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Abstract
This paper provides sets of sufficient conditions for mean convergence theorems for
arrays of dependent random variables. We expand and improve a number of particular
cases in the literature including Theorem 2.1 in Sung (Appl Math Lett 26(1):18–
24, 2013), Theorems 3.1–3.3 in Wu and Guan (J Math Anal Appl 377(2):613–623,
2011), and Theorem 3 in Lita da Silva (ResultsMath 74(1):1–11, 2019), among others.
The proof is different from those in the aforementioned papers and the main results
can be applied to obtain mean convergence results for arrays of functions of non-
homogeneous Markov chains and dependent bootstrap.

Keywords Mean convergence · Weak law of large numbers · Negative dependence ·
Non-homogeneous Markov chain · Dependent bootstrap
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1 Introduction

Weak laws of large numbers and mean convergence for arrays of dependent random
variables were studied by many authors. We refer to Ordóñez Cabrera and Volodin
(2005), Shen and Volodin (2017), Lita da Silva (2016), Lita da Silva (2019), Sung
(2013), Wu and Guan (2011) and the references therein. Recently, Lita da Silva (2019)
proved the following theorem.

Theorem 1.1 (Lita da Silva 2019, Theorem 3) Let 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤
n, n ≥ 1} be a triangular array rowwise and pairwise negatively dependent random
variables. Let {bn, n ≥ 1} be a sequence of positive constants. Assume that for all
ε > 0,
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n∑

i=1

∫ εbpn

0
P(|Xn,i |p > t) d t = O(bp

n ) as n → ∞, (1.1)

and

n∑

i=1

∫ ∞

εbpn
P(|Xn,i |p > t) d t = o(bp

n ) as n → ∞ when 1 < p < 2, (1.2)

or

n∑

i=1

E
(|Xn,i |1(|Xn,i | > εbn)

) = o(bn) as n → ∞ when p = 1. (1.3)

Then

1

bn

n∑

i=1

(
Xn,i − EXn,i

) Lp→ 0 as n → ∞. (1.4)

Another interesting direction is to study mean convergence for weighted sums
which has many applications in statistics. In Sung (2013), Sung proved the following
theorem.

Theorem 1.2 (Sung 2013, Theorem 2.1) Let {un, n ≥ 1} and {vn, n ≥ 1} be two
sequences of integers such that un < vn for all n ≥ 1 and limn→∞(vn − un) = ∞.
Let 1 ≤ p < 2 and let {Yn,i , un ≤ i ≤ vn, n ≥ 1} be an array of rowwise and pairwise
negatively dependent random variables. Let {an,i , n ≥ 1} be an array of constants.
Suppose that

sup
n≥1

vn∑

i=un

|an,i |pE|Yn,i |p < ∞ (1.5)

and

lim
n→∞

vn∑

i=un

|an,i |pE
(|Yn,i |p1

(|an,i |p|Yn,i |p > ε
)) = 0 for all ε > 0. (1.6)

Then

vn∑

i=un

an,i
(
Yn,i − EYn,i

) Lp→ 0 as n → ∞. (1.7)

The initial objective of this note is to simplify the above result of Lita da Silva (2019)
by replacing (1.3) by (1.2) with p = 1. But it turns out that we are able to establish a
muchmoregeneral result. Themain results of the paper are aweak lawof large numbers
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and a mean convergence theorem for arrays of random variables with a very general
dependence structure which contains various well-known dependence structures such
as pairwise negative dependence, extended negative dependence, functions of non-
homogeneous Markov chains, and wide orthant dependence. Theorem 2.2 establishes
a mean convergence result which covers both the non-weighted case and the weighted
case. We unify and extend a number of particular cases in the literature including
Theorem 1 of Lita da Silva (2016), Theorem 3 of Lita da Silva (2019), Theorem 2.1 of
Sung (2013), Theorems 3.1 and 3.2 of Shen andVolodin (2017), and Theorems 3.1–3.3
ofWu andGuan (2011). Themean convergence result is obtained bymaking use of the
weak law of large numbers and the Lebesgue dominated convergence theorem. This
approach is different from those in the aforementioned papers. The main results are
applied to obtain mean convergence theorems for dependent bootstrap and functions
of non-homogeneous Markov chains.

The rest of the paper is organized as follows. In Sect. 2, we establish themain results
of the paper. Section3 presents some corollaries to the main result and three examples.
We apply the main results to three special cases: (i) the case where the dominating
coefficients are uniformly bounded, (ii) widely orthant dependent random variables,
and (iii) functions of non-homogeneous Markov chains. Finally, a mean convergence
theorem for dependent bootstrap is presented in Sect. 4 as an application of Corollary
3.1.

Throughout the paper, {un, n ≥ 1} and {vn, n ≥ 1} denote two sequences in
Z ∪ {−∞,∞} such that un < vn for all n ≥ 1 and lim(vn − un) = ∞. If un = −∞
or vn = ∞, we assume that the random series

∑vn
i=un

Xn,i converges almost surely
(a.s.). The symbol C denotes a positive universal constant which is not necessarily the
same in each appearance, and 1(A) denotes the indicator function of the set A. For
x ∈ R, log x denotes the natural logarithm of max{1, x}.

2 Main results

An array {Xn,i , un ≤ i ≤ vn, n ≥ 1} of random variables is said to satisfy Condition
(G2) if for each n ≥ 1, there exists Mn ≥ 1 which may depend on n such that for all
a > 0,

E

⎛

⎝
vn∑

i=un

(
X (a)
n,i − EX (a)

n,i

)
⎞

⎠
2

≤ Mn

vn∑

i=un

E(X (a)
n,i )

2, (2.1)

where

X (a)
n,i = −a1(Xn,i < −a) + Xn,i1(|Xn,i | ≤ a) + a1(Xn,i > a). (2.2)

The Mn, n ≥ 1 are called the dominating coefficients.
A motivation of Condition (G2) comes from array {Xn,i , un ≤ i ≤ vn, n ≥ 1}

of rowwise and pairwise mn-dependent random variables. That is, for each n ≥ 1,
two random variables Xn,i and Xn, j (from the n-th row of the array) are independent
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L. Vǎn Thành

whenever |i − j | > mn , where mn is a non-negative integer which may increase in n.
For this type of dependence, one can prove that (2.1) is satisfied with Mn = 1 + mn

[see, e.g., Lemma 2 in Thành (2005)]. Another motivation of Condition (G2) comes
from functions of non-homogeneous Markov chains with the maximal coefficient
of correlation ρn,1 < 1 which was introduced by Peligrad in Peligrad (2012). Let
{ξn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables such that each row {ξn,i , 1 ≤
i ≤ n} is a non-homogeneous Markov chain taking values in a measurable space
(X ,B(X )) with the maximal coefficient of correlation ρn,1 < 1 but ρn,1 is allowed
to converge to 1. Let fn,i : X → R be Borel functions and let Xn,i = fn,i (ξn,i ), 1 ≤
i ≤ n, n ≥ 1. Then by Proposition 13 of Peligrad (2012), (2.1) is satisfied with Mn =
(1 + ρn,1)/(1 − ρn,1). In Subsect. 3.2, we consider another dependence structure so-
calledwide orthant dependence [seeWang et al. (2013)] which also satisfies Condition
(G2) with unbounded dominating coefficients.

The following theoremestablishes aweak lawof large numbers for arrays of random
variables satisfying Condition (G2). Theorem 2.1 is new even when the dominating
coefficients are uniformly bounded, i.e., supn≥1 Mn < ∞.Wenote thatCondition (2.4)
of Theorem 2.1 when Mn ≡ 1 is strictly weaker than Condition (2.5) of Theorem 3.4
in Wu and Guan (2011) (see Example 3.8 in Sect. 3).

Theorem 2.1 Let 1 ≤ p < 2 and let {Xn,i , un ≤ i ≤ vn, n ≥ 1} be an array of random
variables such that for each n ≥ 1, the collection {Xn,i , un ≤ i ≤ vn} satisfying (2.1)
for all a > 0. Let {bn, n ≥ 1} be a sequence of positive constants. If

sup
n≥1

Mn

bp
n

vn∑

i=un

E|Xn,i |p < ∞ (2.3)

and

lim
n→∞ Mn

vn∑

i=un

P
(|Xn,i | > εbn

) = 0 for all ε > 0, (2.4)

then

1

bn

vn∑

i=un

(
Xn,i − EYn,i

) P→ 0 as n → ∞, (2.5)

where

Yn,i = −bn1(Xn,i < −bn) + Xn,i1(|Xn,i |
≤ bn) + bn1(Xn,i > bn), un ≤ i ≤ vn, n ≥ 1.
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Proof Let ε1 > 0 be arbitrary but fixed. Then

P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EYn,i )

∣∣∣∣∣∣
> ε1

⎞

⎠

≤
vn∑

i=un

P
(|Xn,i | > bn

) + P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i − EYn,i )

∣∣∣∣∣∣
> ε1bn

⎞

⎠ := In,1 + In,2.

It follows from (2.4) that limn→∞ In,1 = 0. It thus remains to prove limn→∞ In,2 = 0.
By using Markov’s inequality and (2.1), we have

In,2 = P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i − EYn,i )

∣∣∣∣∣∣
> ε1bn

⎞

⎠

≤ 1

ε21b
2
n

E

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i − EYn,i )

∣∣∣∣∣∣

⎞

⎠
2

≤ Mn

ε21b
2
n

vn∑

i=un

EY 2
n,i

= Mn

ε21b
2
n

vn∑

i=un

(
EX2

n,i1(|Xn,i | ≤ bn) + b2nP(|Xn,i | > bn)
)

= Mn

ε21

vn∑

i=un

1

b2n

∫ b2n

0
P

(
|Xn,i | > u1/2

)
d u. (2.6)

Let 0 < ε < 1/2 be arbitrary. By using Markov’s inequality (2.3), and (2.6), we have

In,2 ≤ Mn

ε21

vn∑

i=un

1

b2n

∫ ε2b2n

0
P

(
|Xn,i | > u1/2

)
d u

+Mn

ε21

vn∑

i=un

1

b2n

∫ b2n

ε2b2n

P

(
|Xn,i | > u1/2

)
d u

≤ Mn

ε21

vn∑

i=un

E|Xn,i |p
b2n

∫ ε2b2n

0

1

u p/2 d u

+Mn

ε21

vn∑

i=un

1

b2n

∫ b2n

ε2b2n

P
(|Xn,i | > εbn

)
d u

≤ Mn

ε21

vn∑

i=un

E|Xn,i |p
bp
n

ε2−p + Mn

ε21

vn∑

i=un

P
(|Xn,i | > εbn

)
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≤ Cε2−p + Mn

ε21

vn∑

i=un

P
(|Xn,i | > εbn

)
. (2.7)

Since 0 < ε < 1/2 is arbitrary and 1 ≤ p < 2, it follows from (2.4) and (2.7) that
limn→∞ In,2 = 0. The proof is completed. 	


The following theoremestablishes amean convergence theorem for arrays of depen-
dent random variables. It shows that in Theorem 2.1, if we assume further that (2.8)
holds, then a mean convergence of order p is obtained. Examples in Sect. 3 show that
(2.4) and (2.8) are independent conditions in the sense that non of them implies the
other. Theorem 2.2 extends Theorem 1 of Lita da Silva (2016), Theorem 3 of Lita da
Silva (2019), Theorems 3.1 and 3.2 of Shen and Volodin (2017), and Theorem 2.1 of
Sung (2013). It also extends and improves Theorems 3.1–3.3 of Wu and Guan (2011)
and Theorem 1 of Ordóñez Cabrera and Volodin (2005).

Theorem 2.2 Let 1 ≤ p < 2. Let {Xn,i , un ≤ i ≤ vn, n ≥ 1} and {bn, n ≥ 1} be as
in Theorem 2.1. If (2.3) and (2.4) hold, and

lim
n→∞ Mn

∫ ∞

1

vn∑

i=un

P

(
|Xn,i | > bnu

1/p
)
d u = 0, (2.8)

then

1

bn

vn∑

i=un

(
Xn,i − EXn,i

) Lp→ 0 as n → ∞. (2.9)

Proof For n ≥ 1, un ≤ i ≤ vn and t > 0, set

Yn,i,t = −bnt
1/p1(Xn,i < −bnt

1/p) + Xn,i1(|Xn,i | ≤ bnt
1/p)

+bnt
1/p1(Xn,i > bnt

1/p).

Then, it follows from (2.8) that

sup
t≥1

1

bnt1/p

vn∑

i=un

E|Xn,i − Yn,i,t |

= sup
t≥1

1

bnt1/p

vn∑

i=un

E

((
|Xn,i | − bnt

1/p
)
1
(
|Xn,i | > bnt

1/p
))

= sup
t≥1

vn∑

i=un

(
E

( |Xn,i |
bnt1/p

1(|Xn,i | > bnt
1/p)

)

−P

(
|Xn,i | > bnt

1/p
))
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= sup
t≥1

vn∑

i=un

∫ ∞

1
P(|Xn,i | > bnt

1/pu) d u

=
∫ ∞

1

vn∑

i=un

P(|Xn,i | > bnu) d u

→ 0 as n → ∞. (2.10)

For all t ≥ 1, we have from (2.10) that for all large n,

P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣
> t1/p

⎞

⎠ ≤
vn∑

i=un

P

(
|Xn,i | > bnt

1/p
)

+ P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i,t − EYn,i,t )

∣∣∣∣∣∣
+

vn∑

i=un

E|Xn,i − Yn,i,t | > bnt
1/p

⎞

⎠

≤
vn∑

i=un

P

(
|Xn,i | > bnt

1/p
)

+ P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i,t − EYn,i,t )

∣∣∣∣∣∣
> bnt

1/p/2

⎞

⎠ .

It thus follows that for all large n,

E

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣

⎞

⎠
p

=
∫ ∞

0
P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣
> t1/p

⎞

⎠ d t

=
∫ 1

0
P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣
> t1/p

⎞

⎠ d t

+
∫ ∞

1
P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣
> t1/p

⎞

⎠ d t

≤
∫ 1

0
P

⎛

⎝ 1

bn

∣∣∣∣∣∣

vn∑

i=un

(Xn,i − EXn,i )

∣∣∣∣∣∣
> t1/p

⎞

⎠ d t

+
∫ ∞

1

vn∑

i=un

P
(|Xn,i | > bnt

1/p) d t

+
∫ ∞

1
P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i,t − EYn,i,t )

∣∣∣∣∣∣
> bnt

1/p/2

⎞

⎠ d t

:= Rn,1 + Rn,2 + Rn,3.
(2.11)

By using Theorem 2.1 and (2.10) again, we obtain
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∣∣∣∣∣∣
1

bn

vn∑

i=un

(
Xn,i − EXn,i

)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣
1

bn

vn∑

i=un

(
Xn,i − EYn,i,1

)
∣∣∣∣∣∣
+ 1

bn

vn∑

i=un

E|Xn,i − Yn,i,1|

P→ 0 as n → ∞. (2.12)

Hence, by the Lebesgue dominated convergence theorem, we have from (2.12) that

lim
n→∞ Rn,1 = 0. (2.13)

By (2.8),

Rn,2 → 0 as n → ∞. (2.14)

It thus remains to prove limn→∞ Rn,3 = 0. By using Markov’s inequality and (2.1),
we have

Rn,3 =
∫ ∞

1
P

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i,t − EYn,i,t )

∣∣∣∣∣∣
> bnt

1/p/2

⎞

⎠ d t

≤
∫ ∞

1

4

b2nt
2/p E

⎛

⎝

∣∣∣∣∣∣

vn∑

i=un

(Yn,i,t − EYn,i,t )

∣∣∣∣∣∣

⎞

⎠
2

d t

≤ 4Mn

vn∑

i=un

∫ ∞

1

EY 2
n,i,t

b2nt
2/p d t

= 4Mn

vn∑

i=un

∫ ∞

1

1

t2/p

(∫ t2/p

0
P

(
|b−1

n Xn,i | > u1/2
)
d u

)
d t

:= 4(Rn,3,1 + Rn,3,2),
(2.15)

where

Rn,3,1 = Mn

vn∑

i=un

∫ ∞

1

1

t2/p

(∫ 1

0
P

(
|Xn,i | > bnu

1/2
)
d u

)
d t,

and

Rn,3,2 = Mn

vn∑

i=un

∫ ∞

1

1

t2/p

(∫ t2/p

1
P

(
|Xn,i | > bnu

1/2
)
d u

)
d t .

It is clear that
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Rn,3,1 ≤ C
∫ 1

0
Mn

vn∑

i=un

P

(
|Xn,i | > bnu

1/2
)
d u. (2.16)

By (2.3) and Markov’s inequality, we have for all u > 0,

sup
n≥1

Mn

vn∑

i=un

P

(
|Xn,i | > bnu

1/2
)

≤ sup
n≥1

Mn

bp
n u p/2

vn∑

i=un

E|Xn,i |p ≤ C

up/2 . (2.17)

By (2.4), we have for all u > 0,

lim
n→∞ Mn

vn∑

i=un

P

(
|Xn,i | > bnu

1/2
)

= 0. (2.18)

Since p < 2, the function f (u) = C/u p/2 is integrable on (0, 1). It thus follows from
(2.17), (2.18), and the Lebesgue dominated convergence theorem that

lim
n→∞

∫ 1

0
Mn

vn∑

i=un

P

(
|Xn,i | > bnu

1/2
)
d u = 0

which together with (2.16) imply

lim
n→∞ Rn,3,1 = 0. (2.19)

For Rn,3,2, we have

Rn,3,2 = Mn

vn∑

i=un

∫ ∞

1
P

(
|Xn,i | > bnu

1/2
) ∫ ∞

u p/2

1

t2/p
d t d u

≤ CMn

vn∑

i=un

∫ ∞

1
u p/2−1

P

(
|Xn,i | > bnu

1/2
)
d u

= CMn

∫ ∞

1

vn∑

i=un

P

(
|Xn,i | > bnx

1/p
)
d x .

(2.20)

Combining (2.8) and (2.20) yields

lim
n→∞ Rn,3,2 = 0. (2.21)

By using (2.15), (2.19), and (2.21), we obtain

lim
n→∞ Rn,3 = 0.

The proof of the theorem is completed. 	
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3 Corollaries and examples

In this section, we present some corollaries of Theorems 2.1 and 2.2. We apply these
results to three special cases: (i) the case where the dominating coefficients are uni-
formly bounded, (ii) widely orthant dependent random variables, and (iii) functions
of non-homogeneous Markov chains.

3.1 The case where the dominating coefficients are uniformly bounded

An array {Xn,i , un ≤ i ≤ vn, n ≥ 1} of random variables is said to satisfy Condition
(H2) if for each n ≥ 1, there exists a constant M ≥ 1 which does not depend on n
such that for all a > 0,

E

⎛

⎝
vn∑

i=un

(
X (a)
n,i − EX (a)

n,i

)
⎞

⎠
2

≤ M
vn∑

i=un

E(X (a)
n,i )

2,

where X (a)
n,i is defined as in (2.2) and M ≥ 1 is a constant which does not depend

on n. This is a special case of Condition (G2) when the dominating coefficients are
uniformly bounded. The authors inAdler andMatuła (2018),Dzung andThành (2021),
Rio (1995), Thành (2022) also used similar conditions to study complete convergence
and strong and weak laws of large numbers.

Condition (H2) includes various well known dependence structures such as arrays
of rowwise and pairwise negative dependence [see (Lehmann 1966, Lemma 1 (ii)
and Lemma 3)] and arrays of rowwise extended negative dependence [see, e.g.,
(Shen and Volodin 2017, Lemmas 2.1 and 2.3)]. A Reviewer so kindly noticed to
us that many well known multivariate random vectors satisfy Condition (H2) such
as multinomial, multivariate hypergeometric, Dirichlet, negatively correlated normal,
permutation distribution, and randomsamplingwithout replacement, etc. Indeed, these
multivariate random vectors are proved to be negatively associated [see (Joag-Dev and
Proschan 1983)], and since negative association is strictly stronger than pairwise neg-
ative dependence [see (Joag-Dev and Proschan 1983, Property P3 and Remark 2.5)],
the aforementioned multivariate random vectors satisfy Condition (H2). Moreover, by
Example 3.1 ofHien andThành (2015), we have that an array {Xn,i , 1 ≤ i ≤ n, n ≥ 1}
of rowwise negatively associated random variables can be constructed such that each
Xn,i can have any specified marginal distributions.

The following corollary is a consequence of Theorems 2.1 and 2.2.

Corollary 3.1 Let 1 ≤ p < 2 and let {Xn,i , un ≤ i ≤ vn, n ≥ 1} be an array of
random variables satisfying Condition (H2). Let {bn, n ≥ 1} be a sequence of positive
constants. If

sup
n≥1

1

bp
n

vn∑

i=un

E|Xn,i |p < ∞ (3.1)
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and

lim
n→∞

vn∑

i=un

P
(|Xn,i | > εbn

) = 0 for all ε > 0, (3.2)

then we obtain the weak law of large number (2.5).
In addition, if

lim
n→∞

∫ ∞

1

vn∑

i=un

P

(
|Xn,i | > bnu

1/p
)
d u = 0, (3.3)

then we obtain (2.9).

Proof Since {Xn,i , un ≤ i ≤ vn, n ≥ 1} satisfies Condition (H2), (2.1) is fulfilled
with Mn = M < ∞ for all n ≥ 1. Corollary 3.1 thus follows from Theorems 2.1 and
2.2. 	


In the following remark, we will make some comments on Conditions (1.1)–(1.3)
in Theorem 1.1, and Conditions (3.1)–(3.3) in Corollary 3.1.

Remark 3.2 (i) It is clear that (1.3) implies (1.2) with p = 1. Conversely, assume that
(1.2) holds with p = 1. For any fixed ε > 0, we then have

1

2

n∑

i=1

εbnP(|Xn,i | > εbn) ≤
n∑

i=1

∫ εbn

εbn/2
P(|Xn,i | > x) d x

≤
n∑

i=1

∫ ∞

εbn/2
P(|Xn,i | > x) d x

= o(bn) as n → ∞.

It thus follows that

n∑

i=1

E(|Xn,i |1(|Xn,i | > εbn) =
n∑

i=1

∫ ∞

εbn
P(|Xn,i | > x) d x

+
n∑

i=1

εbnP(|Xn,i | > εbn)

= o(bn) as n → ∞
establishing (1.3). Therefore, (1.3) is indeed equivalent to (1.2) with p = 1.

(ii) A Reviewer so kindly pointed out to us that for the case un ≡ 1 and vn ≡ n,
Conditions (3.1)–(3.3) are equivalent to the pair of Conditions (1.1) and (1.2) (with
1 ≤ p < 2). To see this, we note that (1.1) and (1.2) imply

∫ ∞

0

n∑

i=1

P(|Xn,i | > bnu
1/p) d u = O(1)
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which, in turn, implies (3.1). On the other hand, for any fixed ε > 0, by letting
t = εbp

n u, Condition (1.2) (with 1 ≤ p < 2) can be rewritten as

lim
n→∞

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > ε1/pbnu

1/p
)
d u = 0. (3.4)

It is clear that (3.4) implies (3.3) by letting ε = 1. It also follows from (3.4) that for
all ε > 0

0 = lim
n→∞

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > εbnu

1/p/2
)
d u

≥ lim
n→∞

∫ 2

1

n∑

i=1

P

(
|Xn,i | > εbnu

1/p/2
)
d u

≥ lim
n→∞

∫ 2

1

n∑

i=1

P
(|Xn,i | > εbn

)
d u

= lim
n→∞

n∑

i=1

P
(|Xn,i | > εbn

)

implying (3.2). Therefore, the pair of Conditions (1.1) and (1.2) (with 1 ≤ p < 2)
implies (3.1), (3.2) and (3.3). Conversely, it is clear that (3.1) ensures (1.1), and (3.3)
ensures (3.4) (i.e., (1.2) with 1 ≤ p < 2) if ε ≥ 1. If 0 < ε < 1, then

b−p
n

∫ ∞

εbpn

n∑

i=1

P
(|Xn,i |p > t

)
d t =

∫ ∞

ε

n∑

i=1

P

(
|Xn,i | > bnu

1/p
)
d u

≤ (1 − ε)

n∑

i=1

P

(
|Xn,i | > bnε

1/p
)

+
∫ ∞

1

n∑

i=1

P

(
|Xn,i | > bnu

1/p
)
d u,

hence (3.2) and (3.3) ensure that (1.2) (with 1 ≤ p < 2) is satisfied for 0 < ε < 1. 	

From Remark 3.2, we immediately have the following corollary which simplifies

Theorem 1.1.

Corollary 3.3 In Theorem 1.1, (1.3) can be replaced by (1.2) with p = 1.

Remark 3.4 (i) When each row of the array {Xn,i , un ≤ i ≤ vn, n ≥ 1} is comprised
of pairwise negatively dependent random variables (Wu andGuan 2011, Theorem 3.4)
obtained weak law of large numbers (2.5) under (3.1) and

lim
n→∞

1

bp
n

vn∑

i=un

sup
y≥h p

n

yP
(|Xn,i |p > y

) = 0, (3.5)
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where {hn, n ≥ 1} is a sequence of positive constants satisfying hn ↑ ∞ and
limn→∞ hn/bn = 0.

We will show that (3.5) implies (3.2). To see this, let ε > 0 be arbitrary. Since
limn→∞ hn/bn = 0, there exists n0 such that hn < εbn for all n ≥ n0. It thus follows
from (3.5) that

0 = lim
n→∞

1

bp
n

vn∑

i=un

sup
y≥h p

n

yP
(|Xn,i |p > y

) ≥ lim
n→∞

1

bp
n

vn∑

i=un

sup
y≥ε pbpn

yP
(|Xn,i |p > y

)

≥ ε p lim
n→∞

vn∑

i=un

P
(|Xn,i | > εbn

)

thereby implying (3.2). We will see in Example 3.8 that (3.5) is strictly stronger than
(3.2). 	


(ii) When each row of the array {Xn,i , un ≤ i ≤ vn, n ≥ 1} is comprised of
extended negatively dependent random variables (Shen and Volodin 2017, Theorem
3.1) obtained mean convergence (2.9) under (3.1) and

lim
n→∞

1

bp
n

vn∑

i=un

E

(
(|Xn,i | − h1/pn )p1

(|Xn,i |p > hn
)) = 0, (3.6)

where {hn, n ≥ 1} is a sequence of positive constant satisfying hn ↑ ∞ and
limn→∞ hn/bn = 0.

We will show that (3.6) implies both (3.2) and (3.3). To see this, let ε > 0 be
arbitrary. Since limn→∞ hn/bn = 0, there exists n0 such that h1/pn < (εbn)1/p/2 <

(εbn)1/p for all n ≥ n0. It thus follows from (3.6) that

0 = lim
n→∞

1

bp
n

vn∑

i=un

E

((
|Xn,i | − h1/pn

)p
1
(|Xn,i |p > hn

))

≥ lim
n→∞

1

bp
n

vn∑

i=un

E

((
|Xn,i | − (εbn)

1/p/2
)p

1
(|Xn,i |p > εbn

))

≥ lim
n→∞

1

2pbp
n

vn∑

i=un

E
(|Xn,i |p1

(|Xn,i |p > εbn
))

.

This implies

lim
n→∞

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > εbnu

1/p
)
d u = 0 for all ε > 0

which, in turn, implies both (3.2) and (3.3). By applying Lemmas 2.1 and 2.3 of Shen
and Volodin (2017), we have that extended negatively dependent random variables
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L. Vǎn Thành

satisfy condition (H2). Therefore, Corollary 3.1 extends Theorem 3.1 of Shen and
Volodin (2017). 	


By letting Xn,i ≡ bnan,i Yn,i , we obtain “weighted form” of Corollary 3.1. The
following corollary extends Theorem 1.2 [i.e., Theorem 2.1 of Sung (2013)].

Corollary 3.5 Let 1 ≤ p < 2 and let {Yn,i , un ≤ i ≤ vn, n ≥ 1} be a triangular array
of random variables such that for each n ≥ 1, the collection {Yn,i , un ≤ i ≤ vn}
satisfies condition (H2). Let {an,i , n ≥ 1} be an array of constants. Suppose that (1.5)
holds, and

lim
n→∞

vn∑

i=un

P
(|an,i ||Yn,i | > ε

) = 0 for all ε > 0, (3.7)

and

lim
n→∞

vn∑

i=un

∫ ∞

1
P

(
|an,i ||Yn,i | > u1/p

)
d u = 0. (3.8)

Then we obtain (1.7).

Remark 3.6 (i) As noted by Sung [see Corollaries 2.1–2.3 in Sung (2013)], Theorem
1.2 (and hence Corollary 3.5) extends and improves Theorems 3.1–3.3 of Wu and
Guan (2011). Corollary 3.5 also extends and improves Theorem 1 of Ordóñez Cabrera
and Volodin (2005) [see Remark 3.2 in Wu and Guan (2011)].

(ii) Shen and Volodin (2017, Theorem 3.2) established Theorem 1.2 for the case
where the pairwise negative dependence assumption is replaced by extended negative
dependence. Therefore, Corollary 3.5 also extends Theorem 3.2 of Shen and Volodin
(2017). 	


We now present three examples to illustrate the sharpness of Corollary 3.1. The first
example shows that in Corollary 3.1, (3.2) cannot be dispensed with. In Example 3.7,
(3.2) fails while both (3.1) and (3.3) hold. It also shows that (3.3) is strictly weaker
than

lim
n→∞

1

bp
n

vn∑

i=un

E
(|Xn,i |p1(|Xn,i | > bn)

) = 0. (3.9)

Example 3.7 Let 1 ≤ p < 2, 0 < α < 1, un ≡ 1, vn ≡ n, bn ≡ n1/p. Let
{Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of independent symmetric random variables
such that for all 1 ≤ i ≤ n, n ≥ 1,

P(Xn,i = 0) = 1 − 1

n
, P

(
Xn,i = −(n + iα)1/p

)
= P

(
Xn,i = (n + iα)1/p

)
= 1

2n
.
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Then (3.1) is satisfied since

sup
n≥1

1

bp
n

n∑

i=1

E|Xn,i |p = sup
n≥1

1

n

n∑

i=1

n + iα

n
≤ 2 < ∞.

Let 0 < ε < 1. Since

lim
n→∞

n∑

i=1

P

(
|Xn,i | > εn1/p

)
= lim

n→∞

n∑

i=1

P

(
|Xn,i | = (n + iα)1/p

)

= lim
n→∞

n∑

i=1

1

n
= 1,

(3.10)

we have (3.2) fails. Applying Theorem 1 (ii) of Etemadi (1985), we have for all n ≥ 1,

(
1 − P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ > εn1/p/2

))

n∑

i=1

P(|Xi | > εn1/p) ≤ P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ > εn1/p/2

)
. (3.11)

Combining (3.10) and (3.11) yields

1

n1/p
max

1≤k≤vn

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣
P
� 0. (3.12)

Applying Theorem 1 (i) of Etemadi (1985), we have

P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ > 4εn1/p
)

≤ 4 max
1≤k≤n

P

(∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ > εn1/p
)

. (3.13)

From (3.12) and (3.13), we conclude that

max
1≤k≤n

P

(∣∣∣∣∣

k∑

i=1

Xn,i

∣∣∣∣∣ > εn1/p
)

� 0

and therefore (2.5) fails. That is, in Corollary 3.1, (3.2) cannot be dispensed with.
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Finally, since α < 1, we have

lim
n→∞

n∑

i=1

∫ ∞

1
P

(
|Xn,i | > n1/pu1/p

)
d u

= lim
n→∞

n∑

i=1

(
1

n
E

(
|Xn,i |p1(|Xn,i | > n1/p)

)
− P(|Xn,i | > n1/p)

)

= lim
n→∞

1

n2

n∑

i=1

iα = 0

thereby establishing (3.3). However, (3.9) fails since

lim
n→∞

1

n

n∑

i=1

E

(
|Xn,i |p1(|Xn,i | > n1/p)

)
= lim

n→∞
1

n

n∑

i=1

n + iα

n
≥ 1.

This shows that (3.3) is strictly weaker than (3.9). 	

The next example shows that there exists an array of independent random variables

satisfying (3.1) and (3.2) of Corollary 3.1 but (3.5) [i.e., Condition (2.5) of Theorem
3.4 in Wu and Guan (2011)] is not fulfilled. In Example 3.8, (3.3) and (2.9) fail. That
is, it shows that in Corollary 3.1, (2.9) can fail if (3.3) is dispensed with.

Example 3.8 Let p = 1, un ≡ 1, vn ≡ n, bn ≡ n1/p. Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be
an array of random variables with Xn,i = 0 for 1 ≤ i < n, n ≥ 1 and

P(Xn,n = 0) = 1 − 1

n
, P

(
Xn,n = −(n + 1)2

) = P
(
Xn,n = (n + 1)2

) = 1

2n
, n ≥ 1.

Then both (3.1) and (3.2) are satisfied since

sup
n≥1

1

bp
n

n∑

i=1

E|Xn,i |p = sup
n≥1

1

n
× (n + 1)2

n
< ∞

and for all ε > 0,

lim
n→∞

n∑

i=1

P
(|Xn,i | > εbn

) = lim
n→∞ P

(
|Xn,n| = (n + 1)2

)
= 0.

Now, for all sequence {hn, n ≥ 1} satisfying limn→∞ hn/bn = 0, we have

lim
n→∞

1

bp
n

n∑

i=1

sup
y≥h p

n

yP
(|Xn,i |p > y

) ≥ lim
n→∞

1

n
sup
y≥n2

yP
(|Xn,n| > y

)

≥ lim
n→∞

1

n
× n2 × 1

n
= 1
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thereby showing that (3.5) fails. Hence, we cannot apply Theorem 3.4 ofWu andGuan
(2011) for this example.

Finally, by noting p = 1, we have

lim
n→∞

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > bnu

1/p
)
d u = lim

n→∞

∫ ∞

1
P

(|Xn,n| > nu
)
d u

≥ lim
n→∞

∫ n

1
P

(|Xn,n| > nu
)
d u

= lim
n→∞

∫ n

1

1

n
d u = 1

thereby showing that (3.3) is not satisfied. We also have

E

∣∣∣∣∣
1

bn

n∑

i=1

(
Xn,i − EXn,i

)
∣∣∣∣∣ = 1

n
E|Xn,n| = 1

n
× (n + 1)2 × 1

n
→ 1,

and so (2.9) fails. 	


Remark 3.9 (i) FromExamples 3.7 and 3.8, we see that (3.2) and (3.3) are independent
conditions in the sense that neither of them implies the other. Both (3.2) and (3.3)
follows from

lim
n→∞

∫ ∞

1

vn∑

i=un

P

(
|Xn,i | > εbnu

1/p
)
d u = 0 for all ε > 0. (3.14)

We note that Condition (3.14) coincides with (1.2) when un ≡ 1 and vn ≡ n. Example
3.7 shows that (3.3) is strictly weaker than (3.14) with ε = 1 and Example 3.8 shows
that (3.2) is strictly weaker than (3.14). In the case where un ≡ 1 and vn ≡ n, (3.14)
coincides with (1.2). By proceeding in exactly the same manner as Remark 3.2, we
have (3.14) is equivalent to the pair of Conditions (3.2) and (3.3).

(ii) A Reviewer so kindly pointed out to us that there are cases in which (3.14) tends
to zero more rapidly than (3.2) [see, e.g., (Lita da Silva 2016, Page 350) for the case
where |Xn,i |p has the exponential distribution Expo(1), 1 ≤ i ≤ n, n ≥ 1].

The following example, which is inspired by Example 4.3 in Rosalsky and Thành
(2021) and Example 5 in Thành (2023), shows that in Corollary 3.1, we cannot obtain
a.s. convergence in (2.9).

Example 3.10 Let 1 ≤ p < 2, un ≡ 1, vn ≡ n, bn ≡ n1/p and let {Xi , i ≥ 1} be a
sequence of pairwise negatively dependent random variables such that for all i ≥ 1,

P(Xn,i = 0) = 1 − 1

(i + 1) log(i + 1)
, P

(
Xn,i = ±(i + 1)1/p

) = 1

2(i + 1) log(i + 1)
.
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Let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent random variables
with

Xn,i = Xi , 1 ≤ i ≤ n, n ≥ 1.

Then

sup
1≤i≤n,n≥1

E(|Xn,i |p log |Xn,i |) = 1

p
< ∞.

By the classical de laVallée Poussin theorem, {|Xn,i |p, 1 ≤ i ≤ n, n ≥ 1} is uniformly
integrable, so that the hypotheses of Corollary 3.1 are fulfilled. Therefore, we obtain
(2.9). However, by proceeding in exactly the samemanner as Example 4.3 of Rosalsky
and Thành (2021), we obtain

∑n
i=1 Xn,i

n1/p
=

∑n
i=1 Xi

n1/p
� 0 a.s. as n → ∞,

that is, a.s. convergence does not prevail in (2.9). 	


3.2 Widely orthant dependent random variables

As mentioned in Sect. 2, arrays of pairwise mn-dependent random variables, widely
orthant dependent random variables, and non-homogeneousMarkov chains are typical
examples of Condition (G2) where the dominating sequence {Mn, n ≥ 1} can be
unbounded.

The concept ofwidely orthant dependent randomvariableswas introduced byWang
et al. (2013). A collection {Xi , 1 ≤ i ≤ n} of random variables is said to be widely
orthant dependent (WOD) if there exists a positive constant gn which may depend on
n such that for all xi ∈ R, 1 ≤ i ≤ n,

P(X1 > x1, . . . , Xn > xn) ≤ gnP(X1 > x1) . . . P(Xn > xn),

and

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤ gnP(X1 ≤ x1) . . . P(Xn ≤ xn).

The gn , n ≥ 1 are called the dominating coefficients. If there exists a positive constant
M such that supn≥1 gn ≤ M , then this reduces to the concept of extended negative
dependence.We refer toWanget al. (2013, Section3) andWuet al. (2018,Example1.2)
for examples of sequences ofWOD random variables with the dominating coefficients
gn satisfying limn→∞ gn = ∞.

The following corollary establishes a weak law of large numbers and a mean con-
vergence result for arrays of rowwiseWOD random variables. For simplicity and since
it is just meant to be an illustration, we only state the result for the case un ≡ 1 and
vn ≡ n.
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Corollary 3.11 Let 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be a triangular array
such that for each n ≥ 1, the collection {Xn,i , 1 ≤ i ≤ n} is comprised of WOD
random variables with the dominating coefficient gn. Let {bn, n ≥ 1} be a sequence
of positive constants. If

sup
n≥1

(1 + gn)b
−p
n

n∑

i=1

E|Xn,i |p < ∞ (3.15)

and

lim
n→∞(1 + gn)

n∑

i=1

P
(|Xn,i | > εbn

) = 0 for all ε > 0, (3.16)

then we obtain the weak law of large number

1

bn

n∑

i=1

(
Xn,i − EYn,i

) P→ 0 as n → ∞,

where Yn,i is as in Theorem 2.1. In addition, if

lim
n→∞(1 + gn)

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > bnu

1/p
)
d u = 0, (3.17)

then we obtain (1.4).

Proof By Lemma 2.1 (i) and Corollary 2.3 in Wang et al. (2014) [see also Lemma 2
of Lita da Silva (2016)], we have for each n ≥ 1,

E

(∣∣∣∣∣

n∑

i=1

(
X (a)
i − EX (a)

i

)∣∣∣∣∣

)2

≤ C(1 + gn)
n∑

i=1

E(X (a)
i )2,

that is, (2.1) is satisfied with Mn ≡ C(1 + gn). Applying Theorems 2.1 and 2.2, we
obtain the conclusions of the corollary. 	


Lita da Silva (2016, Theorem 1) established the following result.

Proposition 3.12 (Theorem1ofLita da Silva (2016))Let 1 ≤ p < 2 and let {Xn,i , 1 ≤
i ≤ n, n ≥ 1} and {bn, n ≥ 1} be as in Corollary 3.11. If

n∑

i=1

∫ εbpn

0
P(|Xn,i |p > t) d t = O

(
bp
n

1 + gn

)
as n → ∞ for all ε > 0, (3.18)
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and

n∑

i=1

∫ ∞

εbpn
P(|Xn,i |p > t) d t

= o

(
bp
n

1 + gn

)
as n → ∞ for all ε > 0 when 1 < p < 2, (3.19)

or

n∑

i=1

∫ ∞

εbn
P(|Xn,i | > t) d t = o

(
bn

1 + gn

)
as n → ∞, (3.20)

and

n∑

i=1

P
(|Xn,i | > εbn

) = o(1) as n → ∞ for all ε > 0 when p = 1,

then we obtain (1.4).

Similar to Corollary 3.3, we obtain the following simplification of Theorem 1 of
Lita da Silva (2016).

Corollary 3.13 Let 1 ≤ p < 2 and let {Xn,i , 1 ≤ i ≤ n, n ≥ 1} and {bn, n ≥ 1} be as
in Corollary 3.11. If (3.18) and (3.19) holds with 1 ≤ p < 2, then we obtain (1.4).

Proof We see that (3.18) and (3.19) imply

n∑

i=1

∫ ∞

0
P(|Xn,i |p > t) d t = O

(
bp
n

1 + gn

)
as n → ∞

which yields (3.15). On the other hand, by letting u = εbp
n , Condition (3.19) with

1 ≤ p < 2 can be rewritten as

lim
n→∞(1 + gn)

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > ε1/pbnu

1/p
)
d u = 0 for all ε > 0

which, in turn, implies both (3.16) and (3.17). The proof of Corollary 3.13 thus follows
by applying Corollary 3.11. 	


3.3 Non-homogeneous Markov chains

In this subsection, we will present applications of Theorems 2.1 and 2.2 to non-
homogeneous Markov chains. Let A and B be two σ -fields. Define the maximal
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coefficient of correlation

ρ(A,B) = sup
f ∈L2(A),g∈L2(B)

|corr( f , g)|,

where L2(A) is the space of random variables that are A-measurable and square
integrable. For a collection {ξn,i , 1 ≤ i ≤ n} of random variables, we define

ρn,k = max
1≤s,s+k≤n

ρ(σ(ξn,i , i ≤ s), σ (ξn, j , j ≥ s + k)). (3.21)

The following result establishes mean convergence for functions of non-
homogeneous Markov chains.

Corollary 3.14 Let 1 ≤ p < 2, let {bn, n ≥ 1} be a sequence of positive constants,
and let {ξn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables such that such
that each row {ξn,i , 1 ≤ i ≤ n} is a non-homogeneous Markov chain taking values
in a measurable space (X ,B(X )) with the maximal coefficient of correlation ρn,1
defined as in (3.21). Let fn,i : X → R be Borel functions and let Xn,i = fn,i (ξn,i ),
1 ≤ i ≤ n, n ≥ 1. Assume that ρn,1 < 1 for all n ≥ 1. If

sup
n≥1

1

(1 − ρn,1)b
p
n

n∑

i=1

E|Xn,i |p < ∞, (3.22)

lim
n→∞

1

1 − ρn,1

n∑

i=1

P
(|Xn,i | > εbn

) = 0 for all ε > 0, (3.23)

and

lim
n→∞

1

1 − ρn,1

∫ ∞

1

n∑

i=1

P

(
|Xn,i | > bnu

1/p
)
d u = 0, (3.24)

then we obtain

1

bn

n∑

i=1

(
Xn,i − EXn,i

) Lp→ 0 as n → ∞.

Proof By Proposition 13 of Peligrad (2012), we have

Var

(
n∑

i=1

Xn,i

)2

≤ 1 + ρn,1

1 − ρn,1

n∑

i=1

EX2
n,i

≤ 2

1 − ρn,1

n∑

i=1

EX2
n,i .
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Applying Theorem 2.2 with un ≡ 1, vn ≡ n, and Mn ≡ 2
1−ρn,1

, we obtain the
conclusion of the corollary. 	

Remark 3.15 The central limit theorem for {Xn,i , 1 ≤ i ≤ n, n ≥ 1} was established
by Peligrad (2012). The main theme in Peligrad (2012) is central limit theorems
for non-homogeneous Markov chains with the maximal coefficients of correlation,
ρn,1, are allowed to converge to 1. For example, for the uniformly bounded case
sup1≤i≤n,n≥1 |Xn,i | ≤ C1 < ∞ a.s., with the variance of individual summands sat-
isfying Var(Xn,i ) > c > 0, a sufficient condition for the central limit theorem [see
Equation (7) and Corollary 3 in Peligrad (2012)] is

(1 − ρn,1)n1/3

log2/3 n
→ ∞. (3.25)

For mean convergence, Corollary 3.14 also allows ρn,1 approaching 1 whereas it
imposes very weak conditions on the moment. For example, if we only assume
{|Xn,i |p, 1 ≤ i ≤ n, n ≥ 1} is uniformly integrable with 1 < p < 2, then by
letting bn ≡ n, we obtain by Corollary 3.14 that

1

n

n∑

i=1

(
Xn,i − EXn,i

) Lp→ 0 as n → ∞

provided

(1 − ρn,1)n
p−1 → ∞. (3.26)

It is clear that if 4/3 ≤ p < 2, (3.26) allows ρn,1 approaching 1 faster than that
in (3.25). Finally, it is worth noting that if supn≥1 ρn,1 < 1 and {|Xn,i |p, 1 ≤ i ≤
n, n ≥ 1} is uniformly integrable, then three conditions (3.22), (3.23) and (3.24) are
all fulfilled with bn ≡ n1/p, and thus Corollary 3.14 can be applied. 	

Remark 3.16 Bradley (2011) (see Theorem 1 in Bradley (2011) and the paragraph
before that theorem) showed that for any sequence {an, n ≥ 1} ⊂ (0, 1), there exists
an array {Xn,i , 1 ≤ i ≤ n, n ≥ 1} of row-wise stationary Markov chains such that
ρn,1 = an and each Xn,i is uniformly distributed on a finite set. Using this result of
Bradley, for example, with

ρn,1 = an = 1 −
(
log n

2n

)p−1

, 1 < p < 2, n ≥ 1,

then (3.26) is fulfilled. 	


4 Mean convergence result for dependent bootstrap

In this section, we will apply Corollary 3.1 to obtain mean convergence for dependent
bootstrap.
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The notion of the dependent bootstrap procedure was introduced by Smith and
Taylor (2001) for a sequence of independent identically distributed (i.i.d.) random
variables. However, the dependent bootstrap procedure can be defined for an arbitrary
sequence of random variables as remarked by Ahmed et al. (2005). Let {Xn, n ≥ 1}
be a sequence of arbitrary random variables defined on a probability space (Ω,F , P).
Let {mn, n ≥ 1} and {kn, n ≥ 1} be two sequences of positive integers such that
mn ≤ nkn for all n ≥ 1. For ω ∈ Ω and n ≥ 1, the dependent bootstrap is defined to
be the sample of sizemn , denoted by {X̂ (ω)

n, j , 1 ≤ j ≤ mn}, drawn without replacement
from the collection of nkn items made up of kn copies each of the sample observations
X1(ω), . . . , Xn(ω).

Smith and Taylor (2001) proposed the dependent bootstrap as a procedure to reduce
variation of estimators and obtain better confidence intervals than those obtained using
the classical Efron resampling (with replacement) bootstrap. Ahmed et al. (2005)
pointed out that if we take kn = ∞ for all n ≥ 1, then the dependent bootstrap
reduces to the classical Efron independent bootstrap. Therefore, we may consider
the dependent bootstrap procedure as a more general procedure than the classical
Efron independent bootstrap. The result of this section, Theorem 4.4, does not require
any assumptions on kn . Therefore, it is also true for the classical Efron independent
bootstrap.

From the above definition, for each of themn selections, each Xi (ω) has probability
1/n of being chosen. Hence, for each ω ∈ Ω and n ≥ 1, X̂ (ω)

n, j , 1 ≤ j ≤ mn are
identically distributed random variables with distribution

P̂

(
X̂ (ω)
n,1 = Xi (ω)

)
= 1

n
, 1 ≤ i ≤ n, (4.1)

where P̂ is the conditional probability measure given by {X j , 1 ≤ j ≤ n} carrying
for each n ≥ 1, the uniform distribution on {X1(ω), . . . , Xn(ω)} of each resampled
{X̂ (ω)

n, j , 1 ≤ j ≤ mn}. We refer to Smith and Taylor (2001) for more details.

Let Ê denote the expectation with respect to P̂. In the sequel, we will need the
following lemmas. The first lemma follows immediately from (4.1).

Lemma 4.1 For each ω ∈ Ω and n ≥ 1, we have for any positive integer k and for
any nonnegative function g defined on [0,∞) that

Ê

(
X̂ (ω)
n,1

)k = 1

n

n∑

j=1

(X j (ω))k, (4.2)

and

Êg
(∣∣∣X̂ (ω)

n,1

∣∣∣
)

= 1

n

n∑

j=1

g
(|X j (ω)|) . (4.3)
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Remark 4.2 By applying (4.2) with k = 1 and k = 2, we have

ÊX̂ (ω)
n,1 = Xn(ω) (4.4)

and

V̂ar X̂ (ω)
n,1 = S2n (ω), (4.5)

where V̂ar denote the variance with respect to P̂, Xn = n−1 ∑n
j=1 X j is the sample

mean and S2n = n−1 ∑n
j=1(X j − Xn)

2 is the biased version of the sample variance.
Both (4.4) and (4.5) were established by Smith and Taylor (2001) for the case where
the random variables Xn, n ≥ 1 are i.i.d. 	


The next lemma was established by Ahmed et al. (2005).

Lemma 4.3 For each ω ∈ Ω and n ≥ 1, the dependent bootstrap random variables
{X̂ (ω)

n, j , 1 ≤ j ≤ mn} are negatively dependent and exchangeable.

Werecall that a sequence {Xn, n ≥ 1}of randomvariables is said to be stochastically
dominated by a random variable X if

sup
n≥1

P(|Xn| > t) ≤ P(|X | > t), t > 0.

Stochastic domination and uniform integrability have interesting relationships. We
refer to (Rosalsky and Thành 2021; Thành 2022) for recent developments on this
topic.

The strong and weak laws of large numbers and complete convergence for depen-
dent bootstrap were studied by some authors [see, e.g., (Ahmed et al. 2005; Smith
and Taylor 2001; Volodin et al. 2006) and the references therein]. In the following
theorem, we use Corollary 3.1 to establish a mean convergence theorem for the sums∑mn

j=1 X̂
(ω)
n, j of the dependent bootstrap samples {X̂ (ω)

n, j , 1 ≤ j ≤ mn, n ≥ 1} for the
case where {Xn, n ≥ 1} is comprised of pairwise independent random variables and
stochastically dominated by a random variable X .

Theorem 4.4 Let {Xn, n ≥ 1} be a sequence of pairwise independent random vari-
ables defined on a probability space (Ω,F , P). Let {mn, n ≥ 1} and {kn, n ≥ 1} be
two sequences of positive integers such that mn ≤ nkn for all n ≥ 1. For ω ∈ Ω and
n ≥ 1, let {X̂ (ω)

n, j , 1 ≤ j ≤ mn} be the corresponding sequence of dependent bootstrap
samples. Let 1 ≤ p < 2 and let {bn, n ≥ 1} be a sequence of positive constants such
that limn→∞ bn = ∞ and mn ≤ Cbp

n for all n ≥ 1. If the sequence {Xn, n ≥ 1} is
stochastically dominated by a random variable X satisfying

E|X |p < ∞, (4.6)
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then for almost every ω ∈ Ω , we have

1

bn

mn∑

j=1

(
X̂ (ω)
n, j − Xn(ω)

) Lp→ 0 as n → ∞, (4.7)

where Xn = n−1 ∑n
j=1 X j , n ≥ 1.

Proof By (4.6) and the de La Vallée Poussin criterion for uniform integrability,
there exists a nondecreasing function g defined on [0,∞) with g(0) = 0 such that
limx→∞ g(x)/x p = ∞ and

E(g(|X |p)) < ∞. (4.8)

Since the sequence {Xn, n ≥ 1} is stochastically dominated by a random variable
X satisfying (4.8), we can apply the Kolmogorov strong law of large numbers for
sequences of pairwise independent random variables [see, e.g., Théorèm 1 in Rio
(1995) or Theorem 2.1 in Dzung and Thành (2021)] to obtain

1

n

n∑

j=1

(
g(|X j |p) − Eg(|X j |p)

) → 0 a.s. as n → ∞. (4.9)

By applying the stochastic domination and (4.8) again, we have

sup
n≥1

Eg(|Xn|p) ≤ Eg(|X |p) < ∞. (4.10)

Combining (4.3), (4.9), and (4.10) yields for almost ω ∈ Ω ,

sup
n≥1

Êg
(∣∣∣X̂ (ω)

n,1

∣∣∣
p) = sup

n≥1

1

n

n∑

j=1

g
(|X j (ω)|p) < ∞. (4.11)

Let un ≡ 1 and vn ≡ mn . Since for every n ≥ 1 and ω ∈ Ω , the random
variables X̂ (ω)

n, j , 1 ≤ j ≤ mn are identically distributed and mn ≤ Cbp
n , we claim that

(4.11) implies that for almost every ω ∈ Ω , the array of random variables {X̂ (ω)
n, j , 1 ≤

j ≤ mn, n ≥ 1} satisfies all three conditions (3.1), (3.2) and (3.3). To see this, let
ε > 0 be arbitrary. By using (4.11) and the de La Vallée Poussin criterion for uniform
integrability, we get that {|X̂ (ω)

n,1 |p, n ≥ 1} is uniformly integrable for almost every
ω ∈ Ω . Therefore, we have for almost every ω ∈ Ω ,

sup
n≥1

1

bp
n

mn∑

j=1

Ê|X̂ (ω)
n, j |p = sup

n≥1

1

bp
n
mnÊ|X̂ (ω)

n,1 |p ≤ C sup
n≥1

Ê|X̂ (ω)
n,1 |p < ∞
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establishing (3.1). Secondly, for almost every ω ∈ Ω , by using Markov’s inequality
and the uniform integrability of {|X̂ (ω)

n,1 |p, n ≥ 1} again, we have

lim
n→∞

mn∑

j=1

P̂

(
|X̂ (ω)

n, j | > εbn
)

= lim
n→∞mnP̂

(
|X̂ (ω)

n,1 | > εbn
)

≤ lim
n→∞mn

Ê

(
|X̂ (ω)

n,1 |p1
(
|X̂ (ω)

n,1 | > εbn
))

ε pbp
n

≤ C

ε p
lim
n→∞ Ê

(
|X̂ (ω)

n,1 |p1
(
|X̂ (ω)

n,1 | > εbn
))

≤ C

ε p
lim
n→∞

(
sup
m≥1

Ê

(
|X̂ (ω)

m,1|p1
(
|X̂ (ω)

m,1| > εbn
)))

= 0

and

lim
n→∞

∫ ∞

1

mn∑

j=1

P̂

(
|X̂ (ω)

n, j | > bnu
1/p

)
d u = lim

n→∞mn

∫ ∞

1
P̂

(
|X̂ (ω)

n, j | > bnu
1/p

)
d u

≤ lim
n→∞mn

∫ ∞

0
P̂

(
|X̂ (ω)

n, j | > bnu
1/p

)
d u

= lim
n→∞mn

Ê

(
|X̂ (ω)

n,1 |p1
(
|X̂ (ω)

n,1 | > bn
))

bp
n

≤ C lim
n→∞ Ê

(
|X̂ (ω)

n,1 |p1
(
|X̂ (ω)

n,1 | > εbn
))

= 0

establishing (3.2) and (3.3), respectively.
On the other hand, byLemma4.3, for everyω ∈ Ω , each rowof the array {X̂ (ω)

n, j , 1 ≤
j ≤ mn, n ≥ 1} is comprised of negatively dependent random variables, so it satisfies
Condition (H2). Applying Corollary 3.1 with un ≡ 1 and vn ≡ mn and recalling (4.4),
we have for almost ω ∈ Ω

1

bn

mn∑

j=1

(
X̂ (ω)
n, j − Xn(ω)

)
= 1

bn

mn∑

j=1

(
X̂ (ω)
n, j − ÊX̂ (ω)

n, j

) Lp→ 0 as n → ∞

establishing (4.7). The proof of the theorem is completed. 	

Remark 4.5 (i) Under the same stochastic domination assumption and (4.6), Ahmed
et al. (2005), Corollary 1 obtained the weak law of large numbers

1

n1/p

n∑

j=1

(
X̂ (ω)
n, j − Xn(ω)

)
P→ 0 as n → ∞ for almost ω ∈ Ω. (4.12)
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It is clear that (4.7) is stronger and more general than (4.12). However, Ahmed et al.
(2005) did not require any specific dependence structure of the sequence {Xn, n ≥ 1}.

(ii) If the sequence {Xn, n ≥ 1} is comprised of pairwise negatively dependent
(or extended negative dependent) random variables, then by applying Theorem 2.1 in
Dzung and Thành (2021), we can show that the strong law of large numbers (4.9) still
holds. Therefore, Theorem 4.4 still holds for the case where the sequence {Xn, n ≥
1} is comprised of pairwise negatively dependent (or extended negative dependent)
random variables.
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