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A B S T R A C T

This paper presents an exposition of Rio’s proof of the strong law of large numbers and
extends his method to random fields. In addition to considering the rate of convergence in the
Marcinkiewicz–Zygmund strong law of large numbers, we go a step further by establishing (i)
the Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem, (ii) the Feller weak law of large numbers,
and (iii) the Pyke–Root theorem on mean convergence for dependent random fields. These
results significantly improve several particular cases in the literature. The proof is based on
new maximal inequalities that hold for random fields satisfying a very general dependence
structure.

1. Introduction and main results

Consider a sequence {𝑋𝑛, 𝑛 ≥ 1} of square integrable, mean zero random variables. Let 𝑆𝑛 = 𝑋1 +⋯ + 𝑋𝑛, 𝑛 ≥ 1 be the partial
sums. Many dependence structures possess the following inequality:

E𝑆2
𝑛 ≤ 𝐶

𝑛
∑

𝑖=1
E𝑋2

𝑖 , 𝑛 ≥ 1. (1.1)

Here and hereafter, the symbol 𝐶 denotes an absolute constant which is not necessarily the same one in each appearance. To prove
strong laws of large numbers (SLLN), we usually need a stronger inequality which will be referred to as a Kolmogorov–Doob-type
maximal inequality:

E
(

max
1≤𝑘≤𝑛

𝑆2
𝑘

)

≤ 𝐶
𝑛
∑

𝑖=1
E𝑋2

𝑖 , 𝑛 ≥ 1. (1.2)

However, (1.2) is not available for some interesting dependence structures, such as negative dependence, extended negative
dependence or various mixing sequences. It is even invalid for pairwise independence or pairwise negative dependence. Therefore,
stronger conditions are usually required for the SLLN under these dependence structures compared to the independence case (see,
e.g., Csögo et al. [15] and Martı̆kainen [35]). In 1981, Etemadi [19] proved that the Kolmogorov SLLN still holds for the pairwise
independent and identical distribution (p.i.i.d.) case. The Etemadi subsequences method, however, does not seem to work when the
norming sequences are of the form 𝑏𝑛 = 𝑜(𝑛), as in the case of the Marcinkiewicz–Zygmund SLLN (see Remark 3 of Janisch [29]).
Csögo et al. [15] showed that under pairwise independence, the Kolmogorov SLLN for the non-identical distribution case does not
hold in general.

In some cases, it may be necessary to bound moments of order higher than 2 for either the partial sums or the maximum of the
partial sums. Let 𝑝 ≥ 2 and let {𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛} be a collection of independent mean zero random variables. The Rosenthal inequality

E-mail address: levt@vinhuni.edu.vn.
vailable online 2 February 2024
304-4149/© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.spa.2024.104313
Received 14 February 2023; Received in revised form 20 January 2024; Accepted 29 January 2024

https://www.elsevier.com/locate/spa
https://www.elsevier.com/locate/spa
mailto:levt@vinhuni.edu.vn
https://doi.org/10.1016/j.spa.2024.104313
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2024.104313&domain=pdf
https://doi.org/10.1016/j.spa.2024.104313


Stochastic Processes and their Applications 171 (2024) 104313L.V. Thành

H
i

s
t
a

o

T

i

4
i
c
f

states that

E
|

|

|

|

|

𝑛
∑

𝑖=1
𝑋𝑖

|

|

|

|

|

𝑝

≤ 𝐶(𝑝) max

⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑖=1
E|𝑋𝑖|

𝑝,

( 𝑛
∑

𝑖=1
E𝑋2

𝑖

)𝑝∕2⎫
⎪

⎬

⎪

⎭

. (1.3)

ereafter, 𝐶(𝑝) is a constant depending only on 𝑝. Johnson et al. [31] proved that if the random variables 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛 are
ndependent and symmetric, then (1.3) holds with 𝐶(𝑝) =

(

𝐾𝑝
log 𝑝

)𝑝
, where 𝐾 is a constant satisfying 1∕(𝑒

√

2) ≤ 𝐾 ≤ 7.35. Recently,
Chen et al. [13] used Stein’s method and obtained the bound 𝐾 ≤ 3.5 without assuming the symmetry of the random variables. It
is noteworthy that the rate 𝑝∕ log 𝑝 in the expression of 𝐶(𝑝) is optimal, as shown by Johnson at al. [31]. A stronger version of (1.3)
is

E

(

max
𝑘≤𝑛

|

|

|

|

|

|

𝑘
∑

𝑖=1
𝑋𝑖

|

|

|

|

|

|

𝑝)

≤ 𝐶(𝑝) max

⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑖=1
E|𝑋𝑖|

𝑝,

( 𝑛
∑

𝑖=1
E𝑋2

𝑖

)𝑝∕2⎫
⎪

⎬

⎪

⎭

(1.4)

which plays a crucial tool in the proof of many limit theorems (see, e.g., [16,36,40,59]). We will refer to (1.4) as a Rosenthal-type
maximal inequality. Rosenthal-type maximal inequalities have been established for various dependence structures, such as stationary
sequences (Merlevede and Peligrad [36], Peligrad and Utev [40]), 𝜌-mixing sequences (Shao [47]), negatively associated sequences
(Shao [48]), and 𝜌∗-mixing sequences (Peligrad and Gut [38], Utev and Peligrad [59]), etc.

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random variables. Hsu and Robbins [28] proved
that if E𝑋1 = 0 and E𝑋2

1 < ∞, then the sample mean converges to 0 completely, i.e.,
∞
∑

𝑛=1
P

(

|

|

|

|

|

𝑛
∑

𝑖=1
𝑋𝑖

|

|

|

|

|

> 𝜀𝑛

)

< ∞ for all 𝜀 > 0. (1.5)

Erdös [18] proved that the converse also holds, i.e., (1.5) implies E𝑋1 = 0 and E𝑋2
1 < ∞. This famous result was extended to the

case where E𝑋2
1 can be infinite by Baum and Katz [2]. The Baum–Katz theorem reads as follows.

Theorem 1.1 (Baum and Katz [2]). Let 𝑝 ≥ 1, 1∕2 < 𝛼 ≤ 1, 𝛼𝑝 ≥ 1 and let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables. If

E𝑋1 = 0 and E|𝑋1|
𝑝 < ∞, (1.6)

then
∞
∑

𝑛=1
𝑛𝛼𝑝−2P

(

|

|

|

|

|

𝑛
∑

𝑖=1
𝑋𝑖

|

|

|

|

|

> 𝜀𝑛𝛼
)

< ∞ for all 𝜀 > 0, (1.7)

and
∞
∑

𝑛=1
𝑛𝛼𝑝−2P

(

max
𝑘≤𝑛

|

|

|

|

|

|

𝑘
∑

𝑖=1
𝑋𝑖

|

|

|

|

|

|

> 𝜀𝑛𝛼
)

< ∞ for all 𝜀 > 0. (1.8)

Conversely, if one of the sums is finite for all 𝜀 > 0, then (1.6) holds.

The implication (1.8) ⇒ (1.7) is trivial and the implication (1.7) ⇒ (1.8) is a direct consequence of the Lévy inequalities (see,
e.g., [25, Theorem 3.7.1]) as noted by Gut and Stadtmüller [26, Page 447]. The equivalence of (1.6) and (1.7) for the case where
𝑝 = 1 and 𝛼 = 1 was proved by Spitzer [50]. The case where 𝑝 > 1, 1∕2 < 𝛼 ≤ 1 and 𝛼𝑝 > 1 is the first part of Theorem 3 of Baum
and Katz [2], and it reduces to the Hsu–Robbins–Erdös theorem when 𝑝 = 2 and 𝛼 = 1. The case where 1 ≤ 𝑝 < 2 and 𝛼 = 1∕𝑝 is the
econd part of Theorem 1 of Baum and Katz [2], and it is of special interest because each of (1.6), (1.7) and (1.8) is equivalent to
he Marcinkiewicz–Zygmund SLLN. For the case 0 < 𝑝 < 1, Peligrad [37] proved that the second half of (1.6) implies (1.8) without
ssuming any dependence structure (see Peligrad [37, Theorem 1]).

In [42], Pyke and Root proved that if 1 ≤ 𝑝 < 2, then the condition (1.6) is also necessary and sufficient for convergence in 𝑝
f the partial sums.

heorem 1.2 (Pyke and Root [42]). Let 1 ≤ 𝑝 < 2 and let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of i.i.d. random variables. Then
∑𝑛

𝑖=1 𝑋𝑖

𝑛1∕𝑝
𝑝
→ 0 as 𝑛 → ∞ (1.9)

f and only if (1.6) holds.

The Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem was extended in various directions. We refer to [17,23,26,33,38,39,43,
7,52] and the references therein. In all these papers, the maximal inequalities play a crucial step in the proofs. It was shown that
f a sequence of random variables satisfies a Kolmogorov–Doob-type maximal inequality, then the Baum–Katz theorem holds for the
ase where 1 ≤ 𝑝 < 2 (see, e.g., [56]). On the Pyke–Root theorem, however, no maximal inequality is needed and the result holds
or sequences of p.i.i.d. random variables (see, e.g., Chen, Bai, and Sung [11]).
2
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In [44], Rio developed a new method to prove that the Baum–Katz theorem (for the case 1 ≤ 𝑝 < 2 and 𝛼 = 1∕𝑝) still holds
for sequences of p.i.i.d. random variables. Although the maximal inequalities are somewhat concealed in Rio’s proof [44], his
method provides an elegant way to bound the tail probabilities of the maximum of partial sums of pairwise independent random
variables. Rio’s method has recently been applied by Thành [54,55,57] to derive laws of large numbers with regularly varying
norming constants. In this paper, we give an exposition of Rio’s proof by showing that his method can lead to a Rosenthal-type
maximal inequality for double sums of dependent random variables. This result is then used to prove various limit theorems for
two-dimensional random fields. In addition to extending Rio’s result on SLLN for dependent random fields, we also obtain the
Feller weak law of large numbers (WLLN) and the Pyke–Root theorem on mean convergence for the maximum of double sums of
dependent random variables. Furthermore, the Hsu–Robbins–Erdös SLLN for the maximum of double sums from double arrays of
dependent random variables is established. It is important to note that the Hsu–Robbins–Erdös theorem does not hold in general if
the independence assumption is weakened to the pairwise independence, even when the underlying random variables are uniformly
bounded (see Szynal [53]). We note further that in the proof of the Pyke–Root theorem and the Feller WLLN for partial sums, as
mentioned before, no maximal inequalities are required and the results hold for p.i.i.d. random variables. However, if one considers
convergence of the maximum of partial sums, a Kolmogorov–Doob-type maximal inequality would be needed, and the existing
methods do not seem to push through for the case of p.i.i.d. random variables.

Wichura [60] was apparently the first to establish the following multidimensional version of the Kolmogorov–Doob-type maximal
inequality (1.2) for the case of independent random variables. Let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of independent mean zero
andom variables and let 𝑆𝑚,𝑛 =

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗 be the partial sums. Then

E
(

max
𝑘≤𝑚,𝓁≤𝑛

𝑆2
𝑘,𝓁

)

≤ 16
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
E𝑋2

𝑖,𝑗 , 𝑚 ≥ 1, 𝑛 ≥ 1. (1.10)

or moment inequalities of the partial sums (1.1) and (1.3), it is clear that the case of the single sums is the same as its double
ums counterpart. However, there is a substantial difference between (1.10) and (1.2) because of the partial (in lieu of linear)
rdering of the index set {(𝑖, 𝑗), 𝑖 ≥ 1, 𝑗 ≥ 1}. Wichura’s [60] results had a great impact on the investigation of limit theorems
or random fields. For the case of i.i.d. random variables, we refer to a survey paper by Pyke [41] which covers many important
opics such as fluctuation theory, the SLLNs, inequalities, the central limit theorems, and the law of the iterated logarithm for the
ultidimensional sums. For a comprehensive exposition on the limit theorems for multiple sums of independent random variables,
e refer to a monograph by Klesov [32].

The Hsu–Robbins–Erdös–Spitzer–Baum–Katz and the Pyke–Root theorems were extended to independent random fields by
ut [23,24] and Gut and Stadtmüller [26], and to dependent random fields by Peligrad and Gut [38], Giraudo [22] and
uczmaszewska and Lagodowski [33], among others. The dependence structures considered in Peligrad and Gut [38], Giraudo [22]
nd Kuczmaszewska and Lagodowski [33] are, respectively, 𝜌∗-mixing random fields, martingale differences random fields, and
egatively associated random fields, all possessing a Kolmogorov–Doob-type maximal inequality. When working with limit theorems
or the maximum of multidimensional sums of dependent random variables, we encounter the following difficulties:

i) The Kolmogorov–Doob-type and the Rosenthal-type maximal inequalities are not valid, even in the case of dimension one
(e.g., pairwise independence, pairwise negative dependence). This is due to the fact that the Kolmogorov SLLN for the non-
identically distributed case does not necessarily hold if the underlying random variables are only pairwise independent (see,
e.g., Csögo et al. [15, Theorem 3]).

ii) For some dependence structures, the Kolmogorov–Doob-type and the Rosenthal-type maximal inequalities are not available for
the multidimensional setting (e.g., the 𝜌′-mixing random fields, negatively dependent random fields).

The advantage of our approach is that we only assume that the underlying random variables satisfy (1.3) for some fixed 𝑝 ≥ 2.
Therefore, we can avoid the above difficulties, and the main results can be applied to all aforementioned dependence structures.

For the sake of clarity, especially due to the complicated notation, we shall establish the results for double-indexed random
fields. The results would be able to extend to 𝑑-dimensional random fields for any integer 𝑑 ≥ 2 by the same method.

Throughout this paper, 𝐶(⋅), 𝐶1(⋅),… denote generic constants which are not necessarily the same one in each appearance, and
depend only on the variables inside the parentheses. For 𝑎, 𝑏 ∈ R, max{𝑎, 𝑏} will be denoted by 𝑎 ∨ 𝑏, and the natural logarithm of
𝑎 ∨ 2 will be denoted by log 𝑎. For a set 𝑆, 𝟏(𝑆) denotes the indicator function of 𝑆, and |𝑆| denotes the cardinality of 𝑆. For 𝑥 ≥ 0,
and for a fixed positive integer 𝜈, we let

log𝜈 (𝑥) ∶= (log 𝑥)(log log 𝑥)… (log⋯ log 𝑥), (1.11)

and

log(2)𝜈 (𝑥) ∶= (log 𝑥)(log log 𝑥)… (log⋯ log 𝑥)2, (1.12)

where in both (1.11) and (1.12), there are 𝜈 factors. For example, log2(𝑥) = (log 𝑥)(log log 𝑥), and log(2)3 (𝑥) = (log 𝑥)(log log 𝑥)(log log log
𝑥)2, and so on. For positive sequences {𝑢𝑛, 𝑛 ≥ 1} and {𝑣𝑛, 𝑛 ≥ 1}, we write 𝑢𝑛 ≍ 𝑣𝑛 to mean

0 < lim inf
𝑢𝑛 ≤ lim sup

𝑢𝑛 < ∞.
3
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The Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem, the Feller WLLN and the Pyke–Root theorem were originally stated for
dentically distributed random variables. A natural extension of the identical distribution condition, known as stochastic domination,
s defined as follows. A family of random variables {𝑋𝜆, 𝜆 ∈ 𝛬} is said to be stochastically dominated by a random variable 𝑋 if

sup
𝜆∈𝛬

P(|𝑋𝜆| > 𝑥) ≤ P(|𝑋| > 𝑥), 𝑥 ∈ R.

Some interesting properties concerning the concept of stochastic domination as well as relationships between stochastic domination
and uniform integrability were recently established in [46]. If {𝑋𝜆, 𝜆 ∈ 𝛬} is stochastically dominated by a random variable 𝑋, then
for all 𝑟 > 0 and 𝑎 > 0,

sup
𝜆∈𝛬

E
(

|𝑋𝜆|
𝑟𝟏(|𝑋𝜆| > 𝑎)

)

≤ E
(

|𝑋|

𝑟𝟏(|𝑋| > 𝑎)
)

(1.13)

and

sup
𝜆∈𝛬

E(|𝑋𝜆|
𝑟𝟏(|𝑋𝜆| ≤ 𝑎)) ≤ E(|𝑋|

𝑟𝟏(|𝑋| ≤ 𝑎)) + 𝑎𝑟P(|𝑋| > 𝑎) ≤ E|𝑋|

𝑟. (1.14)

We will use (1.13) and (1.14) in our proofs without further mention.
In this paper, we consider a very general dependence structure, defined as follows:
Condition (𝐻2𝑞). Let 𝑞 ≥ 1 be a real number. A family of random variables {𝑋𝜆, 𝜆 ∈ 𝛬} is said to satisfy Condition (𝐻2𝑞) if for

ll finite subset 𝐼 ⊂ 𝛬 and for all family of increasing functions {𝑓𝜆, 𝜆 ∈ 𝐼}, there exists a finite constant 𝐶(𝑞) depending only on 𝑞
uch that

E
|

|

|

|

|

∑

𝜆∈𝐼

(

𝑓𝜆(𝑋𝜆) − E𝑓𝜆(𝑋𝜆)
)

|

|

|

|

|

2𝑞

≤ 𝐶(𝑞)
(

|𝐼|max
𝜆∈𝐼

E|𝑓𝜆(𝑋𝜆)|
2𝑞 + |𝐼|𝑞 max

𝜆∈𝐼

(

E𝑓 2
𝜆 (𝑋𝜆)

)𝑞
)

(1.15)

rovided the expectations are finite.
It is easy to see that if {𝑋𝜆, 𝜆 ∈ 𝛬} is a family of pairwise independent (resp, quadruple-wise independent) random variables,

hen it satisfies Condition (𝐻2) (resp., Condition (𝐻4)). We would like to note that for most of the results on laws of large numbers,
e only need to assume that the underlying random variables satisfy Condition (𝐻2). By Theorem 2.1 of Chen and Sung [14],
e see that if a collection of random variables satisfies Condition (𝐻2𝑞′ ) for some 𝑞′ > 𝑞 ≥ 1, then it satisfies Condition (𝐻2𝑞).
arious dependence structures satisfy Condition (𝐻2𝑞) for all 𝑞 ≥ 1 such as negative dependence, extended negative dependence
see Lemmas 2.1 and 2.3 of Shen et al. [49]), 𝜌∗-mixing (see Theorem 4 of Peligrad and Gut [38]), and 𝜌′-mixing (see Theorem
9.30 of Bradley [6]). A more detailed discussion of these dependence structures will be provided in Section 5.3. It is worth noting
hat pairwise negative dependence satisfy Condition (𝐻2), but it does not meet Condition (𝐻2𝑞) for 𝑞 ≥ 2 (see Example on pages
45–146 in Szynal [53] and the discussion on page 2 in Thành [55]). To our best knowledge, (1.15) is not available for 𝛼-mixing
andom variables even for 𝑞 = 1. We refer to Chapter 1 of Rio [45] for several bounds of variance of the partial sums of 𝛼-mixing
andom variables.

The following theorem is the first main result of this paper. Theorem 1.3 is the Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem
or the maximum of double sums of random variables satisfying Condition (𝐻2𝑞).

heorem 1.3. Let 𝑝 ≥ 1, 1∕2 < 𝛼 ≤ 1, 𝛼𝑝 ≥ 1 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables. Assume that the
rray {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} satisfies Condition (𝐻2𝑞) with 𝑞 = 1 if 1 ≤ 𝑝 < 2 and 𝑞 > (𝛼𝑝 − 1)∕(2𝛼 − 1) if 𝑝 ≥ 2. If {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is
stochastically dominated by a random variable 𝑋 satisfying

E
(

|𝑋|

𝑝 log |𝑋|

)

< ∞, (1.16)

then
∞
∑

𝑚=1

∞
∑

𝑛=1
(𝑚𝑛)𝛼𝑝−2P

⎛

⎜

⎜

⎝

max
1≤𝑢≤𝑚
1≤𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝜀(𝑚𝑛)𝛼
⎞

⎟

⎟

⎠

< ∞ for all 𝜀 > 0. (1.17)

Conversely, if 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 have the same distribution as a random variable 𝑋 and for some 𝜇 ∈ R,

∞
∑

𝑚=1

∞
∑

𝑛=1
(𝑚𝑛)𝛼𝑝−2P

⎛

⎜

⎜

⎝

max
1≤𝑢≤𝑚
1≤𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − 𝜇)

|

|

|

|

|

|

> 𝜀(𝑚𝑛)𝛼
⎞

⎟

⎟

⎠

< ∞ for all 𝜀 > 0, (1.18)

then E𝑋 = 𝜇 and (1.16) holds.

The proof of Theorem 1.3 will be presented in Section 3. Similar to the case of dimension one (see, e.g., Remark 1 in [17]), we
have the following remark.

Remark 1.4. For arbitrary array {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} of integrable random variables, by writing

∞
∑

𝑚=1

∞
∑

𝑛=1
(𝑚𝑛)𝛼𝑝−2P

⎛

⎜

⎜

⎝

max
1≤𝑢≤𝑚
1≤𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝜀(𝑚𝑛)𝛼
⎞

⎟

⎟

⎠

=
∞
∑

∞
∑

2𝑘−1
∑

2𝓁−1
∑

(𝑚𝑛)𝛼𝑝−2P
⎛

⎜

⎜

max
1≤𝑢≤𝑚

|

|

|

|

|

𝑢
∑

𝑣
∑

(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )
|

|

|

|

|

> 𝜀(𝑚𝑛)𝛼
⎞

⎟

⎟

,

4

𝑘=1 𝓁=1 𝑚=2𝑘−1 𝑛=2𝓁−1
⎝ 1≤𝑣≤𝑛

|

𝑖=1 𝑗=1
| ⎠
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we easily prove that (1.17) is equivalent to
∞
∑

𝑘=1

∞
∑

𝓁=1
2(𝑘+𝓁)(𝛼𝑝−1)P

(

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝜀2(𝑘+𝓁)𝛼
)

< ∞ for all 𝜀 > 0. (1.19)

ince 𝛼𝑝 ≥ 1, (1.19) together with the Borel–Cantelli lemma imply

lim
𝑘∨𝓁→∞

max1≤𝑢<2𝑘 ,1≤𝑣<2𝓁
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

2(𝑘+𝓁)𝛼
= 0 almost surely (a.s.),

which, in turn, implies

lim
𝑚∨𝑛→∞

max1≤𝑢≤𝑚,1≤𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

(𝑚𝑛)𝛼
= 0 a.s. (1.20)

If 1 ≤ 𝑝 < 2, then by choosing 𝛼 = 1∕𝑝 in (1.20), we obtain the Marcinkiewicz–Zygmund SLLN.

We will now present the Feller WLLN and the Pyke–Root theorem for the maximum of double sums of random variables satisfying
Condition (𝐻2). For the Feller WLLN for partial sums from sequences of i.i.d. random variables, we refer to Feller [20, Theorem 1,
Section VII.7]. The proofs of Theorems 1.5 and 1.6 are presented in Section 4.

Theorem 1.5. Let 1 ≤ 𝑝 < 2 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables satisfying Condition (𝐻2). For
𝑛 ≥ 1, 𝑖 ≥ 1, 𝑗 ≥ 1, set

𝑏𝑛 = 𝑛1∕𝑝, 𝑍𝑛,𝑖,𝑗 = 𝑋𝑖,𝑗𝟏
(

|𝑋𝑖,𝑗 | ≤ 𝑏𝑛
)

.

If {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is stochastically dominated by a random variable 𝑋 satisfying

𝑛P(|𝑋| > 𝑛1∕𝑝) → 0 as 𝑛 → ∞, (1.21)

then

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑍𝑚𝑛,𝑖,𝑗 )

|

|

|

(𝑚𝑛)1∕𝑝
P
→ 0 as 𝑚 ∨ 𝑛 → ∞. (1.22)

onversely, if 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 are symmetric and have the same distribution as a random variable 𝑋, then (1.22) implies (1.21).

heorem 1.6. Let 1 ≤ 𝑝 < 2 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables satisfying Condition (𝐻2). If
𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is stochastically dominated by a random variable 𝑋 satisfying

E|𝑋|

𝑝 < ∞, (1.23)

hen

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

(𝑚𝑛)1∕𝑝
𝑝
→ 0 as 𝑚 ∨ 𝑛 → ∞. (1.24)

Conversely, if the random variables 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 have the same distribution functions as a random variable 𝑋 and

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − 𝜇)||

|

(𝑚𝑛)1∕𝑝
𝑝
→ 0 as 𝑚 ∨ 𝑛 → ∞ (1.25)

or some real number 𝜇, then E𝑋 = 𝜇 and (1.23) holds.

emark 1.7. Since quadruple-wise independent random variables satisfy Condition (𝐻4), by applying Theorem 1.3 for the case
here 𝑝 = 2, 𝛼 = 1 and 𝑞 = 2, we obtain the Hsu–Robbins–Erdös theorem for the maximum of partial sums from a double array of
uadruple-wise independent and identically distributed (q.i.i.d.) random variables, that is, if {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is a double array
f q.i.i.d. random variables, then

E𝑋1,1 = 0 and E
(

𝑋2
1,1 log |𝑋1,1|

)

< ∞

f and only if
∞
∑

𝑚=1

∞
∑

𝑛=1
P

(

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
𝑋𝑖,𝑗

|

|

|

|

|

|

> 𝜀𝑚𝑛

)

< ∞ for all 𝜀 > 0.

imilarly, we can apply Theorems 1.3, 1.5 and 1.6 to obtain the necessary and sufficient conditions for (i) the Baum–Katz theorem
5

for the case where 1 ≤ 𝑝 < 2), (ii) the Feller WLLN, and (iii) the Pyke–Root theorem for double arrays of p.i.i.d. random variables.
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Remark 1.8. The Reviewer kindly raised a question about the possibility of obtaining additional results for 2𝑞-tuplewise
ndependent random fields (see, e.g., [8] for the definition) when 𝑞 ≥ 3. To establish the validity of Theorem 1.3 for double arrays of
𝑞-tuplewise independent random variables, we would need to show that a collection of 2𝑞-tuplewise independent random variables
atisfies Condition (𝐻2𝑞). Unfortunately, we are unable to achieve this even in the case of 𝑞 = 3. We present it here as an open
roblem for future research.

The rest of the paper is organized as follows. In Section 2, we use Rio’s technique to establish some maximal inequalities for
ouble sums of dependent random variables. The proof of Theorem 1.3 is presented in Section 3. Section 4 contains the proof of
heorems 1.5 and 1.6. Section 5 presents some corollaries and remarks. Finally, some technical results are proved in Appendix.

. New maximal inequalities for double sums of dependent random variables

As mentioned in Section 1, although the maximal inequalities are ‘‘almost hidden’’ in the proof of Rio [44], his method can lead
o a new maximal inequality for pairwise independent random variables. A brief discussion about Rio’s technique in dimension one
s given as follows. For simplicity, we assume that {𝑋𝑛, 𝑛 ≥ 1} is a sequence of p.i.i.d. integrable random variables. Let 1 ≤ 𝑝 < 2,
𝑛 = 𝑛1∕𝑝 and 𝑋𝑛,𝑖 = 𝑋𝑖𝟏(|𝑋𝑖| ≤ 𝑏𝑛), 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1. When proving limit theorems such as the Baum–Katz theorem or the Pyke–Root
heorem, it suffices to control the tail probability of the form

P
(

max
1≤𝑗<2𝑛

|

|

|

𝑆𝑛,𝑗
|

|

|

> 𝜀𝑏2𝑛
)

, (2.1)

here 𝜀 > 0 and 𝑆𝑛,𝑗 =
∑𝑗

𝑖=1(𝑋2𝑛 ,𝑖 − E𝑋2𝑛 ,𝑖), 𝑛 ≥ 0. Since the random variables are only assumed to be pairwise independent, we
ould not be able to apply the Kolmogorov maximal inequality. In [44], Rio used the telescoping sums:

𝑆𝑛,𝑗 =
𝑛
∑

𝑚=1
(𝑆𝑚−1,𝑗𝑚−1 − 𝑆𝑚−1,𝑗𝑚 ) +

𝑛
∑

𝑚=1
(𝑆𝑚,𝑗 − 𝑆𝑚−1,𝑗 − 𝑆𝑚,𝑗𝑚 + 𝑆𝑚−1,𝑗𝑚 ), 1 ≤ 𝑗 < 2𝑛, 0 ≤ 𝑚 ≤ 𝑛, 𝑛 ≥ 1, (2.2)

here 𝑆𝑚,0 = 0 and 𝑗𝑚 = ⌊𝑗∕2𝑚⌋ × 2𝑚. For the first term on the right hand side of (2.2), we have

|

|

|

𝑆𝑚−1,𝑗𝑚−1 − 𝑆𝑚−1,𝑗𝑚
|

|

|

≤
|

|

|

|

|

|

|

𝑗𝑚+2𝑚−1
∑

𝑖=𝑗𝑚+1

(

𝑋2𝑚−1 ,𝑖 − E𝑋2𝑚−1 ,𝑖
)

|

|

|

|

|

|

|

. (2.3)

rom (2.2), (2.3) and the definition of 𝑗𝑚, we can address the problem of bounding the tail probability in (2.1) by bounding

𝐼 = P
⎛

⎜

⎜

⎝

𝑛
∑

𝑚=1
max

0≤𝑘<2𝑛−𝑚

|

|

|

|

|

|

𝑘2𝑚+2𝑚−1
∑

𝑖=𝑘2𝑚+1

(

𝑋2𝑚−1 ,𝑖 − E𝑋2𝑚−1 ,𝑖
)

|

|

|

|

|

|

≥ 𝜀𝑏2𝑛
⎞

⎟

⎟

⎠

. (2.4)

y writing 𝑏2𝑛 =
∑𝑛

𝑚=1 𝜆𝑛,𝑚 with suitable choices of 𝜆𝑛,𝑚, and using Chebyshev’s inequality and the p.i.i.d. assumption, we have

𝐼 ≤ 𝜀−2
𝑛
∑

𝑚=1
𝜆−2𝑛,𝑚

2𝑛−𝑚−1
∑

𝑘=0
E
⎛

⎜

⎜

⎝

𝑘2𝑚+2𝑚−1
∑

𝑖=𝑘2𝑚+1

(

𝑋2𝑚−1 ,𝑖 − E𝑋2𝑚−1 ,𝑖
)

⎞

⎟

⎟

⎠

2

≤ 𝜀−2
𝑛
∑

𝑚=1
2𝑛𝜆−2𝑛,𝑚E

(

𝑋2
1𝟏(|𝑋1| ≤ 𝑏2𝑚−1 )

)

.

sing a similar estimate for the second term on the right hand side of (2.2), we will finally obtain the following bound for the tail
robability in (2.1):

P
(

max
1≤𝑗<2𝑛

|

|

|

𝑆𝑛,𝑗
|

|

|

> 𝜀𝑏2𝑛
)

≤ 𝐶𝜀−2
𝑛
∑

𝑚=1
2𝑛𝜆−2𝑛,𝑚E

(

𝑋2
1𝟏(|𝑋1| ≤ 𝑏2𝑚−1 )

)

+ a negligible term. (2.5)

nequality (2.5) will play the role of the Kolmogorov maximal inequality in proving the Baum–Katz theorem (for the case where
≤ 𝑝 < 2 and 𝛼 = 1∕𝑝). We refer to Rio [44] and Thành [54,55,57] for detailed arguments.

In this section, we use Rio’s technique to establish some maximal inequalities for double sums of dependent random variables.
he following theorem presents a Rosenthal-type maximal inequality. We would like to note that in Theorem 2.1, the underlying
andom variables are not necessary integrable.

heorem 2.1. Let {𝑋𝑖,𝑗 , 𝑖 ≥ 1, 𝑗 ≥ 1} be a double array of nonnegative random variables satisfying Condition (𝐻2𝑞) for some 𝑞 ≥ 1,
et {𝑏𝑛, 𝑛 ≥ 1} be an increasing sequence of positive constants and let {𝜆𝑚,𝑛,𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be an array of positive
onstants. For 𝑠 ≥ 0, 𝑚 ≥ 1, 𝑛 ≥ 1, set

𝑎𝑚,𝑛 =
𝑚
∑

𝑛
∑

𝜆𝑚,𝑛,𝑖,𝑗 and 𝑋𝑠,𝑚,𝑛 = 𝑋𝑚,𝑛𝟏
(

𝑋𝑚,𝑛 ≤ 𝑏2𝑠
)

+ 𝑏2𝑠𝟏
(

𝑋𝑚,𝑛 > 𝑏2𝑠
)

.

6

𝑖=1 𝑗=1
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Then for all 𝑚 ≥ 1, 𝑛 ≥ 1,

E
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑚+𝑛,𝑖,𝑗 − E𝑋𝑚+𝑛,𝑖,𝑗 )

|

|

|

|

|

|

2𝑞
⎞

⎟

⎟

⎠

≤ 𝐶(𝑞)
⎛

⎜

⎜

⎝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

⎞

⎟

⎟

⎠

2𝑞

+ 𝐶(𝑞)𝑎2𝑞𝑚,𝑛
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

.

(2.6)

The next theorem is a maximal inequality for double sums of dependent integrable random variables.

heorem 2.2. Let the assumptions of Theorem 2.1 be satisfied. Assume further that the random variables 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 are integrable.
hen for all 𝜀 > 0, 𝑚 ≥ 1, 𝑛 ≥ 1, we have

P
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

≥ 3𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ 𝐶(𝑞)𝜀−2𝑞
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

,

(2.7)

rovided
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
E
(

𝑋𝑖,𝑗𝟏
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
))

≤ 𝜀𝑎𝑚,𝑛 (2.8)

nd

6
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

≤ 𝜀𝑎𝑚,𝑛. (2.9)

emark 2.3. Before presenting the proof of Theorems 2.1 and 2.2, we would like to provide some comments on these results. The
aximal inequality (2.6) can be regarded as a Rosenthal-type maximal inequality for double sums of truncated random variables.
heorem 2.2 may be compared to Theorem 1.2 of Shao [47], which establishes a Rosenthal-type maximal inequality for 𝜌-mixing
equences. In proving the laws of large numbers for the maximum of the partial sums, we first choose 𝜆𝑚,𝑛,𝑖,𝑗 such that 𝑎2𝑚 ,2𝑛 ≍ 𝑏2𝑚+𝑛 .
hen, under some moment conditions, (2.8) and (2.9) are satisfied, and the first term on the right-hand side of (2.7) can be shown
o be negligible. We are left with the last term on the right-hand side of (2.7), which can be controlled using moment calculations
s in the usual proofs of laws of large numbers.

roof of Theorem 2.1. For 𝑚, 𝑛, 𝑖, 𝑗 ≥ 1, set

𝑋∗
𝑛,𝑖,𝑗 = 𝑋𝑛,𝑖,𝑗 −𝑋𝑛−1,𝑖,𝑗 ,

𝑌 ∗
𝑛,𝑖,𝑗 = 𝑋∗

𝑛,𝑖,𝑗 − E𝑋∗
𝑛,𝑖,𝑗 ,

𝑆𝑘,𝓁,𝑖,𝑗 =
𝑖

∑

𝑢=1

𝑗
∑

𝑣=1

(

𝑋𝑘+𝓁,𝑢,𝑣 − E𝑋𝑘+𝓁,𝑢,𝑣
)

, 𝑆𝑘,𝓁,0,𝑗 = 𝑆𝑘,𝓁,𝑖,0 = 0, 𝑘 ≥ 0,𝓁 ≥ 0,

𝑅1(𝑚, 𝑛) =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
(𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗 )

|

|

|

|

|

|

,

𝑅2(𝑚, 𝑛) =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡
∑

𝑗=𝓁2𝑡+1
𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗

|

|

|

|

|

|

,

𝑅3(𝑚, 𝑛) =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗

|

|

|

|

|

|

,

𝑅4(𝑚, 𝑛) =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡
∑

𝑗=𝓁2𝑡+1

(

𝑌 ∗
𝑠+𝑡,𝑖,𝑗 + 𝑌 ∗

𝑠+𝑡−1,𝑖,𝑗

)

|

|

|

|

|

|

.

ince the sequence {𝑏𝑛, 𝑛 ≥ 1} is increasing and 𝑋𝑖,𝑗 are nonnegative,

0 ≤ 𝑋∗
𝑛,𝑖,𝑗 ≤ 𝑏2𝑛𝟏(𝑋𝑖,𝑗 > 𝑏2𝑛−1 ), 𝑛, 𝑖, 𝑗 ≥ 1. (2.10)
7

or simplicity, we write 𝑅𝑖 for 𝑅𝑖(𝑚, 𝑛). We will need the following claim whose proof is postponed to Appendix.
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w
f
i

A

I

B

C

Claim 1. For all 𝑚 ≥ 1, 𝑛 ≥ 1,

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

𝑆𝑚,𝑛,𝑢,𝑣
|

|

≤
4
∑

𝑖=1
𝑅𝑖 + 6

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

. (2.11)

Now, we return to the proof of the theorem. For all real numbers 𝑥1,… , 𝑥𝑛, we have the following elementary inequality:

|𝑥1 +⋯ + 𝑥𝑛|
2𝑞 ≤ 𝑛2𝑞−1(|𝑥1|

2𝑞 +⋯ + |𝑥𝑛|
2𝑞). (2.12)

By using (2.11) and (2.12), we obtain

E
⎛

⎜

⎜

⎝

max
1≤𝑠<2𝑚
1≤𝑡<2𝑛

|𝑆𝑚,𝑛,𝑠,𝑡|
2𝑞
⎞

⎟

⎟

⎠

≤ 𝐶(𝑞)

⎛

⎜

⎜

⎜

⎝

4
∑

𝑖=1
E𝑅2𝑞

𝑖 +
⎛

⎜

⎜

⎝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

⎞

⎟

⎟

⎠

2𝑞
⎞

⎟

⎟

⎟

⎠

. (2.13)

For 𝑚 ≥ 1, 𝑛 ≥ 1, set

𝜆𝑚,𝑛 =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆2𝑞∕(2𝑞−1)𝑚,𝑛,𝑠,𝑡 .

Then

E𝑅2𝑞
1 = E

⎛

⎜

⎜

⎝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

𝜆−1𝑚,𝑛,𝑠,𝑡 max
0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
(𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗 )

|

|

|

|

|

|

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2𝑞

≤ 𝜆2𝑞−1𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡E

⎛

⎜

⎜

⎝

max
0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
(𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗 )

|

|

|

|

|

|

2𝑞
⎞

⎟

⎟

⎠

≤ 𝜆2𝑞−1𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

2𝑚−𝑠−1
∑

𝑘=0

2𝑛−𝑡−1
∑

𝓁=0
E
|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
(𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗 )

|

|

|

|

|

|

2𝑞

≤ 𝐶(𝑞)𝜆2𝑞−1𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡2

𝑚+𝑛−𝑠−𝑡
⎛

⎜

⎜

⎝

2𝑠+𝑡 max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡−2,𝑖,𝑗 + 2(𝑠+𝑡)𝑞 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡−2,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

= 𝐶(𝑞)𝜆2𝑞−1𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡−2,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡−2,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

≤ 𝐶(𝑞)𝜆2𝑞−1𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

,

(2.14)

here we have applied Hölder’s inequality in the first inequality, and Condition (𝐻2𝑞) in the third inequality. The last inequality
ollows from the fact that 𝑋𝑠+𝑡,𝑖,𝑗 ≥ 𝑋𝑠+𝑡−2,𝑖,𝑗 ≥ 0. Now, for nonnegative real numbers 𝑎1,… , 𝑎𝑛, we have the following elementary
nequality:

𝑛
∑

𝑖=1
𝑎𝑟𝑖 ≤

( 𝑛
∑

𝑖=1
𝑎𝑖

)𝑟

, 𝑟 ≥ 1. (2.15)

pplying (2.15), we obtain

𝜆2𝑞−1𝑚,𝑛 =

( 𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆2𝑞∕(2𝑞−1)𝑚,𝑛,𝑠,𝑡

)2𝑞−1

≤

( 𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆𝑚,𝑛,𝑠,𝑡

)2𝑞

= 𝑎2𝑞𝑚,𝑛. (2.16)

t follows from (2.14) and (2.16) that

E𝑅2𝑞
1 ≤ 𝐶(𝑞)𝑎2𝑞𝑚,𝑛

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

. (2.17)

y proceeding in the same manner as (2.17) with noting that 0 ≤ 𝑋∗
𝑛,𝑖,𝑗 ≤ 𝑋𝑛,𝑖,𝑗 , we have

4
∑

𝑖=2
E𝑅2𝑞

𝑖 ≤ 𝐶(𝑞)𝑎2𝑞𝑚,𝑛
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

. (2.18)
8

ombining (2.13), (2.17) and (2.18) yields (2.6). □
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B

C

i

C
l

(

Proof of Theorem 2.2. We use the notations in the proof of Theorem 2.1. Let 𝜀 > 0 be arbitrary. By using (2.8), (2.9) and (2.11),
we have

P
⎛

⎜

⎜

⎝

max
1≤𝑠<2𝑚
1≤𝑡<2𝑛

|

|

|

|

|

|

𝑠
∑

𝑖=1

𝑡
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

≥ 3𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ P
⎛

⎜

⎜

⎝

max
1≤𝑠<2𝑚
1≤𝑡<2𝑛

|

|

|

|

|

|

𝑠
∑

𝑖=1

𝑡
∑

𝑗=1
(𝑋𝑚+𝑛,𝑖,𝑗 − E𝑋𝑚+𝑛,𝑖,𝑗 )

|

|

|

|

|

|

+
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
E
(

𝑋𝑖,𝑗𝟏
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
))

≥ 3𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ P
⎛

⎜

⎜

⎝

4
∑

𝑖=1
𝑅𝑖 + 6

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

≥ 2𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ P

( 4
∑

𝑖=1
𝑅𝑖 ≥ 𝑎𝑚,𝑛𝜀

)

.

(2.19)

y applying Markov’s inequality, (2.12), (2.17) and (2.18), we have

P

( 4
∑

𝑖=1
𝑅𝑖 ≥ 𝑎𝑚,𝑛𝜀

)

≤ 𝜀−2𝑞𝑎−2𝑞𝑚,𝑛 E

( 4
∑

𝑖=1
𝑅𝑖

)2𝑞

≤ 42𝑞−1𝜀−2𝑞𝑎−2𝑞𝑚,𝑛

4
∑

𝑖=1
E𝑅2𝑞

𝑖

≤ 𝐶(𝑞)𝜀−2𝑞
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

.

(2.20)

ombining (2.19) and (2.20) yields (2.7). □

In the following corollary, we do not assume the underlying random variables are nonnegative. The proof is done by using the
dentity 𝑋 = 𝑋+ −𝑋− for every random variable 𝑋 and then applying Theorems 2.1 and 2.2. We omit the details.

orollary 2.4. Let {𝑋𝑖,𝑗 , 𝑖 ≥ 1, 𝑗 ≥ 1} be a double array of integrable random variables satisfying Condition (𝐻2𝑞) for some 𝑞 ≥ 1,
et {𝑏𝑛, 𝑛 ≥ 1} be an increasing sequence of positive constants and let {𝜆𝑚,𝑛,𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be an array of positive
constants. For 𝑠 ≥ 0, 𝑚 ≥ 1, 𝑛 ≥ 1, set

𝑎𝑚,𝑛 =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆𝑚,𝑛,𝑠,𝑡 and 𝑋𝑠,𝑚,𝑛 = −𝑏2𝑠𝟏

(

𝑋𝑚,𝑛 < −𝑏2𝑠
)

+𝑋𝑚,𝑛𝟏
(

|𝑋𝑚,𝑛| ≤ 𝑏2𝑠
)

+ 𝑏2𝑠𝟏
(

𝑋𝑚,𝑛 > 𝑏2𝑠
)

.

Then for all 𝑚 ≥ 1, 𝑛 ≥ 1 and for all 𝜀 > 0, the following two inequalities hold:

i)

E
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑚+𝑛,𝑖,𝑗 − E𝑋𝑚+𝑛,𝑖,𝑗 )

|

|

|

|

|

|

2𝑞
⎞

⎟

⎟

⎠

≤ 𝐶(𝑞)
⎛

⎜

⎜

⎝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

|𝑋𝑖,𝑗 | > 𝑏2𝑠+𝑡−2
)

⎞

⎟

⎟

⎠

2𝑞

+ 𝐶(𝑞)𝑎2𝑞𝑚,𝑛
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E|𝑋𝑠+𝑡,𝑖,𝑗 |
2𝑞 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

.

(ii)

P
⎛

⎜

⎜

⎝

max
1≤𝑠<2𝑚
1≤𝑡<2𝑛

|

|

|

|

|

|

𝑠
∑

𝑖=1

𝑡
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

≥ 6𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

|𝑋𝑖,𝑗 | > 𝑏2𝑚+𝑛
)

+ 𝐶(𝑞)𝜀−2𝑞
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E|𝑋𝑠+𝑡,𝑖,𝑗 |
2𝑞 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

,

provided
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
E
(

|𝑋𝑖,𝑗 |𝟏
(

|𝑋𝑖,𝑗 | > 𝑏2𝑚+𝑛
))

≤ 𝜀𝑎𝑚,𝑛

and

6
𝑚
∑

𝑛
∑

2𝑠+𝑡𝑏2𝑠+𝑡 max
1≤𝑖<2𝑚

P
(

|𝑋𝑖,𝑗 | > 𝑏2𝑠+𝑡−2
)

≤ 𝜀𝑎𝑚,𝑛.
9

𝑠=1 𝑡=1 1≤𝑗<2𝑛
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3. The proof of the Hsu–Robbins–Erdö s–Spitzer–Baum–Katz theorem for dependent random fields

In this section, we will prove Theorem 1.3. The proof is based on a Rosenthal-type maximal inequality in Theorem 2.2.

roof of Theorem 1.3. Firstly, we prove the sufficiency part. Since the arrays {𝑋+
𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} and {𝑋−

𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1}

also satisfy the assumptions of the theorem, we can assume, without loss of generality, that 𝑋𝑚,𝑛 ≥ 0 for all 𝑚 ≥ 1, 𝑛 ≥ 1. For
𝑠 ≥ 0, 𝑚 ≥ 1, 𝑛 ≥ 1, set

𝑏𝑛 = 𝑛𝛼 and 𝑋𝑠,𝑚,𝑛 = 𝑋𝑚,𝑛𝟏
(

𝑋𝑚,𝑛 ≤ 𝑏2𝑠
)

+ 𝑏2𝑠𝟏
(

𝑋𝑚,𝑛 > 𝑏2𝑠
)

.

For 𝑚 ≥ 1, 𝑛 ≥ 1, 1 ≤ 𝑠 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑛, let

𝛼𝑝
2𝑞

< 𝑎 < 𝛼, 𝜆𝑚,𝑛,𝑠,𝑡 = 2𝑎(𝑚+𝑛)+(𝛼−𝑎)(𝑠+𝑡),

and

𝑎𝑚,𝑛 =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆𝑚,𝑛,𝑠,𝑡.

Then

𝑏2𝑚+𝑛 = 𝜆𝑚,𝑛,𝑚,𝑛

≤ 𝑎𝑚,𝑛 = 2𝑎(𝑚+𝑛)
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2(𝛼−𝑎)(𝑠+𝑡)

≤ 𝐶1(𝑎, 𝛼)𝑏2𝑚+𝑛 , 𝑚 ≥ 1, 𝑛 ≥ 1.

(3.1)

Let 𝜀 > 0 be arbitrary. The proof of (1.17) will be completed if we can show that

∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)(𝛼𝑝−1)P

⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 3𝐶1(𝑎, 𝛼)𝜀𝑏2𝑚+𝑛
⎞

⎟

⎟

⎠

< ∞. (3.2)

By using (1.16) and the Lebesgue dominated convergence theorem, we have

lim
𝑥→∞

E
(

|𝑋|

𝑝𝟏 (|𝑋| > 𝑥)
)

= 0. (3.3)

Since 𝛼𝑝 ≥ 1, it follows from the stochastic domination assumption, the first inequality in (3.1), and (3.3) that

lim
𝑚∨𝑛→∞

∑2𝑚
𝑖=1

∑2𝑛
𝑗=1 E

(

𝑋𝑖,𝑗𝟏
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
))

𝑎𝑚,𝑛
≤ lim

𝑚∨𝑛→∞

2𝑚+𝑛E
(

|𝑋|𝟏
(

|𝑋| > 2(𝑚+𝑛)𝛼
))

2(𝑚+𝑛)𝛼

≤ lim
𝑚∨𝑛→∞

E
(

|𝑋|

𝑝𝟏
(

|𝑋| > 2(𝑚+𝑛)𝛼
))

2(𝑚+𝑛)(𝛼𝑝−1)
= 0.

(3.4)

t is clear that (1.16) implies lim𝑛→∞ 𝑛P(|𝑋| > 𝑛𝛼) ≤ lim𝑛→∞ 𝑛P(|𝑋| > 𝑛1∕𝑝) = 0. It thus follows from the stochastic domination and a
ouble sum analogue of the Toeplitz lemma (see Lemma 2.2 in [51]) that

lim
𝑚∨𝑛→∞

∑𝑚
𝑠=1

∑𝑛
𝑡=1 2

𝑠+𝑡𝑏2𝑠+𝑡 max1≤𝑖<2𝑚 ,1≤𝑗<2𝑛 P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

𝑎𝑚,𝑛

≤ lim
𝑚∨𝑛→∞

4
∑𝑚

𝑠=1
∑𝑛

𝑡=1 2
(𝑠+𝑡)𝛼2𝑠+𝑡−2P

(

|𝑋| > 2(𝑠+𝑡−2)𝛼
)

2(𝑚+𝑛)𝛼
= 0.

(3.5)

t follows from (3.4) and (3.5) that there exists 𝑛0 such that (2.8) and (2.9) holds for all 𝑚 ∨ 𝑛 ≥ 𝑛0. We will now consider the
10

ollowing two cases.
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Case 1: 1 ≤ 𝑝 < 2. In this case, the array {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} satisfies Condition (𝐻2𝑞) with 𝑞 = 1. Applying (3.1), Theorem 2.2
with 𝑞 = 1, and the stochastic domination assumption, we have

∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)P
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 3𝐶1(𝑎, 𝛼)𝜀𝑏2𝑚+𝑛
⎞

⎟

⎟

⎠

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)P
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

≥ 3𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ 𝐶𝜀−2
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑚+𝑛𝜆−2𝑚,𝑛,𝑠,𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2
𝑠+𝑡,𝑖,𝑗

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝P
(

|𝑋| > 𝑏2𝑚+𝑛
)

+ 𝐶𝜀−2
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑚,𝑛,𝑠,𝑡

(

E
(

𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 )
)

+ 𝑏22𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 )
)

.

(3.6)

By using (1.16) and Lemma A.2, we have
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝P
(

|𝑋| > 𝑏2𝑚+𝑛
)

=
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝P
(

|𝑋| > 2(𝑚+𝑛)𝛼
)

< ∞. (3.7)

From (3.6) and (3.7), the proof of (3.2) will be completed if we can show that

𝐼1 ∶=
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑚,𝑛,𝑠,𝑡E

(

𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 )
)

< ∞, (3.8)

and

𝐼2 ∶=
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑚,𝑛,𝑠,𝑡𝑏

2
2𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 ) < ∞. (3.9)

Note that in the case where 1 ≤ 𝑝 < 2, we have 𝑞 = 1 and thus 𝛼𝑝 < 2𝑎. Therefore, by using (1.16) and Lemma A.2 again, we have

𝐼1 ≤
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)(𝛼𝑝−2𝑎)

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2−2(𝛼−𝑎)(𝑠+𝑡)E

(

𝑋2𝟏
(

|𝑋| ≤ 𝑏2𝑠+𝑡
))

=
∞
∑

𝑠=1

∞
∑

𝑡=1

( ∞
∑

𝑚=𝑠

∞
∑

𝑛=𝑡
2(𝑚+𝑛)(𝛼𝑝−2𝑎)

)

2−2(𝛼−𝑎)(𝑠+𝑡)E
(

𝑋2𝟏
(

|𝑋| ≤ 𝑏2𝑠+𝑡
))

= 𝐶(𝑎, 𝛼, 𝑝)
∞
∑

𝑠=1

∞
∑

𝑡=1
2(𝑠+𝑡)(𝛼𝑝−2𝑎)2−2(𝛼−𝑎)(𝑠+𝑡)E

(

𝑋2𝟏
(

|𝑋| ≤ 𝑏2𝑠+𝑡
))

= 𝐶(𝑎, 𝛼, 𝑝)
∞
∑

𝑠=1

∞
∑

𝑡=1
2(𝑠+𝑡)𝛼(𝑝−2)E

(

𝑋2𝟏
(

|𝑋| ≤ 2(𝑠+𝑡)𝛼
))

< ∞

and

𝐼2 ≤
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)(𝛼𝑝−2𝑎)

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
22𝑎(𝑠+𝑡)P

(

|𝑋| > 𝑏2𝑠+𝑡
)

=
∞
∑

𝑠=1

∞
∑

𝑡=1

( ∞
∑

𝑚=𝑠

∞
∑

𝑛=𝑡
2(𝑚+𝑛)(𝛼𝑝−2𝑎)

)

22𝑎(𝑠+𝑡)P
(

|𝑋| > 𝑏2𝑠+𝑡
)

= 𝐶(𝑎, 𝛼, 𝑝)
∞
∑

𝑠=1

∞
∑

𝑡=1
2(𝑠+𝑡)(𝛼𝑝−2𝑎)22𝑎(𝑠+𝑡)P

(

|𝑋| > 𝑏2𝑠+𝑡
)

= 𝐶(𝑎, 𝛼, 𝑝)
∞
∑

𝑠=1

∞
∑

𝑡=1
2(𝑠+𝑡)𝛼𝑝P

(

|𝑋| > 2(𝑠+𝑡)𝛼
)

< ∞

thereby proving (3.8) and (3.9).
11
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a

B
o

a

S

T

T
(

Case 2: 𝑝 ≥ 2. In this case, we have from (1.16) that E𝑋2 < ∞. By applying (3.1), Theorem 2.2 and the stochastic domination
ssumption, we have

∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)P
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 3𝐶1(𝑎, 𝛼)𝜀𝑏2𝑚+𝑛
⎞

⎟

⎟

⎠

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)P
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

≥ 3𝑎𝑚,𝑛𝜀
⎞

⎟

⎟

⎠

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)(𝛼𝑝−1)
2𝑚
∑

𝑖=1

2𝑛
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑚+𝑛
)

+ 𝐶(𝑞)𝜀−2𝑞
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

⎛

⎜

⎜

⎝

max
1≤𝑖<2𝑚
1≤𝑗<2𝑛

E𝑋2𝑞
𝑠+𝑡,𝑖,𝑗 + 2(𝑠+𝑡)(𝑞−1) max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

(

E𝑋2
𝑠+𝑡,𝑖,𝑗

)𝑞⎞
⎟

⎟

⎠

≤
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝P
(

|𝑋| > 𝑏2𝑚+𝑛
)

+ 𝐶
∑

𝑚∨𝑛≥𝑛0

2(𝑚+𝑛)𝛼𝑝
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡

(

E|𝑋|

2𝑞𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 ) + 𝑏2𝑞2𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 ) + 2(𝑠+𝑡)(𝑞−1)(E𝑋2)𝑞
)

.

(3.10)

y using (1.16) and Lemma A.2 again, we have (3.7) still holds in this case. From (3.7), (3.10) and the fact that E𝑋2 < ∞, the proof
f (3.2) will be completed if we can show that

𝐽1 ∶=
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)𝛼𝑝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡E

(

|𝑋|

2𝑞𝟏
(

|𝑋| ≤ 𝑏2𝑠+𝑡
))

< ∞, (3.11)

𝐽2 ∶=
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)𝛼𝑝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡𝑏

2𝑞
2𝑠+𝑡P

(

|𝑋| > 𝑏2𝑠+𝑡
)

< ∞, (3.12)

nd

𝐽3 ∶=
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)𝛼𝑝

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆−2𝑞𝑚,𝑛,𝑠,𝑡2

(𝑠+𝑡)(𝑞−1) < ∞. (3.13)

ince 𝑞 > (𝛼𝑝 − 1)∕(2𝛼 − 1), we have

𝛼𝑝
2𝑞

< 𝛼 −
𝑞 − 1
2𝑞

< 𝛼.

herefore, we can let 𝑎 be such that

𝛼 −
𝑞 − 1
2𝑞

< 𝑎 < 𝛼. (3.14)

he proofs of (3.11) and (3.12) are the same as that of (3.8) and (3.9), respectively. Finally, by using (3.14) and noting again that
2𝛼 − 1)𝑞 > 𝛼𝑝 − 1, we have

𝐽3 =
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)(𝛼𝑝−2𝑞𝑎)

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2(𝑠+𝑡)(𝑞−1−2𝑞(𝛼−𝑎))

≤ 𝐶
∞
∑

𝑚=1

∞
∑

𝑛=1
2(𝑚+𝑛)(𝛼𝑝+𝑞−1−2𝛼𝑞) < ∞

thereby proving (3.13). The proof of the sufficiency part is completed.
Now, we will prove the necessity part. Assume that (1.18) holds. Without loss of generality, we can assume that 𝜇 = 0. It is clear

that this implies that for all 𝜀 > 0,
∞
∑

𝑚=1

∞
∑

𝑛=1
(𝑚𝑛)𝛼𝑝−2P

(

max
1≤𝑘≤𝑚,1≤𝓁≤𝑛

|

|

𝑋𝑘,𝓁
|

|

> 𝜀(𝑚𝑛)𝛼
)

< ∞ (3.15)

and that

lim
𝑚∨𝑛→∞

P
(

max
1≤𝑘≤𝑚,1≤𝓁≤𝑛

|

|

𝑋𝑘,𝓁
|

|

> 𝜀(𝑚𝑛)𝛼
)

= 0. (3.16)

Since {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} satisfies Condition (𝐻2), we obtain from (3.16) and Lemma A.1 that

𝑚𝑛P
(

|𝑋1,1| > (𝑚𝑛)𝛼
)

≤ 𝐶P
(

max |𝑋𝑘,𝓁| > (𝑚𝑛)𝛼
)

(3.17)
12

1≤𝑘≤𝑚,1≤𝓁≤𝑛
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whenever 𝑚 ∨ 𝑛 ≥ 𝑛1 for some positive integer 𝑛1. Combining (3.15) and (3.17), we have
∑

𝑚∨𝑛≥𝑛1

(𝑚𝑛)𝛼𝑝−1P (|𝑋| > (𝑚𝑛)𝛼) =
∑

𝑚∨𝑛≥𝑛1

(𝑚𝑛)𝛼𝑝−1P
(

|𝑋1,1| > (𝑚𝑛)𝛼
)

≤ 𝐶
∑

𝑚∨𝑛≥𝑛1

(𝑚𝑛)𝛼𝑝−2P
(

max
1≤𝑘≤𝑚,1≤𝓁≤𝑛

|𝑋𝑘,𝓁| > (𝑚𝑛)𝛼
)

< ∞.

(3.18)

pplying Lemma A.2, we have from (3.18) that E
(

|𝑋|

𝑝 log(|𝑋|)
)

< ∞ thereby establishing (1.16). Since (1.16) holds, we can apply
he sufficiency part to conclude that (1.17) holds. By using Remark 1.4, we obtain from (1.17) that

lim
𝑚∨𝑛→∞

∑𝑚
𝑖=1

∑𝑛
𝑗=1(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

(𝑚𝑛)𝛼
= lim

𝑚∨𝑛→∞

(∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗

(𝑚𝑛)𝛼
− (𝑚𝑛)1−𝛼E𝑋

)

= 0 a.s. (3.19)

Similarly, (1.18) (with 𝜇 = 0) implies

lim
𝑚∨𝑛→∞

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗

(𝑚𝑛)𝛼
= 0 a.s. (3.20)

ince 𝛼 ≤ 1, we obtain from (3.19) and (3.20) that E𝑋 = 0 thereby completing the proof of the necessity part. □

. The proof of the Feller WLLN and the Pyke–Root theorem for dependent random fields

In this section, we present the proof of Theorems 1.5 and 1.6. In these theorems, the underlying random variables are only
equired to satisfy Condition (𝐻2). Therefore, we can apply the results for pairwise independent random variables and pairwise
egatively dependent random variables.

roof of Theorem 1.5. We first prove the sufficiency part. Assume that (1.21) holds. As in Section 3, it suffices to consider the
ase 𝑋𝑚,𝑛 ≥ 0 for all 𝑚 ≥ 1, 𝑛 ≥ 1. Set

𝑋𝑠,𝑚,𝑛 = 𝑋𝑚,𝑛𝟏
(

𝑋𝑚,𝑛 ≤ 𝑏2𝑠
)

+ 𝑏2𝑠𝟏
(

𝑋𝑚,𝑛 > 𝑏2𝑠
)

, 𝑠 ≥ 0, 𝑚 ≥ 1, 𝑛 ≥ 1.

For 𝑚 ≥ 1, 𝑛 ≥ 1, let 𝑘 ≥ 1,𝓁 ≥ 1 be such that 2𝑘−1 ≤ 𝑚 < 2𝑘, 2𝓁−1 ≤ 𝑛 < 2𝓁 . Then

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑍𝑚𝑛,𝑖,𝑗 )

|

|

|

𝑏𝑚𝑛
≤

4max𝑢<2𝑘 ,𝑣<2𝓁
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 −𝑋𝑘+𝓁,𝑖,𝑗 )

|

|

|

𝑏2𝑘+𝓁

+
4max𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1 E(𝑋𝑘+𝓁,𝑖,𝑗 −𝑍𝑚𝑛,𝑖,𝑗 )

|

|

|

𝑏2𝑘+𝓁

+
4max𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑘+𝓁,𝑖,𝑗 − E𝑋𝑘+𝓁,𝑖,𝑗 )

|

|

|

𝑏2𝑘+𝓁
∶= 4

(

𝐾1(𝑘,𝓁) +𝐾2(𝑘,𝓁, 𝑚, 𝑛) +𝐾3(𝑘,𝓁)
)

.

(4.1)

he rest of the proof of the sufficiency part will be divided into three steps.

tep 1: Prove

lim
𝑘∨𝓁→∞

𝐾1(𝑘,𝓁) = 0 in probability. (4.2)

et 𝜀 > 0 be arbitrary. By (1.21), we have

P
(

𝐾1(𝑘,𝓁) > 𝜀
)

≤ P
⎛

⎜

⎜

⎝

2𝑘
⋃

𝑖=1

2𝓁
⋃

𝑖=1
(𝑋𝑖,𝑗 ≠ 𝑋𝑘+𝓁,𝑖,𝑗 )

⎞

⎟

⎟

⎠

≤
2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁
)

≤ 2𝑘+𝓁P
(

|𝑋| > 𝑏2𝑘+𝓁
)

→ 0 as 𝑘 ∨ 𝓁 → ∞

hereby establishing (4.2).

tep 2: Prove

lim
𝑘∨𝓁→∞

max
2𝑘−1≤𝑚<2𝑘 ,2𝓁−1≤𝑛<2𝓁

𝐾2(𝑘,𝓁, 𝑚, 𝑛) = 0. (4.3)

For all 2𝑘−1 ≤ 𝑚 < 2𝑘, 2𝓁−1 ≤ 𝑛 < 2𝓁 , it is clear that
0 ≤ 𝑋𝑘+𝓁,𝑖,𝑗 −𝑍𝑚𝑛,𝑖,𝑗

≤ 𝑋𝑖,𝑗𝟏(𝑏2𝑘+𝓁−2 < 𝑋𝑖,𝑗 ≤ 𝑏2𝑘+𝓁 ) + 𝑏2𝑘+𝓁 𝟏(𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁 )
13

≤ 𝑏2𝑘+𝓁 𝟏(𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁−2 ).
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It thus follows from the stochastic domination assumption and (1.21) that

max
2𝑘−1≤𝑚<2𝑘 ,2𝓁−1≤𝑛<2𝓁

𝐾2(𝑘,𝓁, 𝑚, 𝑛) ≤
∑2𝑘

𝑖=1
∑2𝓁

𝑗=1 𝑏2𝑘+𝓁P(𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁−2 )

𝑏2𝑘+𝓁
≤ 2𝑘+𝓁P(|𝑋| > 𝑏2𝑘+𝓁−2 ) → 0 as 𝑘 ∨ 𝓁 → ∞

thereby establishing (4.3).

Step 3: Prove

lim
𝑘∨𝓁→∞

𝐾3(𝑘,𝓁) = 0 in probability. (4.4)

This is the most difficult part. For 𝑚 ≥ 1, 𝑛 ≥ 1, 1 ≤ 𝑠 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑛, set

1∕2 < 𝑎 < 1∕𝑝, 𝜆𝑚,𝑛,𝑠,𝑡 = 2𝑎(𝑚+𝑛)+(1∕𝑝−𝑎)(𝑠+𝑡),

and

𝑎𝑚,𝑛 =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
𝜆𝑚,𝑛,𝑠,𝑡.

Then, similar to (3.1), we have

𝑏2𝑚+𝑛 ≤ 𝑎𝑚,𝑛 ≤ 𝐶1(𝑎, 𝑝)𝑏2𝑚+𝑛 , 𝑚 ≥ 1, 𝑛 ≥ 1. (4.5)

By using the second inequality in (4.5) and Theorem 2.1 with 𝑞 = 1, we have

0 ≤ 𝑏−2
2𝑘+𝓁

E
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑘
1≤𝑣<2𝓁

( 𝑣
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑘+𝓁,𝑖,𝑗 − E𝑋𝑘+𝓁,𝑖,𝑗 )

)2
⎞

⎟

⎟

⎠

≤ 𝐶1(𝑎, 𝑝)2𝑎−2𝑘,𝓁E
⎛

⎜

⎜

⎝

max
1≤𝑢<2𝑘
1≤𝑣<2𝓁

( 𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑘+𝓁,𝑖,𝑗 − E𝑋𝑘+𝓁,𝑖,𝑗 )

)2
⎞

⎟

⎟

⎠

≤ 𝐶

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑎−1𝑘,𝓁

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑘
1≤𝑗<2𝓁

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

⎞

⎟

⎟

⎠

2

+
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑘+𝓁𝜆−2𝑘,𝓁,𝑠,𝑡 max

1≤𝑖<2𝑘
1≤𝑗<2𝓁

E𝑋2
𝑠+𝑡,𝑖,𝑗

⎞

⎟

⎟

⎟

⎠

.

(4.6)

y applying the first inequality in (4.5) and the stochastic domination assumption, we have

0 ≤ 𝑎−1𝑘,𝓁

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑘 ,1≤𝑗<2𝓁
P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

≤ 𝑏−1
2𝑘+𝓁

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
𝑏2𝑠+𝑡2𝑠+𝑡P

(

|𝑋| > 𝑏2𝑠+𝑡−2
)

.

(4.7)

t is clear that

sup
𝑘≥1,𝓁≥1

𝑏−1
2𝑘+𝓁

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
𝑏2𝑠+𝑡 ≤ 𝐶. (4.8)

e also have from (1.21) that

lim
𝑠∨𝑡→∞

2𝑠+𝑡P
(

|𝑋| > 𝑏2𝑠+𝑡−2
)

= 0. (4.9)

y using (4.8) and (4.9) and a double sum analogue of the Toeplitz lemma (see Lemma 2.2 in [51]), we obtain

lim
𝑘∨𝓁→∞

𝑏−1
2𝑘+𝓁

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
𝑏2𝑠+𝑡2𝑠+𝑡P

(

|𝑋| > 𝑏2𝑠+𝑡−2
)

= 0. (4.10)

ombining (4.7) and (4.10) yields

lim 𝑎−1𝑘,𝓁

𝑘
∑

𝓁
∑

2𝑠+𝑡𝑏2𝑠+𝑡 max
𝑘 𝓁

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

= 0. (4.11)
14
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By applying the stochastic domination assumption again, we have
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑘+𝓁𝜆−2𝑘,𝓁,𝑠,𝑡 max

1≤𝑖<2𝑘
1≤𝑗<2𝓁

E𝑋2
𝑠+𝑡,𝑖,𝑗 ≤

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑘+𝓁𝜆−2𝑘,𝓁,𝑠,𝑡

(

E𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 ) + 𝑏22𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 )
)

=
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2(𝑘+𝓁)(1−2𝑎)2−2(1∕𝑝−𝑎)(𝑠+𝑡)

(

E𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 ) + 𝑏22𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 )
)

= 2(𝑘+𝓁)(1−2𝑎)
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2(2𝑎−1)(𝑠+𝑡)

(

2𝑠+𝑡

𝑏22𝑠+𝑡
E𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 ) + 2𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 )

)

∶= 2(𝑘+𝓁)(1−2𝑎)
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2(2𝑎−1)(𝑠+𝑡)

(

𝑦1(𝑠, 𝑡) + 𝑦2(𝑠, 𝑡)
)

,

(4.12)

where

𝑦1(𝑠, 𝑡) =
2𝑠+𝑡

𝑏22𝑠+𝑡
E𝑋2𝟏(|𝑋| ≤ 𝑏2𝑠+𝑡 ) and 𝑦2(𝑠, 𝑡) = 2𝑠+𝑡P(|𝑋| > 𝑏2𝑠+𝑡 ).

y applying the Toeplitz lemma and (1.21), we have

𝑦1(𝑠, 𝑡) =
1

2(𝑠+𝑡)(2∕𝑝−1)

( 𝑠+𝑡
∑

𝑗=1
E𝑋2𝟏(𝑏2𝑗−1 < |𝑋| ≤ 𝑏2𝑗 ) + E𝑋2𝟏(0 ≤ |𝑋| ≤ 𝑏1)

)

≤ 1
2(𝑠+𝑡)(2∕𝑝−1)

( 𝑠+𝑡
∑

𝑗=1
𝑏22𝑗P(|𝑋| > 𝑏2𝑗−1 ) + 𝑏21

)

= 1
2(𝑠+𝑡)(2∕𝑝−1)

( 𝑠+𝑡
∑

𝑗=1
2𝑗(2∕𝑝−1)2𝑗P(|𝑋| > 𝑏2𝑗−1 ) + 𝑏21

)

→ 0 as 𝑠 ∨ 𝑡 → ∞.

(4.13)

Applying (1.21) again, we have

𝑦2(𝑠, 𝑡) → 0 as 𝑠 ∨ 𝑡 → ∞. (4.14)

Similar to (4.10), we conclude from (4.13), (4.14) and the double sum analogue of the Toeplitz lemma that

lim
𝑘∨𝓁→∞

2(𝑘+𝓁)(1−2𝑎)
𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2(2𝑎−1)(𝑠+𝑡)

(

𝑦1(𝑠, 𝑡) + 𝑦2(𝑠, 𝑡)
)

= 0. (4.15)

Combining (4.12) and (4.15) yields

lim
𝑘∨𝓁→∞

𝑘
∑

𝑠=1

𝓁
∑

𝑡=1
2𝑘+𝓁𝜆−2𝑘,𝓁,𝑠,𝑡 max

1≤𝑖<2𝑘 ,1≤𝑗<2𝓁
E𝑋2

𝑠+𝑡,𝑖,𝑗 = 0. (4.16)

From (4.6), (4.11) and (4.16), we obtain (4.4). Combining (4.1)–(4.4) yields (1.22). The proof of the sufficiency part is completed.
We will now prove the necessity part. Since the random variables 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 are symmetric, (1.22) becomes

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1 𝑋𝑖,𝑗

|

|

|

(𝑚𝑛)1∕𝑝
P
→ 0 as 𝑚 ∨ 𝑛 → ∞.

his implies
max𝑖≤𝑚,𝑗≤𝑛 |𝑋𝑖,𝑗 |

(𝑚𝑛)1∕𝑝
P
→ 0 as 𝑚 ∨ 𝑛 → ∞. (4.17)

pplying Lemma A.1, we obtain from (4.17) that

lim
𝑚∨𝑛→∞

𝑚𝑛P
(

|𝑋| > (𝑚𝑛)1∕𝑝
)

= lim
𝑚∨𝑛→∞

𝑚𝑛P
(

|𝑋1,1| > (𝑚𝑛)1∕𝑝
)

= 0,

r, equivalently, (1.21) holds. □

emark 4.1. In the proof of the sufficiency of Theorem 1.5, we obtain from (4.6), (4.11) and (4.16) that

𝐾3(𝑘,𝓁)
2
→ 0 as 𝑘 ∨ 𝓁 → ∞ (4.18)

hich is stronger than (4.4).

Before proving Theorem 1.6, we state the following result which may be of independent interest. The result involves the concept
f regularly varying functions which is presented as follows. A real-valued function 𝑅(⋅) is said to be regularly varying with index of
15
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regular variation 𝜌 ∈ R if it is a positive and measurable function on [0,∞), and for each 𝜆 > 0,

lim
𝑥→∞

𝑅(𝜆𝑥)
𝑅(𝑥)

= 𝜆𝜌.

regularly varying function with the index of regular variation 𝜌 = 0 is called slowly varying. Let 𝐿(⋅) be a slowly varying function.
Then by Theorem 1.5.13 in Bingham et al. [3], there exists a slowly varying function �̃�(⋅), unique up to asymptotic equivalence,
atisfying

lim
𝑥→∞

𝐿(𝑥)�̃� (𝑥𝐿(𝑥)) = 1 and lim
𝑥→∞

�̃�(𝑥)𝐿
(

𝑥�̃�(𝑥)
)

= 1.

he function �̃� is called the de Bruijn conjugate of 𝐿 (see p. 29 in Bingham et al. [3]). If 𝐿(𝑥) = log𝛾 𝑥 or 𝐿(𝑥) = log𝛾 (log 𝑥) for some
∈ R, then �̃�(𝑥) = 1∕𝐿(𝑥). By Proposition B.1.9 in [27], we can assume, without loss of generality, that 𝑥𝛾𝐿(𝑥) and 𝑥𝛾 �̃�(𝑥) are both

trictly increasing for all 𝛾 > 0. Thereafter, for a slowly varying function 𝐿(⋅) defined on [0,∞), we denote the de Bruijn conjugate
f 𝐿(⋅) by �̃�(⋅).

roposition 4.2. Let 𝑝 > 0, let {𝑋𝜆, 𝜆 ∈ 𝛬} be a family of random variables and let 𝐿(⋅) be a slowly varying function and �̃�(𝑥) the de
Bruijn conjugate of 𝐿(𝑥). Then the following statements hold.

(i) If {𝑋𝜆, 𝜆 ∈ 𝛬} is stochastically dominated by a random variables 𝑋 satisfying

E
(

|𝑋|

𝑝𝐿(|𝑋|

𝑝)
)

< ∞, (4.19)

then {|𝑋𝜆|
𝑝𝐿(|𝑋𝜆|

𝑝), 𝜆 ∈ 𝛬} is uniformly integrable.

(ii) If {|𝑋𝜆|
𝑝𝐿(|𝑋𝜆|

𝑝), 𝜆 ∈ 𝛬} is uniformly integrable, then there exists a random variable 𝑋 with the distribution function

𝐹 (𝑥) = 1 − sup
𝜆∈𝛬

P(|𝑋𝜆| > 𝑥), 𝑥 ∈ R (4.20)

such that {𝑋𝜆, 𝜆 ∈ 𝛬} is stochastically dominated by 𝑋, and

lim
𝑥→∞

𝑥P
(

|𝑋| > 𝑥1∕𝑝�̃�1∕𝑝(𝑥)
)

= 0.

(iii) If

sup
𝜆∈𝛬

E
(

|𝑋𝜆|
𝑝𝐿(|𝑋𝜆|

𝑝) log(2)𝜈 |𝑋𝜆|
)

< ∞,

for some positive integer 𝜈, then there exists a random variable 𝑋 with distribution function 𝐹 (𝑥) as in (4.20) such that {𝑋𝜆, 𝜆 ∈ 𝛬}
is stochastically dominated by 𝑋, and (4.19) holds.

Proof. The proof of Proposition 4.2 is similar to that of Theorem 3.1 in [56]. We omit the details. □

We will now present the proof of Theorem 1.6.

Proof of Theorem 1.6. We first prove the sufficiency part. As before, we can assume that 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 are nonnegative. Set

𝑏𝑛 = 𝑛1∕𝑝, 𝑋𝑧,𝑠,𝑚,𝑛 = 𝑋𝑚,𝑛𝟏(𝑋𝑚,𝑛 ≤ 𝑧1∕𝑝𝑏2𝑠 ) + 𝑧1∕𝑝𝑏2𝑠𝟏(𝑋𝑚,𝑛 > 𝑧1∕𝑝𝑏2𝑠 ), 𝑧 > 0, 𝑠 ≥ 0, 𝑚 ≥ 1, 𝑛 ≥ 1.

For 𝑚 ≥ 1, 𝑛 ≥ 1, we have

E

(

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚
𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

)𝑝

= ∫

∞

0
P

(

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚
𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝
)

d 𝑧

= ∫

1

0
P

(

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚
𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝
)

d 𝑧

+ ∫

∞

1
P

(

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚
𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝
)

d 𝑧

∶= 𝑅1(𝑚, 𝑛) + 𝑅2(𝑚, 𝑛).

(4.21)

y Proposition 4.2(i) and (ii) with 𝐿(𝑥) ≡ 1, there exists a random variable 𝑋 such that the array {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is stochastically
ominated by 𝑋 and (1.21) holds. Applying Theorem 1.5, we obtain the WLLN

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1

(

𝑋𝑖,𝑗 − E(𝑋𝑖,𝑗𝟏(𝑋𝑖,𝑗 ≤ (𝑚𝑛)1∕𝑝))
)

|

|

|

|

|

|

P
→ 0 as 𝑚 ∨ 𝑛 → ∞. (4.22)

By applying the stochastic domination, (1.23) and the Lebesgue dominated convergence theorem, we have

1
1∕𝑝

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

𝑢
∑

𝑣
∑

E(𝑋𝑖,𝑗𝟏(𝑋𝑖,𝑗 > (𝑚𝑛)1∕𝑝))
|

|

|

|

≤ E
(

|𝑋|

𝑝𝟏(𝑋𝑖,𝑗 > (𝑚𝑛)1∕𝑝)
)

→ 0 as 𝑚 ∨ 𝑛 → ∞. (4.23)
16
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Combining (4.22) and (4.23) yields

1
(𝑚𝑛)1∕𝑝

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1

(

𝑋𝑖,𝑗 − E𝑋𝑖,𝑗
)

|

|

|

|

|

|

P
→ 0 as 𝑚 ∨ 𝑛 → ∞. (4.24)

y (4.24) and the Lebesgue dominated convergence theorem, we have lim𝑚∨𝑛→∞ 𝑅1(𝑚, 𝑛) = 0. Therefore, in view of (4.21), it remains
o prove that lim𝑚∨𝑛→∞ 𝑅2(𝑚, 𝑛) = 0. For 𝑛 ≥ 1, 𝑚 ≥ 1, let 𝑘,𝓁 be integer numbers such that 2𝑘−1 ≤ 𝑚 < 2𝑘 and 2𝓁−1 ≤ 𝑚 < 2𝓁 . Then

𝑅2(𝑚, 𝑛) = ∫

∞

1
P

(

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝(𝑚𝑛)1∕𝑝
)

d 𝑧

≤ ∫

∞

1
P

(

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝𝑏2𝑘+𝓁∕4

)

d 𝑧

≤ 𝑅2,1(𝑘,𝓁) + 𝑅2,2(𝑘,𝓁) + 𝑅2,3(𝑘,𝓁),

(4.25)

here

𝑅2,1(𝑘,𝓁) = ∫

∞

1
P

(

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 −𝑋𝑧,𝑘+𝓁,𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝𝑏2𝑘+𝓁∕12

)

d 𝑧,

𝑅2,2(𝑘,𝓁) = ∫

∞

1
P

(

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
E(𝑋𝑖,𝑗 −𝑋𝑧,𝑘+𝓁,𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝𝑏2𝑘+𝓁∕12

)

d 𝑧,

𝑅2,3(𝑘,𝓁) = ∫

∞

1
P

(

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑧,𝑘+𝓁,𝑖,𝑗 − E𝑋𝑧,𝑘+𝓁,𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝𝑏2𝑘+𝓁∕12

)

d 𝑧.

y applying the stochastic domination, (1.23) and the Lebesgue dominated convergence theorem, we have

∫

∞

1
P
⎛

⎜

⎜

⎝

max
𝑢<2𝑘
𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
(𝑋𝑖,𝑗 −𝑋𝑧,𝑘+𝓁,𝑖,𝑗 )

|

|

|

|

|

|

> 𝑧1∕𝑝𝑏2𝑘+𝓁∕12
⎞

⎟

⎟

⎠

d 𝑧 ≤ ∫

∞

1

2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
P
(

𝑋𝑖,𝑗 > 𝑧1∕𝑝𝑏2𝑘+𝓁
)

d 𝑧

≤ 1
𝑏𝑝
2𝑘+𝓁

2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
E
(

𝑋𝑝
𝑖,𝑗𝟏

(

𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁
)

)

≤ E
(

|𝑋|

𝑝𝟏
(

|𝑋| > 𝑏2𝑘+𝓁
))

→ 0 as 𝑘 ∨ 𝓁 → ∞,

and

sup
𝑧≥1

1
𝑧1∕𝑝𝑏2𝑘+𝓁

max
𝑢<2𝑘 ,𝑣<2𝓁

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
E(𝑋𝑖,𝑗 −𝑋𝑧,𝑘+𝓁,𝑖,𝑗 )

|

|

|

|

|

|

≤ sup
𝑧≥1

1
𝑧1∕𝑝𝑏2𝑘+𝓁

2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
E|𝑋𝑖,𝑗 −𝑋𝑧,𝑘+𝓁,𝑖,𝑗 |

≤ 1
𝑏2𝑘+𝓁

2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
E
(

𝑋𝑖,𝑗𝟏
(

𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁
))

≤ 1
𝑏𝑝
2𝑘+𝓁

2𝑘
∑

𝑖=1

2𝓁
∑

𝑗=1
E
(

𝑋𝑝
𝑖,𝑗𝟏(𝑋𝑖,𝑗 > 𝑏2𝑘+𝓁 )

)

≤ E
(

|𝑋|

𝑝𝟏(|𝑋| > 𝑏2𝑘+𝓁 )
)

→ 0 as 𝑘 ∨ 𝓁 → ∞

hich, respectively, yield lim𝑘∨𝓁→∞ 𝑅2,1(𝑘,𝓁) = 0 and 𝑅2,2(𝑘,𝓁) = 0 for all large 𝑘 ∨ 𝓁. Finally, by using Tonelli’s theorem and
proceeding in a similar manner as the argument in the proof of (4.18), we obtain lim𝑘∨𝓁→∞ 𝑅2,3(𝑘,𝓁) = 0. Therefore, (4.25) ensures
that lim𝑚∨𝑛→∞ 𝑅2(𝑚, 𝑛) = 0 which ends the proof of the sufficiency part of the theorem.

We will now prove the necessity part. Assume that (1.25) holds. Then

E|𝑋 − 𝜇|𝑝

𝑛
=

E |

|

|

∑1
𝑖=1

∑𝑛
𝑗=1(𝑋𝑖,𝑗 − 𝜇) −

∑1
𝑖=1

∑𝑛−1
𝑗=1(𝑋𝑖,𝑗 − 𝜇)||

|

𝑝

𝑛

≤ 2𝑝−1
⎛

⎜

⎜

⎝

E |

|

|

∑1
𝑖=1

∑𝑛
𝑗=1(𝑋𝑖,𝑗 − 𝜇)||

|

𝑝

𝑛
+

E |

|

|

∑1
𝑖=1

∑𝑛−1
𝑗=1(𝑋𝑖,𝑗 − 𝜇)||

|

𝑝

𝑛

⎞

⎟

⎟

⎠

→ 0 as 𝑛 → ∞,

nd therefore E|𝑋 − 𝜇|𝑝 < ∞, which, in turn, implies that (1.23) holds. Applying the sufficiency part, we obtain

E
|

|

|

|

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗

1∕𝑝
− (𝑚𝑛)1−1∕𝑝E𝑋

|

|

|

|

𝑝

→ 0 as 𝑚 ∨ 𝑛 → ∞. (4.26)
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By using (1.25) and (4.26), we have

|

|

|

(𝑚𝑛)1−1∕𝑝(E𝑋 − 𝜇)||
|

𝑝
≤ 2𝑝−1E

|

|

|

|

|

|

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗

(𝑚𝑛)1∕𝑝
− (𝑚𝑛)1−1∕𝑝E𝑋

|

|

|

|

|

|

𝑝

+ 2𝑝−1E
|

|

|

|

|

|

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑋𝑖,𝑗

(𝑚𝑛)1∕𝑝
− (𝑚𝑛)1−1∕𝑝𝜇

|

|

|

|

|

|

𝑝

→ 0 as 𝑚 ∨ 𝑛 → ∞.

(4.27)

ince 1 − 1∕𝑝 ≥ 0, (4.27) ensures that E𝑋 = 𝜇. The proof of the necessity part is completed. □

. Some corollaries and further remarks

.1. Limit theorems under bounded moment conditions

From Proposition 4.2, it follows that certain bounded moment conditions on the random field can accomplish the stochastic
omination condition. This illustrates the flexibility of the stochastic domination condition in comparison to the identical distribution
ondition. Specifically, by using Proposition 4.2 and the results in Section 1 (Theorems 1.3, 1.5 and 1.6), we obtain the following
orollaries. Details of the proof will be omitted.

orollary 5.1. Let 𝑝 ≥ 1, 𝛼 > 1∕2 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables. Assume that the
𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} satisfies Condition (𝐻2𝑞) with 𝑞 = 1 if 1 ≤ 𝑝 < 2 and 𝑞 > (𝛼𝑝 − 1)∕(2𝛼 − 1) if 𝑝 ≥ 2. If

sup
𝑚≥1,𝑛≥1

E
(

|𝑋𝑚,𝑛|
𝑝 log |𝑋𝑚,𝑛| log

(2)
𝜈 |𝑋𝑚,𝑛|

)

< ∞

or some positive integer 𝜈, then (1.17) holds.

orollary 5.2.
Let 1 ≤ 𝑝 < 2 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables satisfying Condition (𝐻2). If

sup
𝑚≥1,𝑛≥1

E
(

|𝑋𝑚,𝑛|
𝑝 log(2)𝜈 |𝑋𝑚,𝑛|

)

< ∞

or some positive integer 𝜈, then (1.24) holds.

orollary 5.3. Let 1 ≤ 𝑝 < 2 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of random variables satisfying Condition (𝐻2). If
|𝑋𝑚,𝑛|

𝑝, 𝑚 ≥ 1, 𝑛 ≥ 1} is uniformly integrable, then

max𝑢≤𝑚,𝑣≤𝑛
|

|

|

∑𝑢
𝑖=1

∑𝑣
𝑗=1(𝑋𝑖,𝑗 − E𝑋𝑖,𝑗 )

|

|

|

(𝑚𝑛)1∕𝑝
P
→ 0 as 𝑚 ∨ 𝑛 → ∞. (5.1)

Open Problem 5.4. In Corollary 5.3, if the random variables 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 are independent, then by the method in Pyke
nd Root [42], we can obtain convergence in mean of order 𝑝 in (5.1). If we only assume 𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1 satisfy Condition (𝐻2),

then we do not know whether or not the convergence in mean of order 𝑝 prevails in (5.1). To our best knowledge, this problem is
unsolved even in the case of dimension one.

5.2. Limit theorems for dependent random fields with regularly varying norming constants

Theorems 1.3, 1.5 and 1.6 can be extended to the case where the norming constants are regularly varying. For instance, we have
an extension of Theorem 1.3 as follows. The proof employs some properties of slowly varying functions presented in [1,54,55,58]
as well as the technique developed in Sections 2 and 3. We leave the details to the interested reader.

Theorem 5.5. Let 𝑝 ≥ 1, 1∕2 < 𝛼 ≤ 1, 𝛼𝑝 ≥ 1 and let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of identically distributed random variables.
Let 𝐿(𝑥) ≥ 1 be an increasing slowly varying function and �̃�(𝑥) the de Bruijn conjugate of 𝐿(𝑥). Assume that the array {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1}
atisfies Condition (𝐻2𝑞) with 𝑞 = 1 if 1 ≤ 𝑝 < 2 and 𝑞 > (𝛼𝑝 − 1)∕(2𝛼 − 1) if 𝑝 ≥ 2. Then

∞
∑

𝑚=1

∞
∑

𝑛=1
(𝑚𝑛)𝛼𝑝−2P

(

max
𝑢≤𝑚,𝑣≤𝑛

|

|

|

|

|

|

𝑢
∑

𝑖=1

𝑣
∑

𝑗=1
𝑋𝑖,𝑗

|

|

|

|

|

|

> 𝜀(𝑚𝑛)𝛼�̃�((𝑚𝑛)𝛼)

)

< ∞ for all 𝜀 > 0

if and only if

E𝑋 = 0 and E
(

|𝑋 |

𝑝𝐿𝑝(|𝑋 |) log |𝑋 |

)

< ∞.
18
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5.3. Further remarks on limit theorems for mixing random fields and negatively dependent random fields

In this subsection, for any two 𝜎-fields , ⊂  , we define the maximal coefficient of correlation

𝜌(,) = sup
|Cov(𝑋𝑌 )|

(Var(𝑋) Var(𝑌 ))1∕2
,

where the sup is taken over all pairs of random variables 𝑋 ∈ 2() and 𝑌 ∈ 2(), and 0∕0 is interpreted to be 0.
The concepts of 𝜌∗-mixing and 𝜌′-mixing random fields were introduced by Bradley and Utev [10] (see also in Bradley [7],

radley and Tone [9]). Let Z+ be the set of positive integers and let 𝑑 ∈ Z+. Let Z𝑑
+ denote the positive integer 𝑑-dimensional lattice

oints. The notation 𝐦 ≺ 𝐧 (or 𝐧 ≻ 𝐦), where 𝐦 = (𝑚1, 𝑚2,… , 𝑚𝑑 ) and 𝐧 = (𝑛1, 𝑛2,… , 𝑛𝑑 ) ∈ Z𝑑
+, means that 𝑚𝑖 ≤ 𝑛𝑖, 1 ≤ 𝑖 ≤ 𝑑. For

𝐧 = (𝑛1, 𝑛2,… , 𝑛𝑑 ) ∈ Z𝑑
+, let ‖𝐧‖ = (𝑛21+ ⋅+𝑛2𝑑 )

1∕2 denote the Euclidean norm. Let  =
{

𝑋𝐧,𝐧 ∈ Z𝑑
+
}

be a 𝑑-dimensional random field.
or two nonempty disjoint subsets 𝑆1 and 𝑆2 of Z𝑑

+, denote

dist(𝑆1, 𝑆2) ∶= inf
𝐧∈𝑆1 ,𝐦∈𝑆2

‖𝐧 −𝐦‖,

nd

𝜌(𝑆1, 𝑆2) ∶= 𝜌(𝜎(𝑋𝐧,𝐧 ∈ 𝑆1), 𝜎(𝑋𝐧,𝐧 ∈ 𝑆2)).

or 𝑛 ≥ 1, we define

𝜌∗( , 𝑛) = sup{𝜌(𝑆1, 𝑆2) ∶ dist(𝑆1, 𝑆2) ≥ 𝑛}

nd

𝜌′( , 𝑛) = sup 𝜌(𝑆1, 𝑆2), (5.2)

here in (5.2), the sup is taken over all pairs of nonempty disjoint subsets 𝑆1 and 𝑆2 of Z𝑑
+ of the form

𝑆1 = {𝐧 = (𝑛1, 𝑛2,… , 𝑛𝑑 ) ∈ Z𝑑
+ ∶ 𝑛𝑖 ∈ 𝑄1}

nd

𝑆2 = {𝐧 = (𝑛1, 𝑛2,… , 𝑛𝑑 ) ∈ Z𝑑
+ ∶ 𝑛𝑖 ∈ 𝑄2},

here 𝑖 = 1,… , 𝑑, and 𝑄1 and 𝑄2 are two nonempty disjoint subsets of Z1
+ satisfying dist(𝑄1, 𝑄2) ≥ 𝑛. As noted by Bradley and

tev [10], 𝜌∗ is based on ‘‘general’’ disjoint sets 𝑆1 and 𝑆2 whereas 𝜌′ is based on disjoint ‘‘one-dimensional cylinder sets’’ 𝑆1 and
2. It is clear that 0 ≤ 𝜌′(𝑛) ≤ 𝜌∗(𝑛) ≤ 1 for all 𝑛 ≥ 1. The random field  is said to be 𝜌∗-mixing (resp., 𝜌′-mixing) if lim𝑛→∞ 𝜌∗( , 𝑛) = 0
resp., lim𝑛→∞ 𝜌′( , 𝑛) = 0). If lim𝑛→∞ 𝜌∗( , 𝑛) < 1, then the array  satisfies Condition 𝐻2𝑞 for all 𝑞 ≥ 1 (see Theorem 4 of Peligrad
nd Gut [38]). If lim𝑛→∞ 𝜌′( , 𝑛) < 1, then the array  satisfies Condition 𝐻2𝑞 for all 𝑞 ≥ 1 (see Theorem 29.30 of Bradley [6]).

Limit theorems for mixing random fields were studied extensively by various authors. We refer to Bradley [4,5], Bradley and
Tone [9] for the central limit theorems for 𝜌∗-mixing and 𝜌′-mixing random fields, Kuczmaszewska and Lagodowski [33], Peligrad
and Gut [38] and the references therein for the Hsu–Robbins–Erdös–Spitzer–Baum–Katz-type theorem and SLLNs for 𝜌∗-mixing
random fields. However, to our best knowledge, there are no results in the literature on complete convergence or SLLNs for 𝜌′-
mixing random fields. Let  =

{

𝑋𝐧,𝐧 ∈ Z𝑑
+
}

be a 𝑑-dimensional random field. A Rosenthal-type maximal inequality for the random
field  under the condition lim𝑛→∞ 𝜌∗( , 𝑛) < 1 was provided by Peligrad and Gut [38] but such an inequality is not available for
the 𝜌′-mixing case. This prevents us from using existing methods to establish laws of large numbers for the maximum of multiple
sums for 𝜌′-mixing random fields.

As mentioned in the above, if lim𝑛→∞ 𝜌′( , 𝑛) < 1, then  satisfies Condition 𝐻2𝑞 for all 𝑞 ≥ 1. Therefore, all results in Sections 1–2
hold true for dependent random fields satisfying lim𝑛→∞ 𝜌′( , 𝑛) < 1. For the case where 𝑑 = 1, we have 𝜌′(𝑛) = 𝜌∗(𝑛) for all 𝑛 ≥ 1
and thus there is no difference between 𝜌∗-mixing sequences and 𝜌′-mixing sequences. However, for the case where 𝑑 ≥ 2, It was
shown by Bradley [7, Theorem 1.9] that for all nonincreasing sequence {𝑐𝑛, 𝑛 ≥ 1} ⊂ [0, 1], there exists a strictly stationary random
field

{

𝑋𝐧,𝐧 ∈ Z𝑑
+
}

such that 𝜌∗(𝑛) = 1 for all 𝑛 ≥ 1 and 𝜌′(𝑛) = 𝑐𝑛 for all 𝑛 ≥ 2. Therefore for the case of dimension 𝑑 ≥ 2, our
result on the Baum–Katz–Erdös–Hsu–Robbins-type theorem under condition lim𝑛→∞ 𝜌′( , 𝑛) < 1 significantly improves the Peligrad
and Gut [38] result in the sense that it cannot be derived from the Peligrad and Gut [38] result for dependent random fields with
condition lim𝑛→∞ 𝜌∗( , 𝑛) < 1.

Kuczmaszewska and Lagodowski [33] used the method in the Peligrad and Gut [38] to establish the Hsu–Robbins–Erdös–Spitzer–
Baum–Katz-type theorem for negatively associated random fields. It is well known that negative association is strictly stronger than
pairwise negative dependence (see, [30, Property P3 and Remark 2.5]). The Rosenthal-maximal inequalities also hold for negatively
associated mean zero random variables (see, e.g., Shao [48], Giap et al. [21]) but for pairwise negatively dependent mean zero
random variables, (1.2) is not valid even in the case of dimension one. By Lemma 1 (ii) and Lemma 3 of Lehmann [34], pairwise
negatively dependent random variables satisfy Condition (𝐻2). Therefore, Theorem 1.3 for the case 1 ≤ 𝑝 < 2, and Theorems 1.5
and 1.6 can be applied to the pairwise negatively dependent random fields. As stated in Section 1, these results are new even when
the underlying random variables are pairwise independent.

There is another dependence structure called extended negative dependence (see, e.g., Chen et al. [12]), which is strictly weaker
19

than negative association. Lemmas 2.1 and 2.3 of Shen et al. [49] ensure that extended negative dependence possesses Condition
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(𝐻2𝑞) for all 𝑞 ≥ 1. Therefore, our result in Sections 1–2 can also be applied to this dependence structure. We note that a Kolmogorov–
oob-type maximal inequality or a Rosenthal-type maximal inequality is not available for extended negatively dependent random
ariables and negatively dependent random variables, even in the case of dimension one. Theorems 1.3, 1.5 and 1.6 for these two
ependence structures have never appeared in the literature. Chen et al. [12] were apparently the first to establish the Kolmogorov
LLN for extended negatively dependent random variables in the case of dimension one.

Finally, we remark that even for the 𝜌∗-mixing case with condition lim𝑛→∞ 𝜌∗( , 𝑛) < 1, the Rosenthal maximal inequality
rovided by Peligrad and Gut [38] is not sharp since the bound of the second moment of the maximum 𝑑-index sums has an
dditional factor (log |𝐧|)2𝑑 (see Corollary 2 in Peligrad and Gut [38]). Therefore, the Peligrad and Gut [38] result on the Hsu–
obbins–Erdös–Spitzer–Baum–Katz-type theorem has to require 𝛼 > 1∕𝑝, and so we cannot derive the Marcinkiewicz–Zygmund
LLN for random fields from their result. In Peligrad and Gut [38], the authors only obtained the Kolmogorov SLLN (i.e., the case
= 1 in the Marcinkiewicz–Zygmund SLLN) by using the Etemadi subsequences method (see [38, Theorem 6]). Similar to Peligrad
nd Gut [38], Kuczmaszewska and Lagodowski [33] also required 𝛼 > 1∕𝑝 in their result (see [33, Theorem 3.2]).
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In this section, we will present two technical lemmas and prove Claim 1.

emma A.1. Let {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of identically distributed random variables satisfying Condition (𝐻2) and let
𝑏𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} be a double array of positive constants. If

max1≤𝑖≤𝑚,1≤𝑗≤𝑛 |𝑋𝑖,𝑗 |

𝑏𝑚,𝑛

P
→ 0 as 𝑚 ∨ 𝑛 → ∞, (A.1)

hen for all 𝜀 > 0, there exists 𝑛0 such that

𝑚𝑛P(|𝑋1,1| > 𝑏𝑚,𝑛𝜀) ≤ 𝐶P
(

max
1≤𝑖≤𝑚,1≤𝑗≤𝑛

|𝑋𝑖,𝑗 | > 𝑏𝑚,𝑛𝜀
)

for all 𝑚 ∨ 𝑛 ≥ 𝑛0, (A.2)

and so

𝑚𝑛P(|𝑋1,1| > 𝑏𝑚,𝑛𝜀) → 0 as 𝑚 ∨ 𝑛 → ∞.

Proof. Let 𝜀 > 0 be arbitrary. It follows from (A.1) that

lim
𝑚∨𝑛→∞

P
(

max
𝑘≤𝑚,𝓁≤𝑛

𝑋+
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

)

= lim
𝑚∨𝑛→∞

P

( 𝑚
⋃

𝑘=1

𝑛
⋃

𝓁=1

(

𝑋+
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

)

)

= 0. (A.3)

Since the array {𝑋𝑚,𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1} is comprised of identically distributed random variables and satisfies Condition (𝐻2), we can
apply Proposition 2.5 in [55] for events {(𝑋+

𝑘,𝓁 > 𝑏𝑚,𝑛𝜀), 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝓁 ≤ 𝑛} to obtain
(

1 − P
(

max
𝑘≤𝑚,𝓁≤𝑛

𝑋+
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

))2 𝑚
∑

𝑘=1

𝑛
∑

𝓁=1
P(𝑋+

𝑘,𝓁 > 𝑏𝑚,𝑛𝜀) ≤ 𝐶P
(

max
𝑘≤𝑚,𝓁≤𝑛

𝑋+
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

)

. (A.4)

It follows from (A.3) and (A.4) that there exists a positive integer 𝑛1 such that

𝑚𝑛P(𝑋+
1,1 > 𝑏𝑚,𝑛𝜀) =

𝑚
∑

𝑘=1

𝑛
∑

𝓁=1
P(𝑋+

𝑘,𝓁 > 𝑏𝑚,𝑛𝜀) ≤ 𝐶P
(

max
𝑘≤𝑚,𝓁≤𝑛

𝑋+
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

)

(A.5)

whenever 𝑚 ∨ 𝑛 ≥ 𝑛1. By using the same arguments, we also have

𝑚𝑛P(𝑋−
1,1 > 𝑏𝑚,𝑛𝜀) ≤ 𝐶P

(

max
𝑘≤𝑚,𝓁≤𝑛

𝑋−
𝑘,𝓁 > 𝑏𝑚,𝑛𝜀

)

(A.6)
20

whenever 𝑚 ∨ 𝑛 ≥ 𝑛2 for some positive integer 𝑛2. Letting 𝑛0 = max{𝑛1, 𝑛2} and combining (A.5) and (A.6), we obtain (A.2). □
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Lemma A.2. Let 𝛼 > 0, 𝑞 > 0, 0 < 𝑝 < 𝑞 and let 𝑋 be a random variable. Then the following statements are equivalent:

i) E
(

|𝑋|

𝑝 log |𝑋|

)

< ∞.

ii) ∑∞
𝑚=1

∑∞
𝑛=1(𝑚𝑛)

𝛼𝑝−1P (|𝑋| > (𝑚𝑛)𝛼) < ∞.

(iii) ∑∞
𝑚=1

∑∞
𝑛=1 2

(𝑚+𝑛)𝛼𝑝P
(

|𝑋| > 2(𝑚+𝑛)𝛼
)

< ∞.

(iv) ∑∞
𝑚=1

∑∞
𝑛=1(𝑚𝑛)

𝛼(𝑝−𝑞)−1E
(

|𝑋|

𝑞𝟏 (|𝑋| ≤ (𝑚𝑛)𝛼)
)

< ∞.

(v) ∑∞
𝑚=1

∑∞
𝑛=1 2

(𝑚+𝑛)𝛼(𝑝−𝑞)E
(

|𝑋|

𝑞𝟏
(

|𝑋| ≤ 2(𝑚+𝑛)𝛼
))

< ∞.

Proof. The equivalence of (i) and (ii) is a special case of Lemma 2.1 in Gut [23]. The proof of the equivalence of (i) and (iv) is
similar. The equivalence of (ii) and (iii), and the equivalence of (iv) and (v) are obvious. □

Finally, we present the proof of Claim 1 which was used in the proof of Theorem 2.1.

Proof of Claim 1. For 𝑚 ≥ 1, 𝑛 ≥ 1, 1 ≤ 𝑢 < 2𝑚, 1 ≤ 𝑣 < 2𝑛, 0 ≤ 𝑠 ≤ 𝑚, 0 ≤ 𝑡 ≤ 𝑛, set

𝑘𝑢,𝑠 = ⌊𝑢∕2𝑠⌋, 𝓁𝑣,𝑡 = ⌊𝑣∕2𝑡⌋, 𝑢𝑠 = 𝑘𝑢,𝑠2𝑠, 𝑣𝑡 = 𝓁𝑣,𝑡2𝑡,

𝑇𝑠−1,𝑡,𝑢𝑠−1 ,𝑣 = 𝑆𝑠−1,𝑡,𝑢𝑠−1 ,𝑣 − 𝑆𝑠−1,𝑡,𝑢𝑠 ,𝑣 (𝑠 ≥ 1),

and

𝑇 ∗
𝑠,𝑡,𝑢,𝑣 = 𝑆𝑠,𝑡,𝑢,𝑣 − 𝑆𝑠−1,𝑡,𝑢,𝑣 − 𝑆𝑠,𝑡,𝑢𝑠 ,𝑣 + 𝑆𝑠−1,𝑡,𝑢𝑠 ,𝑣 (𝑠 ≥ 1).

Then 𝑢0 = 𝑢, 𝑣0 = 𝑣 and 𝑢𝑚 = 𝑣𝑛 = 0. For all 𝑚 ≥ 1, 𝑛 ≥ 1, 1 ≤ 𝑢 < 2𝑚, 1 ≤ 𝑣 < 2𝑛, we have

𝑆𝑚,𝑛,𝑢,𝑣 =
𝑚
∑

𝑠=1

(

𝑆𝑠−1,𝑛,𝑢𝑠−1 ,𝑣 − 𝑆𝑠−1,𝑛,𝑢𝑠 ,𝑣

)

+
𝑚
∑

𝑠=1

(

𝑆𝑠,𝑛,𝑢,𝑣 − 𝑆𝑠−1,𝑛,𝑢,𝑣 − 𝑆𝑠,𝑛,𝑢𝑠 ,𝑣 + 𝑆𝑠−1,𝑛,𝑢𝑠 ,𝑣

)

=
𝑚
∑

𝑠=1
𝑇𝑠−1,𝑛,𝑢𝑠−1 ,𝑣 +

𝑚
∑

𝑠=1
𝑇 ∗
𝑠,𝑛,𝑢,𝑣.

(A.7)

pplying the above decomposition again for the second and the fourth indices, we have

𝑇𝑠−1,𝑛,𝑢𝑠−1 ,𝑣 =
𝑛
∑

𝑡=1

(

𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡−1 − 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡
)

+
𝑛
∑

𝑡=1

(

𝑇𝑠−1,𝑡,𝑢𝑠−1 ,𝑣 − 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣 − 𝑇𝑠−1,𝑡,𝑢𝑠−1 ,𝑣𝑡 + 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡
)

,

(A.8)

nd

𝑇 ∗
𝑠,𝑛,𝑢,𝑣 =

𝑛
∑

𝑡=1

(

𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡−1

− 𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡

)

+
𝑛
∑

𝑡=1

(

𝑇 ∗
𝑠,𝑡,𝑢,𝑣 − 𝑇 ∗

𝑠,𝑡−1,𝑢,𝑣 − 𝑇 ∗
𝑠,𝑡,𝑢,𝑣𝑡

+ 𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡

)

.

(A.9)

ombining (A.7)–(A.9) yields

𝑆𝑚,𝑛,𝑢,𝑣 =
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

(

𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡−1 − 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡
)

+
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

(

𝑇𝑠−1,𝑡,𝑢𝑠−1 ,𝑣 − 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣 − 𝑇𝑠−1,𝑡,𝑢𝑠−1 ,𝑣𝑡 + 𝑇𝑠−1,𝑡−1,𝑢𝑠−1 ,𝑣𝑡
)

+
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

(

𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡−1

− 𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡

)

+
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

(

𝑇 ∗
𝑠,𝑡,𝑢,𝑣 − 𝑇 ∗

𝑠,𝑡−1,𝑢,𝑣 − 𝑇 ∗
𝑠,𝑡,𝑢,𝑣𝑡

+ 𝑇 ∗
𝑠,𝑡−1,𝑢,𝑣𝑡

)

∶= 𝐼1(𝑚, 𝑛, 𝑢, 𝑣) + 𝐼2(𝑚, 𝑛, 𝑢, 𝑣) + 𝐼3(𝑚, 𝑛, 𝑢, 𝑣) + 𝐼4(𝑚, 𝑛, 𝑢, 𝑣).

(A.10)

y definitions of 𝑢𝑠 and 𝑣𝑡, we have either 𝑢𝑠−1 = 𝑢𝑠 or 𝑢𝑠−1 = 𝑢𝑠 + 2𝑠−1 and 𝑣𝑡−1 = 𝑣𝑡 or 𝑣𝑡−1 = 𝑣𝑡 + 2𝑡−1. It is also easy to see that
𝑠 𝑡 ∑𝐴
21

≤ 𝑢𝑠 ≤ 𝑢 < 𝑢𝑠 + 2 , 0 ≤ 𝑣𝑡 ≤ 𝑣 < 𝑣𝑡 + 2 . Hereafter, the sum 𝑖=𝐴+1(⋅)𝑖 is interpreted to be 0. Keeping these facts and conventions in
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w
t

S
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C
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mind, we have for all 1 ≤ 𝑢 < 2𝑚, 1 ≤ 𝑣 < 2𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1,

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|𝐼1(𝑚, 𝑛, 𝑢, 𝑣)| = max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|

|

|

|

|

|

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

( 𝑢𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣𝑡−1
∑

𝑗=𝑣𝑡+1

(

𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗
)

)

|

|

|

|

|

|

≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
(𝑋𝑠+𝑡−2,𝑖,𝑗 − E𝑋𝑠+𝑡−2,𝑖,𝑗 )

|

|

|

|

|

|

.

(A.11)

Similarly, for all 1 ≤ 𝑢 < 2𝑚, 1 ≤ 𝑣 < 2𝑛, 𝑚 ≥ 1, 𝑛 ≥ 1, we have

|𝐼2(𝑚, 𝑛, 𝑢, 𝑣)| =
|

|

|

|

|

|

𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

𝑢𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣
∑

𝑗=𝑣𝑡+1

(

𝑋𝑠+𝑡−1,𝑖,𝑗 −𝑋𝑠+𝑡−2,𝑖,𝑗 − E(𝑋𝑠+𝑡−1,𝑖,𝑗 −𝑋𝑠+𝑡−2,𝑖,𝑗 )
)

|

|

|

|

|

|

≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

𝑢𝑠+2𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣𝑡+2𝑡
∑

𝑗=𝑣𝑡+1

(

𝑋∗
𝑠+𝑡−1,𝑖,𝑗 + E𝑋∗

𝑠+𝑡−1,𝑖,𝑗

)

=
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

𝑢𝑠+2𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣𝑡+2𝑡
∑

𝑗=𝑣𝑡+1

(

𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗 + 2E𝑋∗

𝑠+𝑡−1,𝑖,𝑗

)

≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

|

|

|

|

|

|

|

𝑢𝑠+2𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣𝑡+2𝑡
∑

𝑗=𝑣𝑡+1
𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗

|

|

|

|

|

|

|

+ 2
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1

𝑢𝑠+2𝑠−1
∑

𝑖=𝑢𝑠+1

𝑣𝑡+2𝑡
∑

𝑗=𝑣𝑡+1
𝑏2𝑠+𝑡P

(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

,

(A.12)

here we have applied (2.10) in the first and the last inequalities. Now, by recalling definitions of 𝑢𝑠 and 𝑣𝑡, we have from (A.12)
hat

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|𝐼2(𝑚, 𝑛, 𝑢, 𝑣)| ≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠−1
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡
∑

𝑗=𝓁2𝑡+1
𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗

|

|

|

|

|

|

+
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

.

(A.13)

imilarly, we have

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|𝐼3(𝑚, 𝑛, 𝑢, 𝑣)| ≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡−1
∑

𝑗=𝓁2𝑡+1
𝑌 ∗
𝑠+𝑡−1,𝑖,𝑗

|

|

|

|

|

|

+
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

,

(A.14)

nd

max
1≤𝑢<2𝑚
1≤𝑣<2𝑛

|𝐼4(𝑚, 𝑛, 𝑢, 𝑣)| ≤
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
max

0≤𝑘<2𝑚−𝑠
0≤𝓁<2𝑛−𝑡

|

|

|

|

|

|

𝑘2𝑠+2𝑠
∑

𝑖=𝑘2𝑠+1

𝓁2𝑡+2𝑡
∑

𝑗=𝓁2𝑡+1

(

𝑌 ∗
𝑠+𝑡,𝑖,𝑗 + 𝑌 ∗

𝑠+𝑡−1,𝑖,𝑗

)

|

|

|

|

|

|

+ 4
𝑚
∑

𝑠=1

𝑛
∑

𝑡=1
2𝑠+𝑡𝑏2𝑠+𝑡 max

1≤𝑖<2𝑚
1≤𝑗<2𝑛

P
(

𝑋𝑖,𝑗 > 𝑏2𝑠+𝑡−2
)

.

(A.15)

ombining (A.10), (A.11), (A.13)–(A.15) yields (2.11). □
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