequence ofmixing coefficients is in 	2, it satisfies condition (H ) (see Lemmas
2.1 and 2.2 of Ko et al. (2005)). Thus, Theorem 1.2 follows from Corollary 4.4 by
taking L(x) ≡ 1. �	

The following theorem is a significant extension of Theorem 1.3. It establishes a
WLLN for weighted sums from arrays of random variables.

Theorem 4.5 Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables. Let G(·)
be as in Theorem 4.1 and let {bn, n ≥ 1} be a nondecreasing sequence of positive
real numbers satisfying (1.9). Let {cn,i , 1 ≤ i ≤ n} be an array of nonnegative real
numbers satisfying

0 < An :=
n∑

i=1

cn,i ≤ Cn, n ≥ 1 (4.23)

and let

Ĝ(x) = sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x), x ∈ R,
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where an,i = A−1
n cn,i , 1 ≤ i ≤ n, n ≥ 1. If

lim
k→∞ kG(bk) = 0 and lim

k→∞ kĜ(bk) = 0, (4.24)

then the WLLN

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i Xn,i

∣
∣
∣
∣
∣
∣

P→ 0 as n → ∞ (4.25)

is obtained.

Remark 4.6 It is clear that in the unweighted case, i.e., cn,i ≡ 1, then Ĝ(x) ≡ G(x).
It is also easy to see that if {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated by
a random variable X with limk→∞ kP(|X | > bk) = 0, then both halves of (4.24) are
fulfilled.

At the first look, the second half of (4.24) may seem to be a technical condition.
However, the following example shows that it cannot be dispensed with.

Example 4.7 Let 0 < p < 1, bn = n1/p, n ≥ 1 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be
an array of random variables such that

P(Xn,i = −1) = P(Xn,i = 1) = 1/2 for 1 ≤ i < n, n ≥ 2,

and

P(Xn,n = −n1/p log−1/p(n)) = P(Xn,n = n1/p log−1/p(n)) = 1/2 for n ≥ 1.

Let {cn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers such that

cn,i = 0 for 1 ≤ i < n, n ≥ 2, and cn,n = n for n ≥ 1

and let

An =
n∑

i=1

cn,i , an,i = cn,i

An
, 1 ≤ i ≤ n, n ≥ 1.

Then, (4.23) is satisfied since An ≡ n. Let

G(x) = sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x), x ∈ R,

and

Ĝ(x) = sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x), x ∈ R.
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For n ≥ 1, we have

1

n

n∑

i=1

E
(|Xn,i |p log(|Xn,i |)

) ≤ 1 + 1

n
E(|Xn,n|p log(|Xn,n|))

= 1 + 1

log(n)

(
log(n) − log(log(n))

p

)

≤ 1 + 1

p
< ∞.

Therefore, {|Xn,i |p, 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable in the Cesàro sense
by the de La Vallée Poussin criterion for the Cesàro uniform integrability. Then, by
Corollary 3.2, {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated in the Cesàro
sense by a random variable X with distribution function

F(x) = 1 − sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x) = 1 − G(x), x ∈ R,

and the first half of (4.24) (with bn ≡ n1/p) is satisfied. However, the second half of
(4.24) (with bn ≡ n1/p) fails since

Ĝ(x) = sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x) = sup
n≥1

P(|Xn,n| > x) = 1 for all x ∈ R.

For n ≥ 1, we have with probability 1,

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i Xn,i

∣
∣
∣
∣
∣
∣
= 1

n1/p
cn,n|Xn,n|

= n

log1/p(n)
→ ∞

therefore, the WLLN (4.25) also fails.

Proof of Theorem 4.5. From (1.9),we have bn → ∞ (see (4.31)). SinceG(x) and Ĝ(x)
are nonincreasing, it follows from (4.24) that limx→∞ G(x) = 0 and limx→∞ Ĝ(x) =
0.ByCorollary 2.4, {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated in theCesàro
sense by a random variable X , and by Theorem 2.1, {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is {an,i }-
stochastically dominated by a random variable Y . The distribution functions of X and
Y , respectively, are

FX (x) = 1 − G(x) and FY (x) = 1 − Ĝ(x), x ∈ R.
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Thus,

sup
n≥1

1

n

n∑

i=1

P(|Xn,i | > x) = P(|X | > x), x ∈ R, (4.26)

and

sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x) = P(|Y | > x), x ∈ R, (4.27)

and so (4.24) becomes

lim
k→∞ kP(|X | > bk) = 0 and lim

k→∞ kP(|Y | > bk) = 0. (4.28)

For n ≥ 1, set

Yn,i = Xn,i1(|Xn,i | ≤ bn), 1 ≤ i ≤ n.

We first verify that

max1≤ j≤n

∣
∣
∣
∑ j

i=1 cn,i
(
Xn,i − Yn,i

)∣∣
∣

bn

P→ 0 as n → ∞. (4.29)

To see this, let ε > 0 be arbitrary. Then, we have from (4.26) and the first half of
(4.28) that

P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i
(
Xn,i − Yn,i

)
∣
∣
∣
∣
∣
∣
> bnε

⎞

⎠ ≤ P

(
n⋃

i=1

(Xn,i = Yn,i )

)

≤
n∑

i=1

P(|Xn,i | > bn)

≤ nP(|X | > bn) → 0 as n → ∞
thereby proving (4.29).

Next, it will be shown that

max1≤ j≤n

∣
∣
∣
∑ j

i=1 cn,i Yn,i

∣
∣
∣

bn

P→ 0 as n → ∞. (4.30)

To accomplish this, we first recall that (1.9) implies (see Remark 2.4 (i) in Boukhari
(2021))

n

bn
→ 0 as n → ∞. (4.31)
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Set b0 = 0. Again, let ε > 0 be arbitrary. Then,

P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i Yn,i

∣
∣
∣
∣
∣
∣
> bnε

⎞

⎠ ≤ 1

bnε
E

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i Yn,i

∣
∣
∣
∣
∣
∣

⎞

⎠

≤ 1

bnε

n∑

i=1

cn,iE(|Yn,i |)

≤ 1

bnε

n∑

i=1

cn,i

∫ bn

0
P(|Xn,i | > x) d x

= An

bnε

n∑

i=1

an,i

∫ bn

0
P(|Xn,i | > x) d x

≤ An

bnε

∫ bn

0
P(|Y | > x) d x

= An

bnε

n∑

k=1

∫ bk

bk−1

P(|Y | > x) d x

≤ Cn

bnε

n∑

k=1

bk − bk−1

k
kP(|Y | > bk−1),

(4.32)

where we have applied Markov’s inequality in the first inequality, (4.27) in the fourth
inequality, and (4.23) in the last inequality. Now when n ≥ 2,

n

bn

n∑

k=1

bk − bk−1

k
= n

bn

(
n−1∑

k=1

bk
k(k + 1)

+ bn
n

)

≤ n

bn

(
n−1∑

k=1

bk
k2

+ bn
n

)

≤ C (by 1.9),

for all fixed k,

n

bn

(
bk − bk−1

k

)

→ 0 as n → ∞ (by (4.31)),

and for k ≥ 2,

kP(|Y | > bk−1)

≤ 2(k − 1)P(|Y | > bk−1) → 0 as k → ∞ (by the second half of 4.28).
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Thus, by the Toeplitz lemma

n

bn

n∑

k=1

bk − bk−1

k
kP(|Y | > bk−1) → 0 as n → ∞

and (4.30) then follows from (4.32). Combining (4.29) and (4.30) yields (4.25). �	
Proof of Theorem 1.3. Set

cn,i = 1, Xn,i = Xi , 1 ≤ i ≤ n, n ≥ 1.

Then, (1.10) coincides with (4.24). Theorem 1.3 follows from Theorem 4.5. �	
We will now present an example to illustrate Theorem 1.3. This example shows

that for 0 < p < 1 and bn = n1/p, there exists a sequence of random variables
{Xn, n ≥ 1} with no stochastically dominating random variable and condition (1.10)
is satisfied. In this example, we also show that (1.3) (with 0 < p < 1) holds but (1.2)
(with 0 < p < 1) does not.

Example 4.8 Let 0 < p < 1, bn = n1/p, n ≥ 1 and let {Xn, n ≥ 1} be a sequence of
random variables such that

P(Xn = −1) = P(Xn = 1) = 1/2 for n = 2m, m ≥ 0, (4.33)

and

P

(
X2m = −2m/p/m1/p

)
= P

(
X2m = 2m/p/m1/p

)
= 1/2 for m ≥ 0. (4.34)

Then,

sup
n≥1

P(|Xn| > x) = sup
m≥1

P(|X2m | > x) = 1 for all x ≥ 1.

Thus, there is no random variable X such that the sequence {Xn, n ≥ 1} is
stochastically dominated by X , and so we cannot apply Theorem 2.1 of Boukhari
(2021).

Now, for n ≥ 1, let m ≥ 0 be such that 2m ≤ n < 2m+1. Then,

1

n

n∑

i=1

E
(|Xi |p log(|Xi |)

) ≤ 1 + 1

2m

m∑

i=0

E
(|X2i |p log(|X2i |)

)

= 1 + 1

2m

m∑

i=0

2i

i

(
i − log(i)

p

)

≤ 1 + 2

p
< ∞.

(4.35)
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Therefore, {|Xn|p, n ≥ 1} is uniformly integrable in the Cesàro sense by the de La
Vallée Poussin criterion for the Cesàro uniform integrability. Then, by Corollary 3.2,
the sequence {Xn, n ≥ 1} is stochastically dominated in the Cesàro sense by a random
variable X with distribution function

F(x) = 1 − sup
n≥1

1

n

n∑

i=1

P(|Xi | > x) := 1 − G(x), x ∈ R, (4.36)

and condition (1.10) (with bn ≡ n1/p) is satisfied. It thus follows from Theorem 1.3
that the WLLN (1.11) holds.

Finally, it is clear that P(|Xn|p > n) = 0 for all n ≥ 1 so that (1.3) holds. We will
show that (1.2) (with 0 < p < 1) is not satisfied. To see this, for x ≥ 1, let nx be the
smallest integer such that

2nx

nx
> x p.

Then, for x ≥ 1,

2nx

nx
> x p ≥ 2nx−1

nx − 1
(4.37)

and it follows from (4.37) that there exists ε0 > 0 such that

1

2nx
>

ε0

x p log(x)
for all large x . (4.38)

Combining (4.33)–(4.36) and (4.38), we have

G(x) = sup
n≥1

1

n

n∑

i=1

P(|Xi | > x) ≥ 1

2nx

2nx∑

i=1

P(|Xi | > x)

= 1

2nx
≥ ε0

x p log(x)
for all large x (4.39)

and it follows from (4.39) that (1.2) (with 0 < p < 1) fails. Thus, we cannot apply
Remark 3 of Chandra and Ghosal (1996a) to obtain the Marcinkiewicz–Zygmund
SLLN for the case 0 < p < 1.

Now, we discuss about the normalizing sequences in the WLLN in Theorem 1.3.
We note that for 0 < p < 2 and bn ≡ n1/p, (1.9) is fulfilled if 0 < p < 1 but
it fails to hold if 1 ≤ p < 2. For the case where 1 ≤ p < 2, we also have to
require some dependence structures to obtain the WLLN (see Boukhari 2021 for
a counterexample). Kruglov (2011) established a Kolmogorov–Feller-type WLLN
for sequences of negatively associated identically distributed random variables with
normalizing sequences bn, n ≥ 1 satisfying
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n∑

i=1

b2i
i2

= O

(
b2n
n

)

. (4.40)

It was observed by Kruglov (2011) that (4.40) holds for the case bn ≡ n1/pL(n),
where 1 ≤ p < 2 and L(·) is a slowly varying function. The following theorem
appears to be new even when the underlying random variables are independent. It also
extends the sufficient part of Theorem 1 of Kruglov (2011). The proof of Theorem 4.9
can be obtained by proceeding in a similar manner as that of Theorem 4.5: We firstly
use the nondecreasing truncation as in the proof of Theorem 4.1, and use the maximal
inequality (4.1) instead of the triangular inequality (in the place of the second inequality
in (4.32)), and then change the other places accordingly. We leave the details to the
interested reader.

Theorem 4.9 Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables such
that for each n ≥ 1 fixed, the collection {Xn,i , 1 ≤ i ≤ n} satisfies condition (H)

and let G(·) be as in Theorem 4.1. Let {bn, n ≥ 1} be a nondecreasing sequence of
positive real numbers satisfying (4.40), and let {cn,i , 1 ≤ i ≤ n, n ≥ 1} be an array
of nonnegative real numbers satisfying

0 < An :=
n∑

i=1

c2n,i ≤ Cn, n ≥ 1. (4.41)

Let

Ĝ(x) = sup
n≥1

n∑

i=1

an,iP(|Xn,i | > x), x ∈ R,

where an,i = A−1
n c2n,i , 1 ≤ i ≤ n, n ≥ 1. If

lim
k→∞ kG(bk) = 0 and lim

k→∞ kĜ(bk) = 0, (4.42)

then the WLLN

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

cn,i
(
Xn,i − E(Xn,i1(|Xn,i | ≤ bn))

)
∣
∣
∣
∣
∣
∣

P→ 0 as n → ∞

is obtained.

We now apply Corollary 3.2 and Theorem 4.9 to obtain a WLLN for arrays of
random variables under the Cesàro uniform integrability condition. For simplicity and
since it is just meant to be an illustration, we only consider the unweighted case, i.e.,
the case where cn,i ≡ 1.

123



L. V. Thành

Corollary 4.10 Let 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random
variables such that for each n ≥ 1 fixed, the collection {Xn,i , 1 ≤ i ≤ n} satisfies
condition (H). Let G(·) be as in Theorem 4.1 and L(·) be a slowly varying function. Let
L̃(·) be the Bruijn conjugate of L(·). In the case p = 1, we further assume that L(x) is
nondecreasing and L(x) ≥ 1 for all x ≥ 0. If {|Xn,i |pL(|Xn,i |p), 1 ≤ i ≤ n, n ≥ 1}
is uniformly integrable in the Cesàro sense, that is,

lim
a→∞ sup

n≥1

1

n

n∑

i=1

E
(|Xn,i |pL(|Xn,i |p)1(|Xn,i | > a)

) = 0, (4.43)

then the WLLN

1

n1/p L̃1/p(n)
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

(
Xn,i − E(Xn,i )

)
∣
∣
∣
∣
∣
∣

P→ 0 as n → ∞ (4.44)

is obtained.

Proof In Theorem 4.9, if we choose cn,i ≡ 1, then (4.41) is automatic, and
Ĝ(x) ≡ G(x). By Corollary 3.2, it follows from (4.43) that (4.42) holds with
bn ≡ n1/p L̃1/p(n). Applying Theorem 4.9, we obtain

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

(
Xn,i − E(Xn,i1(|Xn,i | ≤ bn))

)
∣
∣
∣
∣
∣
∣

P→ 0 as n → ∞.

To obtain (4.44), it remains to show that

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

E(Xn,i1(|Xn,i | > bn))

∣
∣
∣
∣
∣
∣
→ 0 as n → ∞. (4.45)

Since the function x p−1L(x p) is nondecreasing, we have

1

bn
max
j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

E(Xn,i1(|Xn,i | > bn))

∣
∣
∣
∣
∣
∣

≤ 1

bn

n∑

i=1

E(|Xn,i |1(|Xn,i | > bn))

≤ 1

bn

n∑

i=1

E(|Xn,i |pL(|Xn,i |p)1(|Xn,i | > bn))

bp−1
n L(bp

n )

=
⎛

⎝ 1

L̃(n)L
(
nL̃(n)

)

⎞

⎠ 1

n

n∑

i=1

E(|Xn,i |pL(|Xn,i |p)1(|Xn,i | > bn)).

(4.46)
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Now, from the second half of (2.5) we have limn→∞ L̃(n)L
(
nL̃(n)

)
= 1, and from

(4.43) we have

lim
n→∞

1

n

n∑

i=1

E(|Xn,i |pL(|Xn,i |p)1(|Xn,i | > bn)) = 0.

Therefore, (4.45) follows from (4.46). The proof of the corollary is completed. �	

5 Conclusions and open problems

In Sect. 4, our results on the concept of {an,i }-stochastic domination are applied to
obtain theWLLNs for weighted sums. The results on the Cesàro stochastic domination
case are applied to obtain rate of convergence in the SLLN with general normalizing
sequences under the Chandra–Ghosal-type condition, and these results help us to
remove an assumption of a SLLN established by Chandra and Ghosal (1996a). The
results on the concept of {an,i }-stochastic domination may also be useful in proving
weighted SLLNs of Chandra and Ghosal (1996b) as we will describe as follows.

Let 1 ≤ p < 2 and let {an, n ≥ 1} be a sequence of positive real numbers with

An :=
n∑

i=1

ai → ∞ as n → ∞.

Let {Xn, n ≥ 1} be a sequence of mean zero random variables which satisfies suitable
dependence conditions. Let G(x) be as in Theorem 1.1 and let

G̃(x) = sup
n≥1

(
n∑

i=1

a1/pi

)−1 n∑

i=1

a1/pi P(|Xi | > x), x ∈ R.

Chandra and Ghosal (1996b) considered the following three conditions (see (2.14)–
(2.16) in Chandra and Ghosal 1996b):

∫ ∞

0
x p−1G(x) d x < ∞, (5.1)

∫ ∞

0
x p−1G̃(x) d x < ∞, (5.2)

and

∞∑

n=1

P(|Xn|p > An/an) < ∞. (5.3)
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Chandra and Ghosal (see Theorems 2.6 and 2.7 in Chandra and Ghosal 1996b)
proved that if (5.1), (5.2) and (5.3) are all satisfied, then the weighted Marcinkiewicz–
Zygmund SLLN

∑n
i=1 a

1/p
i Xi

A1/p
n

→ 0 a.s. as n → ∞

is obtained. In view of Theorems 1.2 and 4.5, we state an open problem as to whether
or not the Chandra and Ghosal result mentioned above still holds without Condition
(5.3).

For n ≥ 1, let

an,i =
(

n∑

i=1

a1/pi

)−1

a1/pi , 1 ≤ i ≤ n.

Since G̃(x) is nonincreasing, it follows from (5.2) that limx→∞ G̃(x) = 0. By Theo-
rem 2.1, {Xn, n ≥ 1} is {an,i }-stochastically dominated by a random variable X with
distribution function F(x) = 1− G̃(x), and (5.2) becomes E(|X |p) < ∞. In view of
the proof of Theorem 4.5, the results on the concept of {an,i }-stochastic domination
established in Sects. 2 and 3 may help in answering the above open problem.

Finally, we present an open problem concerning Corollary 4.10. For the case where
L(x) ≡ L̃(x) ≡ 1, we can obtain convergence in mean of order p in (4.44) (see,
e.g., Theorem 1 in Chandra 1989, Theorem 4 in Ordóñez Cabrera 1994, Theorem 2.1
in Thành 2005). However, the methods in Chandra (1989), Ordóñez Cabrera (1994)
and Thành (2005) do not seem to work for general slowly varying function L(·), even
with assumption that the underlying random variables are independent. It is an open
problem as to whether or not convergence inmean of order p prevails in the conclusion
(4.44).
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