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Abstract. This paper develops Rio’s method [11] to prove the weak law of large numbers for maximal partial
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1. Introduction and results

A real-valued function L( · ) is said to be slowly varying (at infinity) if it is a positive and measurable
function on [A,∞) for some A ≥ 0, and for each λ> 0,

lim
x→∞

L(λx)

L(x)
= 1.

In [5], de Bruijn proved that if L( · ) is a slowly varying function, then there exists a slowly varying
function L̃( · ), unique up to asymptotic equivalence, satisfying

lim
x→∞L(x)L̃ (xL(x)) = 1 and lim

x→∞ L̃(x)L
(
xL̃(x)

)= 1.

The function L̃( · ) is called the de Bruijn conjugate of L( · ) ([2, p. 29]). Bojanić and Seneta [3]
showed that for most of “nice” slowly varying functions, we can choose L̃(x) = 1/L(x). Especially,
if L(x) = logγ(x) or L(x) = logγ(log(x)) for some γ ∈R, then L̃(x) = 1/L(x). Here and thereafter, for
a real number x, log(x) denotes the natural logarithm (base e) of max{x,e}.

Let L( · ) be a slowly varying function and let r > 0. By using a suitable asymptotic equivalence
version (see Lemma 2.2 and Lemma 2.3(i) in Anh et al. [1]), we can assume that L( · ) is positive
and differentiable on [a,∞), and xr L(x) is strictly increasing on [a,∞) for some large a. Next,
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let L1( · ) be a slowly varying function with L1(0) = 0 with a linear growth to L(a) over [0, a), and
L1(x) ≡ L(x) on [a,∞). Then

(i) L1(x) is continuous on [0,∞) and differentiable on [a,∞), and
(ii) xr L1(x) is strictly increasing on [0,∞).

In this paper, we will assume, without loss of generality, that properties (i) and (ii) are fulfilled for
all slowly varying functions.

The starting point of the current research is the following weak law of large numbers (WLLN)
which was proved by Gut [8]. Hereafter, 1(A) denotes the indicator function of a set A.

Theorem 1 (Gut [8]). Let 0 < p ≤ 1 and let {X , Xn , n ≥ 1} be a sequence of independent iden-
tically distributed (i.i.d.) random variables. Let L( · ) be a slowly varying function and let bx =
x1/p L(x), x ≥ 0. Then ∑n

i=1 Xi −nE (X1(|X | ≤ bn))

bn

P→ 0 as n →∞ (1)

if and only if

lim
n→∞nP(|X | > bn) = 0. (2)

The above WLLN has been extended in several directions, see [12,13] for WLLNs with random
indices for arrays of independent random variables taking values in Banach spaces, and see [4,
6, 9, 10] and the references therein for WLLNs for dependent random variables and dependent
random vectors. Boukhari [4, Theorem 1.2] showed that for 0 < p < 1, condition (2) implies

max1≤ j≤n
∣∣∑ j

i=1 Xi
∣∣

bn

P→ 0 as n →∞, (3)

irrespective of the joint distribution of the Xn ’s. Boukhari [4] presented an example showing that
his result does not hold when p = 1. The proof of the sufficient part of Theorem 1 in [8] works
well with pairwise independent random variables since we do not involve the maximal partial
sums. Krulov [10] and Chandra [6] established WLLNs for maximal partial sums for the case
where the summands are negatively associated and asymptotically almost negatively associated,
respectively. The authors in [6, 10] considered general normalizing constants, which showed that
the sufficient part of Theorem 1 also holds for 1 ≤ p < 2. However, the method used in [6, 10]
requires a Kolmogorov-type maximal inequality (see [6, Lemma 1.2]) which does not hold for
pairwise independent random variables.

The aim of this paper is to establish WLLNs for maximal partial sums of pairwise independent
random variables thereby extending the sufficient part of Theorem 1 for the case p = 1 to WLLN
for maximal partial sums from sequences of pairwise independent random variables. We use a
technique developed by Rio [11] to avoid using the Kolmogorov maximal inequality. In addition,
we also establish a WLLN for maximal partial sums of pairwise independent random variables
under a uniform integrability condition, and present an example to show that this result does not
hold in general if the uniform integrability assumption is weakened to the uniform boundedness
of the moments.

LetΛ be a nonempty index set. A family of random variables {Xλ,λ ∈Λ} is said to be stochasti-
cally dominated by a random variable X if

sup
λ∈Λ

P(|Xλ| > t ) ≤P(|X | > t ) for all t ≥ 0. (4)

Some authors use an apparently weaker definition of {Xλ,λ ∈Λ} being stochastically dominated
by a random variable Y , namely that

sup
λ∈Λ

P(|Xλ| > t ) ≤C1P(C2|Y | > t ) for all t ≥ 0 (5)
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for some constants C1,C2 ∈ (0,∞). It is shown recently by Rosalsky and Thành [14] that (4) and (5)
are indeed equivalent. We note that if (4) is satisfied, then for all t > 0 and r > 0

sup
λ∈Λ

E(|Xλ|r1(|Xλ| ≤ t )) ≤ E(|X |r1(|X | ≤ t ))+ t rP{|X | > t },

and

sup
λ∈Λ

E(|Xλ|r1(|Xλ| > t )) ≤ E(|X |r1(|X | > t )).

The following theorem is the main result of this paper.

Theorem 2. Let 1 ≤ p < 2 and let {Xn , n ≥ 1} be a sequence of pairwise independent random
variables which is stochastically dominated by a random variable X . Let L( · ) be a slowly varying
function and let bn = n1/p L(n), n ≥ 1. If

lim
n→∞nP(|X | > bn) = 0, (6)

then

max1≤ j≤n
∣∣∑ j

i=1 (Xi −E (Xi1(|Xi | ≤ bn)))
∣∣

bn

P→ 0 as n →∞. (7)

We postpone the proof of Theorem 2 to Section 2. From Theorem 3.2 of Boukhari [4], we have
that if {Xn ,n ≥ 1} is a sequence of pairwise independent random variables, and {bn ,n ≥ 1} is a
sequence of positive constants, then

max1≤i≤n |Xi |
bn

P→ 0 if and only if
n∑

i=1
P(|Xi | > bnε) → 0 for all ε> 0. (8)

By using Theorem 2 and (8), we obtain the following corollary.

Corollary 3. Let {X , Xn , n ≥ 1} be a sequence of pairwise i.i.d. random variables. Let p, L( · ), bn be
as in Theorem 2. Then (6) and (7) are equivalent.

Proof. If (6) holds, then (7) follows immediately from Theorem 2. Now, assume that (7) holds. By
the symmetrization procedure, it suffices to check the case where the random variables Xn , n ≥ 1
are symmetric. In this case, (7) becomes

max1≤ j≤n
∣∣S j

∣∣
bn

P→ 0 as n →∞, (9)

where S j =∑ j
i=1 Xi , j ≥ 1. Putting S0 = 0, and applying (9) and inequality

max
1≤ j≤n

|X j | ≤ max
1≤ j≤n

|S j |+ max
1≤ j≤n

|S j−1|,

we obtain
max1≤ j≤n

∣∣X j
∣∣

bn

P→ 0 as n →∞. (10)

By combining (8) and (10), and using the identical distribution assumption, we obtain (6). □

Theorem 2 also enables us to establish a WLLN for maximal partial sums of pairwise indepen-
dent random variables under a uniform integrability condition. After this paper was submitted,
Thành [16, Corollary 4.10] established a similar WLLN for triangular arrays of random variables
satisfying a Kolmogorov-type maximal inequality. Theorem 4 and Corollary 4.10 of Thành [16] do
not imply each other.

Hereafter, we denote the de Bruijn conjugate of a slowly varying function L( · ) by L̃( · ).
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Theorem 4. Let 1 ≤ p < 2 and let {Xn ,n ≥ 1} be a sequence of pairwise independent random vari-
ables. Let L( · ) be a slowly varying function. If {|Xn |p L(|Xn |p ),n ≥ 1} is uniformly integrable, then

max1≤ j≤n
∣∣∑ j

i=1 (Xi −E (Xi1(|Xi | ≤ bn)))
∣∣

bn

P→ 0 as n →∞, (11)

where bn = n1/p L̃1/p (n), n ≥ 1.

Proof. Let f (x) = xp L(xp ), g (x) = x1/p L̃1/p (x), x ≥ 0. Recalling that we have assumed, without
loss of generality, that f and g are strictly increasing on [0,∞). From Theorem 1.5.12 and
Proposition 1.5.15 in Bingham et al. [2] (see also Lemma 2.1 in Anh et al. [1]),

lim
x→∞

f (g (x))

x
= 1,

and therefore
f (g (n)) > n/2 for all large n. (12)

By the de La Vallée Poussin criterion for uniform integrability, there exists a nondecreasing
function h defined on [0,∞) with h(0) = 0 such that

lim
x→∞

h(x)

x
=∞, (13)

and
sup
i≥1

E(h( f (|Xi |))) = sup
i≥1

E(h(|Xi |p L(|Xi |p ))) <∞. (14)

By using Theorem 2.5(i) of Rosalsky and Thành [14], (14) implies that the sequence {Xn ,n ≥ 1} is
stochastically dominated by a nonnegative random variable X with distribution function

F (x) = 1− sup
i≥1

P(|Xi | > x), x ∈R.

We thus have by (12), (13), (14) and the Markov inequality that

lim
n→∞nP (X > bn) = lim

n→∞n sup
i≥1

P(|Xi | > g (n))

= lim
n→∞n sup

i≥1
P( f (|Xi |) > f (g (n)))

≤ lim
n→∞n sup

i≥1
P( f (|Xi |) ≥ n/2)

≤ lim
n→∞n sup

i≥1
P(h( f (|Xi |)) ≥ h(n/2))

≤ lim
n→∞n sup

i≥1

E(h( f (|Xi |)))

h(n/2))

= 2sup
i≥1

E(h( f (|Xi |))) lim
n→∞

n/2

h(n/2)
= 0.

Applying Theorem 2, we obtain (11). □

The following example shows that in Theorem 4, the assumption that {|Xn |p L(|Xn |p ),n ≥ 1} is
uniformly integrable cannot be weakened to

sup
n≥1

E(|Xn |p L(|Xn |p )) <∞. (15)

Example 5. Let 1 ≤ p < 2, and let {Xn ,n ≥ 1} be a sequence of independent symmetric random
variables with

P(Xn = 0) = 1− 1

n
, P(Xn = n1/p ) =P(Xn =−n1/p ) = 1

2n
, n ≥ 1.

Consider the case where the slowly varying function L(x) ≡ 1. Then it is clear that

sup
n≥1

E(|Xn |p L(|Xn |p )) = sup
n≥1

E(|Xn |p ) = 1 <∞
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and
sup
n≥1

E(|Xn |p L(|Xn |p )1(|Xn |p L(|Xn |p ) > a)) = sup
n≥1

E(|Xn |p1(|Xn | > a1/p )) = 1

for all a > 0. Therefore (15) is satisfied but {|Xn |p L(|Xn |p ),n ≥ 1} is not uniformly integrable. For
a real number x, let ⌊x⌋ denote the greatest integer that is smaller than or equal to x. Then for
0 < ε< 1/4 and for n ≥ 2, we have

n∑
i=1

P(|Xi | > εn1/p ) ≥
n∑

i=⌊n/2⌋
P(|Xi | > εn1/p ) ≥

n∑
i=⌊n/2⌋

1

n
≥ 1

2
. (16)

Combining (8) and (16) yields
max1≤i≤n |Xi |

n1/p
P↛ 0.

This implies that (11) (with bn ≡ n1/p ) fails.

2. Proof of Theorem 2

The following lemma plays an important role in the proof of Theorem 2. It gives a general
approach to the WLLN. In this lemma, we do not require any dependence structure. Throughout
this section, we use the symbol C to denote a universal positive constant which is not necessarily
the same in each appearance.

Lemma 6. Let {bn ,n ≥ 1} be a nondecreasing sequence of positive numbers satisfying

sup
m≥1

b2m

b2m−1
<∞. (17)

Let {Xn ,n ≥ 1} be a sequence of random variables which is stochastically dominated by a random
variable X and let Xi ,n = Xi1(|Xi | ≤ bn), n ≥ 1, i ≥ 1. Assume that

lim
n→∞nP(|X | > bn) = 0. (18)

Then
max1≤ j≤n

∣∣∑ j
i=1

(
Xi −E

(
Xi ,n

))∣∣
bn

P→ 0 as n →∞ (19)

if and only if
max1≤ j<2n

∣∣∑ j
i=1

(
Xi ,2n −E(

Xi ,2n
))∣∣

b2n

P→ 0 as n →∞. (20)

Proof. We firstly prove under (18) that

max1≤ j<2n
∣∣∑ j

i=1

(
Xi −Xi ,2n

)∣∣
b2n

P→ 0 as n →∞. (21)

To see this, let ε> 0 be arbitrary. Then

P

(
max1≤ j<2n

∣∣∑ j
i=1

(
Xi −Xi ,2n

)∣∣
b2n

> ε
)
≤P

(
2n−1⋃
i=1

(
Xi ̸= Xi ,2n

))

≤
2n−1∑
i=1

P
(
Xi ̸= Xi ,2n

)
≤ 2nP (|X | > b2n ) → 0 as n →∞ (by (18))

thereby proving (21) since ε> 0 is arbitrary.
Next, assume that (19) holds. Then

max1≤ j<2n
∣∣∑ j

i=1

(
Xi −E

(
Xi ,2n

))∣∣
b2n

P→ 0 as n →∞. (22)
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Combining (21) and (22), we obtain (20).
Finally, assume that (20) holds. It follows from (20) and (21) that

max1≤ j<2n
∣∣∑ j

i=1

(
Xi −E

(
Xi ,2n

))∣∣
b2n

P→ 0 as n →∞. (23)

Now, for m ≥ 1, set

Km = max
2m−1≤n<2m

max1≤ j<2m
∣∣∑ j

i=1E(Xi ,2m −Xi ,n)
∣∣

b2m−1
.

Then by using (17), (18) and the stochastic domination assumption, we have

Km ≤
∑2m

i=1E
(|Xi |1(b2m−1 < |Xi | ≤ b2m )

)
b2m−1

≤
∑2m

i=1 b2mP(|Xi | > b2m−1 )

b2m−1

≤C 2mP(|X | > b2m−1 ) → 0 as m →∞. (24)

For n ≥ 1, let m ≥ 1 be such that 2m−1 ≤ n < 2m . Then by (17), (23) and (24)), we have

max1≤ j≤n
∣∣∑ j

i=1(Xi −E(Xi ,n))
∣∣

bn
≤ max1≤ j<2m

∣∣∑ j
i=1(Xi −E(Xi ,2m ))

∣∣
b2m−1

+ max1≤ j<2m
∣∣∑ j

i=1E(Xi ,2m −Xi ,n)
∣∣

b2m−1

≤ C max1≤ j<2m
∣∣∑ j

i=1(Xi −E(Xi ,2m ))
∣∣

b2m
+Km

P→ 0 as m →∞
thereby establishing (19). □

Proof of Theorem 2. Let

Xi ,n = Xi1(|Xi | ≤ bn), n ≥ 1, i ≥ 1.

It is clear that the sequence {bn ,n ≥ 1} satisfies (17). By Lemma 6, it suffices to show that

max1≤ j<2n
∣∣∑ j

i=1

(
Xi ,2n −E(

Xi ,2n
))∣∣

b2n

P→ 0 as n →∞. (25)

For m ≥ 0, set S0,m = 0 and

S j ,m =
j∑

i=1
(Xi ,2m −EXi ,2m ), j ≥ 1.

We will use techniques developed by Rio [11] (see also [15] for the case of regular varying
normalizing sequences) as follows. For n ≥ 1, 1 ≤ j < 2n and for 0 ≤ m ≤ n, let k = ⌊ j /2m⌋ be the
greatest integer which is less than or equal to j /2m . Then 0 ≤ k < 2n−m and k2m ≤ j < (k +1)2m .
Let jm = k2m , and

Yi ,m = ∣∣Xi ,2m −Xi ,2m−1

∣∣−E(∣∣Xi ,2m −Xi ,2m−1

∣∣) .

Then we can show that (see [15, p. 1236])

max
1≤ j<2n

∣∣S j ,n
∣∣≤ n∑

m=1
max

0≤k<2n−m

∣∣∣∣∣k2m+2m−1∑
i=k2m+1

(
Xi ,2m−1 −E(Xi ,2m−1 )

)∣∣∣∣∣+ n∑
m=1

max
0≤k<2n−m

∣∣∣∣∣ (k+1)2m∑
i=k2m+1

Yi ,m

∣∣∣∣∣
+

n∑
m=1

2m+1b2mP
(|X | > b2m−1

)
. (26)
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By (6), we have

2m+1P
(|X | > b2m−1

)→ 0 as m →∞. (27)

It follows from Karamata’s theorem (see, e.g., [2, p. 30]) that

n∑
k=1

αk L
(
βk

)
≤CαnL(βn) for all α> 1,β≥ 1. (28)

By using (27), (28) and Toeplitz’s lemma, we have

lim
n→∞

∑n
m=1 b2m 2m+1P

(|X | > b2m−1

)
b2n

= lim
n→∞

∑n
m=1 2m/p L(2m)2m+1P

(|X | > b2m−1

)
2n/p L(2n)

= 0. (29)

Let ε1 > 0 be arbitrary, and let a and b be positive constants satisfying

1/2 < a < 1/p, a +b = 1/p.

For n ≥ 1, 0 ≤ m ≤ n, let

λm,n = ε12bm2anL(2n). (30)

An elementary calculation shows (see [15, p. 1236])

n∑
m=1

λm,n ≤ 2bε1b2n

2b −1
:=C1(b)ε1b2n . (31)

By (26), (29), the proof of (25) is completed if we show that

In :=P
(

n∑
m=1

max
0≤k<2n−m

∣∣∣∣∣ (k+1)2m∑
i=k2m+1

Yi ,m

∣∣∣∣∣≥C1(b)ε1b2n

)
→ 0 as n →∞, (32)

and

Jn :=P
(

n∑
m=1

max
0≤k<2n−m

∣∣∣∣∣k2m+2m−1∑
i=k2m+1

(
Xi ,2m−1 −E(Xi ,2m−1 )

)∣∣∣∣∣≥C1(b)ε1b2n

)
→ 0 as n →∞. (33)

We note that for each m ≥ 1, Yi ,m , i ≥ 1 are mean 0 and pairwise independent random variables.
Therefore

In ≤
n∑

m=1
P

(
max

0≤k<2n−m

∣∣∣∣∣ (k+1)2m∑
i=k2m+1

Yi ,m

∣∣∣∣∣≥λm,n

)
(by (31))

≤
n∑

m=1
λ−2

m,nE

(
max

0≤k<2n−m

∣∣∣∣∣ (k+1)2m∑
i=k2m+1

Yi ,m

∣∣∣∣∣
)2

(by Markov’s inequality)

≤
n∑

m=1
λ−2

m,n

2n−m−1∑
k=0

E

(
(k+1)2m∑

i=k2m+1
Yi ,m

)2

=
n∑

m=1
λ−2

m,n

2n−m−1∑
k=0

(k+1)2m∑
i=k2m+1

E
(
Yi ,m

)2

≤
n∑

m=1
λ−2

m,n

2n−m−1∑
k=0

(k+1)2m∑
i=k2m+1

E
(
Xi ,2m −Xi ,2m−1

)2

≤
n∑

m=1
2nλ−2

m,nb2
2mP(|X | > b2m−1 ) (by the stochastic domination assumption)

= ε−2
1

1

2n(2a−1)L2(2n)

( n∑
m=1

2m(2a−1)L2(2m)2mP(|X | > b2m−1 )

)
(by (30))

→ 0 as n →∞ (by noting 2a −1 > 0 and using (27), (28), and Toeplitz’s lemma). (34)
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Similarly,

Jn ≤
n∑

m=1
P

(
max

0≤k<2n−m

∣∣∣∣∣k2m+2m−1∑
i=k2m+1

(
Xi ,2m−1 −E(Xi ,2m−1 )

)∣∣∣∣∣≥λm,n

)

≤
n∑

m=1
2nλ−2

m,n

(
EX 21(|X | ≤ b2m−1 )+b2

2m−1P(|X | > b2m−1 )
)

=
n∑

m=1
2nλ−2

m,nEX 21(|X | ≤ b2m−1 )+o(1), (35)

where we have applied (34) in the final step. By using integration by parts, and proceeding in a
similar manner as the last two lines of (34), we have

n∑
m=1

2nλ−2
m,nEX 21(|X | ≤ b2m−1 ) ≤

n∑
m=1

2nλ−2
m,n

∫ b2m−1

0
2xP(|X | > x)dx

≤ ε−2
1 2n(1−2a)L−2(2n)

n∑
m=1

(
2−2mb

m∑
k=1

∫ b
2k

b
2k−1

2xP(|X | > x)dx +2−2mb
∫ b1

0
2xdx

)

≤ ε−2
1 2n(1−2a)L−2(2n)

(
n∑

k=1

(
n∑

m=k
2−2bm

)
b2

2kP
(|X | > b2k−1

)+ n∑
m=1

2−2mbb2
1

)

≤ C

2n(2a−1)L2(2n)

(
n∑

k=1
2k(2a−1)L2(2k )2kP

(|X | > b2k−1

)+1

)
→ 0 as n →∞. (36)

Combining (34)–(36), we obtain (32) and (33) thereby completing the proof of (25). □

3. Concluding remarks

This paper establishes WLLNs for maximal partial sums of pairwise independent random vari-
ables without using the Kolmogorov maximal inequality. The method can be easily adapted to
dependent random variables. We have the following result:

Theorem 7. Let {Xn ,n ≥ 1} be a sequence of random variables and let p, L( · ) and bn be as in
Theorem 2. Assume that there exists a constant C such that for all nondecreasing functions fi , i ≥ 1
we have

Var

(
k+ℓ∑

i=k+1
fi (Xi )

)
≤C

k+ℓ∑
i=k+1

Var( fi (Xi )), k ≥ 0, ℓ≥ 1, (37)

provided the variances exist. If {Xn , n ≥ 1} is stochastically dominated by a random variable X such
that (6) is satisfied, then we obtain WLLN (7).

Theorem 7 can be proved by assuming that Xn ≥ 0, n ≥ 1 since we can use identity Xn = X +
n −

X −
n in the general case. We then use truncation Xi ,n = Xi1(Xi ≤ bn)+bn1(Xi > bn), n ≥ 1, i ≥ 1 (to

ensure that the truncated sequence {Xn,i , i ≥ 1} satisfies (37)), and modify the arguments given
in the proofs of Lemma 6 and Theorem 2 accordingly. The details are straightforward and, hence,
are omitted.

Many dependence structures satisfy (37), including m-pairwise negative dependence, ex-
tended negative dependence, ϕ-mixing, etc (see, e.g., [7, 11]).

It is obvious that (7) implies (1). For the i.i.d case and 1 ≤ p < 2, Kruglov [10, Theorem 2] proved
that (7) and (1) are equivalent. It is an open problem as to whether or not this also holds for the
pairwise i.i.d. case.
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