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MAXIMAL INEQUALITIES FOR NORMED DOUBLE SUMS OF
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Abstract. In this correspondence, we prove new maximal inequalities for
normed double sums of random elements taking values in a real separable

martingale type p Banach space. The result is then applied to establish mean

convergence theorems for the maximum of normed and suitably centered dou-
ble sums of Banach space-valued random elements.

1. Introduction. It is a great pleasure for us to contribute this paper to this
special issue of Numerical Algebra, Control and Optimization in honor of Professor
George Yin on the occasion of his 70th birthday.

Let {Xm,n,m ≥ 1, n ≥ 1} be a double array of independent mean zero real-
valued random variables, and let Sm,n =

∑m
i=1

∑n
j=1Xi,j denote the double sums.

It was proved by Wichura [27] that

E
(

max
1≤k≤m,1≤`≤n

S2
k,`

)
≤ 16

m∑
i=1

n∑
j=1

EX2
i,j , m ≥ 1, n ≥ 1. (1)

Inequality (1) will be referred to as the Kolmogorov–Doob-type maximal inequality
for double sums. This type of inequality plays a key role in proving many limit
theorems.

In [18], Rosalsky and Thành established a Kolmogorov–Doob-type maximal in-
equality for normed double sums of independent random elements in a Rademacher
type p Banach space. Dung et al. [5], Quang and Huan [17], and Son et al. [23]
established a Kolmogorov–Doob-type maximal inequality for normed double sums
of random elements taking values in a martingale type p Banach space. In this
paper, we further generalize the Dung et al. [5], Quang and Huan [17], and Son
et al. [23] results by considering the case where the moments are of higher order
than p. We then use the obtained result to obtain a mean convergence theorem for
the maximum of normed and suitably centered double sums of random elements
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taking values in a real separable martingale type p Banach space. The results in
the current work are new even when the Banach space is the real line.

Throughout the rest of the paper, {km,m ≥ 1} and {`n, n ≥ 1} are two sequences
of positive integers satisfying limm∨n→∞ km`n = ∞ unless stated otherwise. All
random elements are defined on a probability space (Ω,F ,P) and take values in a
real separable Banach space X with norm ‖ · ‖. We consider an array {Vm,n,i,j , 1 ≤
i ≤ km, 1 ≤ j ≤ `n,m ≥ 1, n ≥ 1} of X -valued random elements, and prove that if
X is of martingale type p, 1 ≤ p ≤ 2, then for all m ≥ 1 and n ≥ 1, the inequality
(3) holds (see Theorem 3.1 in Section 3). If E(Vi,j |Fi,j) ≡ 0 and p = q = 2,
then inequality (3) reduces to the Kolmogorov–Doob-type maximal inequality for
normed double sums of the form (1).

The maximal inequality (3) will be used to establish in Theorem 4.1 a mean
convergence theorem for the maximum of normed double sums of the form

max1≤k≤km,1≤`≤`n

∥∥∥∑km

i=1

∑`n
j=1(Vm,n,i,j − E(Vm,n,i,j |Fm,n,i,j))

∥∥∥
dm,n

where {dm,n,m ≥ 1, n ≥ 1} is a normalizing double array. It is worth noting
that these normed double sums cover not only normed double sums from a double
array but, also, normed single sums from a triangular array or from a sequence (see
Rosalsky et al. [20]).

Mean convergence and laws of large numbers for sums of Banach space-valued
random elements have enjoyed a wide literature of investigation (see, e.g., Adler et
al. [1], Chen et al. [2], Chen and Wang [3], Hoffman-Jørgensen and Pisier [6], Hu
et al. [7], Korzeniowski [10], Li et al. [11], Ordóñez Cabrera [12], Ordóñez Cabrera
et al. [13], Parker and Rosalsky [14], Rosalsky and Thành [18], Rosalsky et al.
[20], Son et al. [23], Thành and Yin [24], Wang and Rao [26], and the references
therein). However, only a few of these investigations establish mean convergence for
the maximum of normed sums which is of special interest. For example, Rosalsky et
al. [20] established mean convergence for the maximum of normed sums assuming
that the underlying Banach space is of Rademacher type p (1 ≤ p ≤ 2). Recently,
Rosalsky and Thành [19] obtained mean convergence results for the maximum of
normed double sums under compact uniform integrability conditions.

The plan of the paper is as follows. Technical definitions, notation, and lemmas
which are used in establishing the main results are consolidated into Section 2.
In Section 3, we establish maximal inequalities for normed double sums of random
elements in a real separable martingale type p (1 ≤ p ≤ 2) Banach space. The mean
convergence results for the maximum of normed sums are presented and proved in
Section 4.

2. Preliminaries. In this section, notation, technical definitions, and lemmas which
are used in establishing the main results will be presented.

The expected value or mean of an X -valued random element V , denoted EV , is
defined to be the Pettis integral provided it exists. That is, V has expected value
EV ∈ X if f(EV ) = Ef(V ) for every f ∈ X ∗ where X ∗ denotes the (dual) space of
all continuous linear functionals on X .

Throughout this paper, the symbol C will denote a generic constant (0 < C <∞)
which is not necessarily the same one in each appearance. For a, b ∈ R, min{a, b}
and max{a, b} will be denoted, respectively, by a ∧ b and a ∨ b.
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For a random element V and a sub-σ-field G of F , the conditional expectation
E(V |G) was introduced by Scalora [21] and is defined in an analogous manner to that
in the real-valued random variable case and enjoys similar properties. A complete
development of the notion of conditional expectation for random elements may be
found in Scalora [21] including Banach space-valued martingales (which will be
defined below) and martingale convergence theorems.

A sequence {Sn, n ≥ 1} of X -valued random elements is said to be a martingale
with respect to a non-decreasing sequence of sub-σ-fields {Fn, n ≥ 1} of F (a
filtration) if ESn exists for all n ≥ 1, Sn is Fn-measurable for all n ≥ 1, and

E(Sn+1|Fn) = Sn almost surely (a.s.), n ≥ 1.

In this case, the sequence {Xn,Fn, n ≥ 1} where Xn = Sn−Sn−1, n ≥ 1, S0 = 0 is
said to be a martingale difference sequence and E(Xn+1|Fn) = 0 a.s., n ≥ 1 follows
immediately.

A real separable Banach space X is said to be of martingale type p (1 ≤ p ≤ 2)
if there exists a constant 0 < C <∞ such that for all martingales {Sn,Fn, n ≥ 1}
with values in X ,

sup
n≥1

E ‖Sn‖p ≤ C
∞∑

n=1

E‖Sn − Sn−1‖p

where S0 ≡ 0. It can be shown that (see Pisier [16]) that X being of martingale type
p is indeed equivalent to the apparently stronger condition that for all q ≥ 1, there
exists a constant Cp,q <∞ depending only on p and q such that for all martingales
{Sn,Fn, n ≥ 1} with values in X ,

E
(

sup
n≥1
‖Sn‖q

)
≤ Cp,qE

( ∞∑
n=1

E‖Sn − Sn−1‖p
)q/p

, (S0 ≡ 0). (2)

It readily follows from (2) that if X is of martingale type p for some p ∈ (1, 2],
then it is of martingale type q for all q ∈ [1, p].

Every real separable Banach space is of martingale type (at least) 1. For 1 ≤ p <
∞, the Lp-space and lp-space are of martingale type p ∧ 2. We refer the reader to
Pisier [15], Pisier [16], Schwartz [22], Woyczyński [28], Woyczyński [29] for detailed
discussions of martingale type p Banach spaces including many interesting examples.

It follows from the Hoffmann-Jørgensen and Pisier [6] characterization of
Rademacher type p Banach spaces that if a Banach space is of martingale type
p, then it is of Rademacher type p. But the notion of martingale type p Banach
spaces is only superficially similar to that of Rademacher type p Banach spaces.
Indeed, a Banach space can be of Rademacher type 2 (and hence be of Rademacher
type p for all p ∈ [1, 2]) yet be of martingale type p only for p = 1; for details see
Pisier [15] and James [9].

The following lemma is an immediate consequence of (2). A similar result appears
in Hu et al. [8] where the authors considered the case p = q.

Lemma 2.1. Suppose that the real separable Banach space X is of martingale type
p (1 ≤ p ≤ 2). Then for q ≥ 1, there exists a constant Cp,q depending only on p
and q such that for all martingales {Sn,Fn, n ≥ 1} with values in X ,

E
(

max
1≤j≤n

‖Sj‖q
)
≤ Cp,qE

(
n∑

i=1

‖Si − Si−1‖p
)q/p

, n ≥ 1

where S0 ≡ 0.
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The next lemma is a well-known result and it is referred to as the cp-inequality.

Lemma 2.2. Let a1, . . . , an be real numbers, and let p > 0. Then

|a1 + · · ·+ an|p ≤ max{1, np−1} (|a1|p + · · ·+ |an|p) .

3. Maximal inequalities for normed double sums of random elements
in martingale type p Banach spaces. The following theorem is a maximal
inequality for normed double sums of random elements in martingale type p Banach
spaces. The proof is based on ideas from Lemma 2.3 of Rosalsky and Thành [18]
which establishes a maximal inequality for normed double sums of independent
mean zero random elements in Rademacher type p Banach spaces. In the papers
[18, 23], the authors considered the p-th moment of the maximum partial sums. In
some cases, it may be necessary to bound moments of order higher than p for either
the partial sums or the maximum of the partial sums. For example, when proving
the Hsu–Robbins–Erdös theorem, we need to bound the 4-th moment of the partial
sums (see, e.g., [25]). Theorem 3.1 considers the case where the moments are of
order q for q ≥ p.

Theorem 3.1. Let 1 ≤ p ≤ 2, q ≥ p and let {Vi,j , i ≥ 1, j ≥ 1} be a double array of
random elements taking values in a real separable martingale type p Banach space
X such that E‖Vi,j‖q <∞ for all i ≥ 1, j ≥ 1. For k ≥ 1, ` ≥ 1, define the σ-fields
Fk,` as follows:

Fk,` =


{∅,Ω} if k = ` = 1,

σ ({Vi,j : i ≥ 1, 1 ≤ j < `}) if k = 1, ` ≥ 2,

σ ({Vi,j : 1 ≤ i < k, j ≥ 1}) if k ≥ 2, ` = 1,

σ ({Vi,j : 1 ≤ i < k or 1 ≤ j < `}) if k ∧ ` ≥ 2.

Then for all m ≥ 1, n ≥ 1,

E

 max
1≤k≤m
1≤`≤n

∥∥∥∥∥∥
k∑

i=1

∑̀
j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
q

≤ Cp,q(mn)q/p−1
m∑
i=1

n∑
j=1

E‖Vi,j − E(Vi,j |Fi,j)‖q,

(3)

where Cp,q is a constant depending only on p and q.

Proof. Let m ≥ 1 and n ≥ 1 be fixed. If q = p = 1, then

E

 max
1≤k≤m
1≤`≤n

∥∥∥∥∥∥
k∑

i=1

∑̀
j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
 ≤ E

 m∑
i=1

n∑
j=1

(‖Vi,j − E(Vi,j |Fi,j)‖)


=

m∑
i=1

n∑
j=1

E‖Vi,j − E(Vi,j |Fi,j)‖,

thereby establishing (3).
It remains to consider the case where q > 1. Suppose now that m ∧ n ≥ 2. By

following the proof of Lemma 2.3 of Rosalsky and Thành [18], we set

Sk,` =

k∑
i=1

∑̀
j=1

(Vi,j − E(Vi,j |Fi,j)), 1 ≤ k ≤ m, 1 ≤ ` ≤ n,
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Gk = σ ({Vi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n}) , 1 ≤ k ≤ m,
and

F` = σ ({Vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ `}) , 1 ≤ ` ≤ n.
Then σ ({Sk,`−1}) ⊂ F`−1 ⊂ Fk,` for all ` ≥ 2 and k ≥ 1. For each 1 ≤ k ≤ m and
2 ≤ ` ≤ n, we have

E (Sk,`|F`−1) = E

(
Sk,`−1 +

k∑
i=1

(Vi,` − E(Vi,`|Fi,`))
∣∣F`−1

)
= E

(
Sk,`−1

∣∣F`−1

)
= Sk,`−1 a.s.

and so {Sk,`,F`, 1 ≤ ` ≤ n} is a martingale for each 1 ≤ k ≤ m. We also have
σ ({Sk−1,n}) ⊂ Gk−1 ⊂ Fk,j for all k ≥ 2 and j ≥ 1. For each 2 ≤ k ≤ m, we thus
have

E (Sk,n|Gk−1) = E

Sk−1,n +

n∑
j=1

(Vk,j − E(Vk,j |Fk,j))
∣∣Gk−1


= E

(
Sk−1,n

∣∣Gk−1

)
= Sk−1,n a.s.

and so {Sk,n,Gk, 1 ≤ k ≤ m} is a martingale. By proceeding in the same manner
as in (2.6) and (2.7) of Rosalsky and Thành [18], we obtain

E

 max
1≤k≤m
1≤`≤n

‖Sk,`‖q
 ≤ ( q

q − 1

)2q

E ‖Sm,n‖q . (4)

Since {Sk,n,Gk, 1 ≤ k ≤ m} is a martingale, it follows from Lemmas 2.1 and 2.2
that

E ‖Sm,n‖q ≤ Cp,qE

 m∑
i=1

∥∥∥∥∥∥
n∑

j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
pq/p

≤ Cp,qm
q/p−1

m∑
i=1

E

∥∥∥∥∥∥
n∑

j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
q .

(5)

Here and hereafter, Cp,q is a constant depending only on p and q and is not neces-
sarily the same one in each appearance. For 1 ≤ i ≤ m, 1 ≤ ` ≤ n, set

Ti,` =
∑̀
j=1

(Vi,j − E(Vi,j |Fi,j)).

For each 1 ≤ i ≤ m and 2 ≤ ` ≤ n, by noting that σ({Ti,`−1}) ⊂ F`−1 ⊂ Fi,`, we
have

E (Ti,`|F`−1) = E
(
Ti,`−1 + Vi,` − E(Vi,`|Fi,`)

∣∣F`−1

)
= E

(
Ti,`−1

∣∣F`−1

)
= Ti,`−1 a.s.
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and so {Ti,`,F`, 1 ≤ ` ≤ n} is a martingale for each 1 ≤ i ≤ m. Therefore, by using
Lemmas 2.1 and 2.2 again, we have for all 1 ≤ i ≤ m,

E

∥∥∥∥∥∥
n∑

j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
q = E‖Ti,n‖q

≤ Cp,qE

 n∑
j=1

‖Vi,j − E(Vi,j |Fi,j)‖p
q/p

≤ Cp,qn
q/p−1

n∑
j=1

E‖Vi,j − E(Vi,j |Fi,j)‖q.

(6)

Combining (4)–(6) yields

E

 max
1≤k≤m
1≤`≤n

‖Sk,`‖q
 ≤ Cp,q(mn)q/p−1

m∑
i=1

n∑
j=1

E ‖Vi,j − E(Vi,j |Fi,j)‖q

again establishing (3).
Finally, if m∧n = 1, then (3) follows as in the m∧n ≥ 2 case, mutatis mutandis.

Remark 3.2. As was mentioned in Section 1, the case E(Vi,j |Fi,j) ≡ 0 is of in-
dependent interest. In this case, inequality (3) with q = p = 2 reduces to the
Kolmogorov–Doob-type maximal inequality for normed double sums of the form (1).
It is clear that if {Vi,j , i ≥ 1, j ≥ 1} is a double array of independent mean zero ran-
dom elements, then this condition is satisfied. Another example, which is inspired
by a remark in Choi and Klass [4, p. 811], is as follows. Let {Xi,j , i ≥ 1, j ≥ 1} be
a double array of integrable real-valued random variables. Let {Yi,j , i ≥ 1, j ≥ 1}
be a double array of independent mean zero real-valued random variables such that
{Yi,j , i ≥ 1, j ≥ 1} is independent of {Xi,j , i ≥ 1, j ≥ 1}. Let Vi,j = Xi,jYi,j ,
i ≥ 1, j ≥ 1. Then

E(Vi,j |Fi,j) = E (E(Xi,jYi,j |Fi,j , Xi,j)|Fi,j)

= E (Xi,jE(Yi,j |Fi,j , Xi,j)|Fi,j)

= E (Xi,jEYi,j |Fi,j) = 0.

The next result is an immediate consequence of Theorem 3.1. It plays an im-
portant role in proving Theorem 4.1. For the special case p = q, Dung et al. [5],
Quang and Huan [17], and Son et al. [23] obtained a similar result.

Theorem 3.3. Let 1 ≤ p ≤ 2, q ≥ p and let {Vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be
a collection of random elements taking values in a real separable martingale type
p Banach space X such that E‖Vi,j‖q < ∞ for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. For
1 ≤ k ≤ m, 1 ≤ ` ≤ n, define the σ-fields Fk,` as follows:

Fk,` =


{∅,Ω} if k = ` = 1,

σ ({Vi,j : 1 ≤ i ≤ m, 1 ≤ j < `}) if k = 1, n ≥ ` ≥ 2,

σ ({Vi,j : 1 ≤ i < k, 1 ≤ j ≤ n}) if m ≥ k ≥ 2, ` = 1,

σ ({Vi,j : 1 ≤ i < k or 1 ≤ j < `}) if m ∧ n ≥ k ∧ ` ≥ 2.
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Then

E

 max
1≤k≤m
1≤`≤n

∥∥∥∥∥∥
k∑

i=1

∑̀
j=1

(Vi,j − E(Vi,j |Fi,j))

∥∥∥∥∥∥
q

≤ Cp,q(mn)q/p−1
m∑
i=1

n∑
j=1

E‖Vi,j − E(Vi,j |Fi,j)‖q,

where Cp,q is a constant depending only on p and q.

Proof. By introducing additional terms Vi,j = 0 for i ≥ m + 1 or j ≥ n + 1, the
proof of Theorem 3.3 follows from Theorem 3.1.

4. Applications to mean convergence theorems. In this section, we will es-
tablish a very general mean convergence theorem for the maximum of normed and
suitably centered double sums of random elements in a real separable martingale
type p (1 ≤ p ≤ 2) Banach space X . Its proof follows directly from Theorem 3.3,
and it covers results concerning double sums from double arrays as will be seen
in Corollary 4.4. Note that there are no independence or mean zero conditions
imposed on the random elements comprising the arrays.

Theorem 4.1. Let 1 ≤ p ≤ 2, q ≥ p and let {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤
`n,m ≥ 1, n ≥ 1} be an array of random elements in a real separable martingale
type p Banach space X such that E‖Vm,n,i,j‖q < ∞ for all 1 ≤ i ≤ km, 1 ≤ j ≤
`n,m ≥ 1, n ≥ 1. Let {dm,n,m ≥ 1, n ≥ 1} be an array of positive constants. For
m ≥ 1, n ≥ 1, 1 ≤ k ≤ m, 1 ≤ ` ≤ n, let

Fm,n,k,` =


{∅,Ω} if k = ` = 1,

σ ({Vi,j : 1 ≤ i ≤ m, 1 ≤ j < `}) if k = 1, n ≥ ` ≥ 2,

σ ({Vi,j : 1 ≤ i < k, 1 ≤ j ≤ n}) if m ≥ k ≥ 2, ` = 1,

σ ({Vi,j : 1 ≤ i < k or 1 ≤ j < `}) if m ∧ n ≥ k ∧ ` ≥ 2,

and

Sm,n,k,` =

k∑
i=1

∑̀
j=1

(Vm,n,i,j − E(Vm,n,i,j |Fm,n,i,j)) .

If

(km`n)q/p−1
∑km

i=1

∑`n
j=1 E‖Vm,n,i,j‖q

dqm,n
→ 0 as m ∨ n→∞, (7)

then
max1≤k≤km,1≤`≤`n ‖Sm,n,k,`‖

dm,n

Lq→ 0 as m ∨ n→∞. (8)

Proof. For m ≥ 1, n ≥ 1, we have

E (max1≤k≤km,1≤`≤`n ‖Sm,n,k,`‖q)

dqm,n

≤
Cp,q(km`n)q/p−1

∑km

i=1

∑`n
j=1 E ‖Vm,n,i,j − E(Vm,n,i,j |Fm,n,i,j)‖q

dqm,n

≤
Cp,q(km`n)q/p−1

∑km

i=1

∑`n
j=1 (E ‖Vm,n,i,j‖q + E ‖E(Vm,n,i,j |Fm,n,i,j)‖q)

dqm,n
,

(9)
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where we have applied Theorem 3.3 in the first inequality and Lemma 2.2 with n = 2
in the second inequality. Applying Jensen’s inequality for conditional expectations,
we have for all 1 ≤ i ≤ km, 1 ≤ j ≤ `n,m ≥ 1, n ≥ 1 that

E ‖E(Vm,n,i,j |Fm,n,i,j)‖q ≤ E
(
E(‖Vm,n,i,j‖q

∣∣Fm,n,i,j)
)

= E ‖Vm,n,i,j‖q . (10)

Combining (7), (9) and (10) yields

E (max1≤k≤km,1≤`≤`n ‖Sm,n,k,`‖q)

dqm,n

≤
Cp,q(km`n)q/p−1

∑km

i=1

∑`n
j=1 E ‖Vm,n,i,j‖q

dqm,n
→ 0 as m ∨ n→∞

establishing (8).

Remark 4.2. It is clear from the proof of Theorem 4.1 that the result remains
valid if the assumption (7) is replaced by

(km`n)q/p−1
∑km

i=1

∑`n
j=1 E‖Vm,n,i,j‖q

dqm,n
→ 0 as m ∧ n→∞

and the conclusion (8) is replaced by

max1≤k≤km,1≤`≤`n ‖Sm,n,k,`‖
dm,n

Lq→ 0 as m ∧ n→∞.

A similar remark pertains to Corollary 4.4.

Remark 4.3. Rosalsky et al. [20] studied mean convergence theorem for double
arrays of M -dependent random variables. They also gave various interesting exam-
ples to illustrate their results. By Example 5.1 of Rosalsky et al. [20], we have that
in Theorem 4.1, almost sure convergence does not necessarily hold in (8). By Exam-
ple 5.3 of Rosalsky et al. [20], we have that Theorem 4.1 can fail if the hypothesis
that X is of martingale type p is dispensed with. Finally, inspired by Example 1 of
Adler et al. [1], we have that Theorem 4.1 can fail if the condition (7) is weakened
to

km∑
i=1

`n∑
j=1

E‖Vi,j‖p = O(dpm,n) as m ∨ n→∞

and by Example 5.4 of Rosalsky et al. [20], we have that Theorem 4.1 can fail if
the condition (7) is weakened to

lim
i∨j→∞

E‖Vi,j‖p

dpi,j
= 0.

The next corollary indicates that Theorem 4.1 covers the “double array” case.

Corollary 4.4. Let 1 ≤ p ≤ 2, q ≥ p, and let {Vi,j , i ≥ 1, j ≥ 1} be a double array
of random elements in a real separable martingale type p Banach space X such that
E‖Vi,j‖q <∞ for all i ≥ 1, j ≥ 1. Let {dm,n,m ≥ 1, n ≥ 1} be an array of positive
constants. For m ≥ 1, n ≥ 1, 1 ≤ k ≤ m, 1 ≤ ` ≤ n, let

Fm,n,k,` =


{∅,Ω} if k = ` = 1,

σ ({Vi,j : 1 ≤ i ≤ m, 1 ≤ j < `}) if k = 1, n ≥ ` ≥ 2,

σ ({Vi,j : 1 ≤ i < k, 1 ≤ j ≤ n}) if m ≥ k ≥ 2, ` = 1,

σ ({Vi,j : 1 ≤ i < k or 1 ≤ j < `}) if m ∧ n ≥ k ∧ ` ≥ 2,
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and

Sm,n,k,` =

k∑
i=1

∑̀
j=1

(Vi,j − E(Vi,j |Fm,n,i,j)) .

If

(km`n)q/p−1
∑km

i=1

∑`n
j=1 E‖Vi,j‖q

dqm,n
→ 0 as m ∨ n→∞, (11)

then
max1≤k≤km,1≤`≤`n ‖Sm,n,k.`‖

dm,n

Lq→ 0 as m ∨ n→∞.

Proof. Consider an array {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ `n,m ≥ 1, n ≥ 1} of
X -valued random elements defined by

Vm,n,i,j = Vi,j , 1 ≤ i ≤ km, 1 ≤ j ≤ `n,m ≥ 1, n ≥ 1.

We thus have from (11) that

(km`n)q/p−1
∑km

i=1

∑`n
j=1 E‖Vm,n,i,j‖q

dqm,n

=
(km`n)q/p−1

∑km

i=1

∑`n
j=1 E‖Vi,j‖q

dqm,n
→ 0 as m ∨ n→∞.

Therefore, all assumptions of Theorem 4.1 are satisfied, and so we obtain from (8)
that

max1≤k≤km,1≤`≤`n ‖Sm,n,k,`‖
dm,n

=
max1≤k≤km,1≤`≤`n

∥∥∥∑k
i=1

∑`
j=1 (Vm,n,i,j − E(Vm,n,i,j |Fm,n,i,j))

∥∥∥
dm,n

Lq→ 0 as m ∨ n→∞

completing the proof.

By using Lemma 2.1 and a similar argument as in the proof of Theorem 4.1, we
obtain the following result which establishes mean convergence for the maximum of
normed and suitably centered row sums from a triangular array of random elements.
We omit the details.

Theorem 4.5. Let 1 ≤ p ≤ 2, q ≥ p and let {Vn,j , 1 ≤ j ≤ `n, n ≥ 1} be a
triangular array of random elements in a real separable martingale type p Banach
space X with E‖Vn,j‖q <∞ for all 1 ≤ j ≤ `n, n ≥ 1. Let {dn, n ≥ 1} be a sequence
of positive constants such that

(`n)q/p−1
∑`n

j=1 E‖Vn,j‖q

dqn
→ 0 as n→∞.

Then

max1≤`≤`n

∥∥∥∑`
j=1 (Vn,j − vn,j)

∥∥∥
dn

Lq→ 0 as n→∞,

where for n ≥ 1, vn,1 = EVn,1, vn,j = E(Vn,j |Vn,1, . . . , Vn,j−1), 2 ≤ j ≤ `n, `n ≥ 2.
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[18] A. Rosalsky and L. V. Thành, On almost sure and mean convergence of normed double sums
of Banach space valued random elements, Stochastic Analysis and Applications, 25 (2007),

895-911.
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