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Abstract In this correspondence, we establish mean convergence theorems for the maximum of

normed double sums of Banach space valued random elements. Most of the results pertain to ran-

dom elements which are M -dependent. We expand and improve a number of particular cases in the

literature on mean convergence of random elements in Banach spaces. One of the main contributions

of the paper is to simplify and improve a recent result of Li, Presnell, and Rosalsky [Journal of Mathe-

matical Inequalities, 16, 117–126 (2022)]. A new maximal inequality for double sums of M -dependent

random elements is proved which may be of independent interest. The sharpness of the results is

illustrated by four examples.
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1 Introduction

Mean convergence for sums of independent Banach space valued random elements was studied
by many authors (see, e.g., Chen and Wang [1], Hoffmann-Jørgensen and Pisier [3], Hu et al.
[4], Korzeniowski [5], Li et al. [6], Ordóñez Cabrera et al. [8], Parker and Rosalsky [9], Wang
and Rao [14] and the references therein), but only a few of them consider mean convergence
for the maximum of normed partial sums which is of special interest. Very recently, Li et
al. [6] obtained a mean convergence theorem pertaining to an array of rowwise independent
random elements in a real separable Rademacher type p (1 < p ≤ 2) Banach space. (Technical
definitions such as Rademacher type p will be reviewed in Section 2.) Throughout, all random
elements are defined on a probability space (Ω,F , P) and take values in a real separable Banach
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space X with norm ‖ · ‖. The starting point of the current investigation is the aforementioned
result of Li et al. [6] which is stated as follows.

Theorem 1.1 (Li et al. [6]) Let 1 < p ≤ 2, let {�n, n ≥ 1} be a sequence of positive integers
with �n → ∞ as n → ∞, and let {Vn,j , 1 ≤ j ≤ �n, n ≥ 1} be a triangular array of rowwise
independent random elements in a real separable Rademacher type p Banach space X with
E‖Vn,j‖p < ∞ for all 1 ≤ j ≤ �n, n ≥ 1. Let {dn, n ≥ 1} be a sequence of positive constants.
If there exist a continuous function h : [0,∞) → [0,∞) and two sequences of positive constants
{bn, n ≥ 1} and {cn, n ≥ 1} with cn < bn, n ≥ 1 such that

h(0) = 0, h(x) = O(x), and hp(x)/x ↑ as 0 < x ↑ ∞, (1.1)
∑�n

j=1 E(Xp
n,j1(Xn,j > bn))

dp
n

→ 0 as n → ∞, (1.2)

hp(bn)
∑�n

j=1 E(Xn,j1(Xn,j > cn))
dp

nbn
→ 0 as n → ∞, (1.3)

hp(bn)
∑�n

j=1 EXn,j

dp
nbn

= O(1), (1.4)

and
hp(cn)

cn
= o

(
hp(bn)

bn

)

as n → ∞, (1.5)

where Xn,j = h−1(‖Vn,j‖), 1 ≤ j ≤ �n, n ≥ 1, then
∑�n

j=1(Vn,j − EVn,j)
dn

Lp→ 0 as n → ∞. (1.6)

In view of the renowned Markov law of large numbers (see, e.g., [2, p. 205]), a natural
question to ask is whether or not the set of five conditions (1.1)–(1.5) can be simplified? The
current work provides a positive answer to this question. A very special case of Theorem 3.1
in Section 3 is the following theorem.

Theorem 1.2 Let 1 ≤ p ≤ 2 and let {�n, n ≥ 1}, {Vn,j , 1 ≤ j ≤ �n, n ≥ 1}, and {dn, n ≥ 1}
be as in Theorem 1.1. If

∑�n

j=1 E‖Vn,j‖p

dp
n

→ 0 as n → ∞, (1.7)

then
max1≤�≤�n

‖∑�
j=1(Vn,j − EVn,j)‖
dn

Lp→ 0 as n → ∞. (1.8)

The conclusion (1.6) of Theorem 1.1 is weaker than the conclusion (1.8) of Theorem 1.2
whereas the hypotheses of the latter are structurally substantially simpler than those of the
former. Quite surprisingly, we establish the following theorem which asserts that the two sets
of hypotheses are indeed equivalent when 1 < p ≤ 2. (We note that 1 < p ≤ 2 in Theorem 1.1
whereas 1 ≤ p ≤ 2 in Theorem 1.2.) Theorem 1.3 is one of the main contributions of this paper.

Theorem 1.3 The hypotheses of Theorem 1.1 and the hypotheses of Theorem 1.2 are equiv-
alent for 1 < p ≤ 2.

We postpone the proof of Theorems 1.2 and 1.3 to Section 4. Throughout the rest of the
paper, {km} and {�n} are two sequences of positive integers satisfying limm∨n→∞ km�n = ∞



Mean Convergence Theorems for Double Sums 1729

unless stated otherwise. We consider an array {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1}
of X -valued random elements, and establish mean convergence theorems for the maximum of
normed double sums of the form

max1≤k≤km,1≤�≤�n
‖∑km

i=1

∑�n

j=1(Vm,n,i,j − EVm,n,i,j)‖
dm,n

where {dm,n, m ≥ 1, n ≥ 1} is a normalizing double array. It turns out that these normed
double sums cover not only the normed single sums from triangular arrays but also the normed
double sums from double arrays, and Theorem 1.2 is a very special case of Theorem 3.1, which
extends and improves several results in the literature including Theorem 3.10 of Parker and
Rosalsky [9] and Theorem 1 of Li et al. [6]. The proof of Theorem 3.1 is based on Lemma 2.2
(ii) which is a maximal inequality for double sums of M -dependent random elements and may
be of independent interest.

The plan of the paper is as follows. Notation, technical definitions, and lemmas which
are used in proving the results are consolidated into Section 2. In Section 3, we establish the
general mean convergence theorem (Theorem 3.1) for the maximum of normed double sums
and its corollaries. Section 4 provides the proofs of Theorems 1.2 and 1.3. Section 5 contains
four examples pertaining to the results.

2 Preliminaries

In this section, notation, technical definitions, and lemmas which are needed in connection with
the main results will be presented.

The expected value or mean of an X -valued random element V , denoted by EV , is defined
to be the Pettis integral provided it exists. That is, V has expected value EV ∈ X if and only
if f(EV ) = Ef(V ) for every f ∈ X ∗ where X ∗ denotes the (dual) space of all continuous linear
functionals on X .

Let {Yn, n ≥ 1} be a symmetric Bernoulli sequence; that is, {Yn, n ≥ 1} is a sequence of
independent and identically distributed random variables with P(Y1 = 1) = P(Y1 = −1) = 1/2.
Let X∞ = X × X × X × · · · and define

C(X ) =
{

(v1, v2, . . .) ∈ X∞ :
∞∑

n=1

Ynvn converges in probability
}

.

Let 1 ≤ p ≤ 2. Then X is said to be of Rademacher type p if there exists a finite constant
C > 0 such that

E

∥
∥
∥
∥

∞∑

n=1

Ynvn

∥
∥
∥
∥

p

≤ C
∞∑

n=1

‖vn‖p for all (v1, v2, . . .) ∈ C(X ).

Throughout this paper, the symbol C will denote a generic constant (0 < C < ∞) which is
not necessarily the same one in each appearance. For a, b ∈ R, min{a, b} and max{a, b} will be
denoted, respectively, by a ∧ b and a ∨ b.

Let M be a nonnegative integer. A finite collection of random elements {Vu,v, 1 ≤ u ≤
m, 1 ≤ v ≤ n} is said to be M -dependent if either m ∨ n ≤ M + 1 or m ∨ n > M + 1 and
the sub-collection {Vu,v, 1 ≤ u ≤ i, 1 ≤ v ≤ j} is independent of the sub-collection {Vu,v, k ≤
u ≤ m, � ≤ v ≤ n} whenever (k − i) ∨ (� − j) > M . A double array of random elements
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{Vu,v, u ≥ 1, v ≥ 1} is said to be M -dependent if for each m ≥ 1, n ≥ 1, the collection
{Vu,v, 1 ≤ u ≤ m, 1 ≤ v ≤ n} is M -dependent. When M = 0, the concept of M -dependence
reduces to the concept of independence. Clearly, M -dependence implies M ′-dependence for
every nonnegative integer M ′ > M .

The first lemma is a well-known result and it is referred to as the cp-inequality.

Lemma 2.1 Let a1, . . . , an be real numbers, and let p > 0. Then

|a1 + · · · + an|p ≤ max{1, np−1}(|a1|p + · · · + |an|p).

The following lemma plays an important role in proving Theorems 3.1 and 3.5. Part (ii) is
proved by Parker and Rosalsky [9] when M = 0 and is proved by Quang, Thành, and Tien [10]
when q = p.

Lemma 2.2 Let 0 < p ≤ 2 and let {Vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a collection of random
elements in a real separable Banach space X .

(i) If 0 < p ≤ 1, then for all q ≥ p,

E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

q)

≤ (mn)q/p−1
m∑

i=1

n∑

j=1

E‖Vi,j‖q.

(ii) Let M be a nonnegative integer. If 1 ≤ p ≤ 2, X is of Rademacher type p, and
{Vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} is comprised of M -dependent mean zero random elements, then
for all q ≥ p,

E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

q)

≤ C(mn)q/p−1
m∑

i=1

n∑

j=1

E‖Vi,j‖q, (2.1)

where C is a constant depending only on p, q and M .

Proof Firstly, we prove Part (i). We have

E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

q)

= E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

p)q/p

≤ E

(

max
1≤k≤m
1≤�≤n

k∑

i=1

�∑

j=1

‖Vi,j‖p

)q/p

= E

( m∑

i=1

n∑

j=1

‖Vi,j‖p

)q/p

≤ (mn)q/p−1
m∑

i=1

n∑

j=1

E‖Vi,j‖q,

where we have used Lemma 2.1 in both the first and second inequalities.

Next, we prove Part (ii). Since the case where M = 0 was proved by Parker and Rosalsky
[9], we may assume M ≥ 1. If m ∨ n ≤ M + 1, then (2.1) follows readily from Lemma 2.1.
Now, we consider the case where m ∧ n > M + 1. Let 1 ≤ k ≤ m, 1 ≤ � ≤ n be fixed. Since
we can introduce additional terms Vi,j = 0 if k ≤ M + 1 or � ≤ M + 1, we may assume that
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k ∧ � > M + 1. Then

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

q

≤
( M+1∑

s,t=1

∥
∥
∥
∥

∑

0≤u(M+1)≤k−s
0≤v(M+1)≤�−t

Vu(M+1)+s,v(M+1)+t

∥
∥
∥
∥

)q

≤ (M + 1)2(q−1)
M+1∑

s,t=1

∥
∥
∥
∥

∑

0≤u(M+1)≤k−s
0≤v(M+1)≤�−t

Vu(M+1)+s,v(M+1)+t

∥
∥
∥
∥

q

,

where we have used the triangle inequality in the first inequality, and Lemma 2.1 (with n =
(M + 1)2) in the second inequality. It thus follows that

E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

k∑

i=1

�∑

j=1

Vi,j

∥
∥
∥
∥

q)

≤ (M + 1)2(q−1)
M+1∑

s,t=1

E

(

max
1≤k≤m
1≤�≤n

∥
∥
∥
∥

∑

0≤u(M+1)≤k−s
0≤v(M+1)≤�−t

Vu(M+1)+s,v(M+1)+t

∥
∥
∥
∥

q)

≤ C
M+1∑

s,t=1

(mn)q/p−1

( ∑

0≤u(M+1)+s≤m
0≤v(M+1)+t≤n

E‖Vu(M+1)+s,v(M+1)+t‖q

)

≤ C(mn)q/p−1
m∑

i=1

n∑

j=1

E‖Vi,j‖q,

where we have used the M -dependence and Rademacher type p hypotheses and Lemma 2.4 of
Parker and Rosalsky [9] in the second inequality.

Finally, we consider the case where m ∨ n > M + 1 and m ∧ n ≤ M + 1. Without loss of
generality, we can assume that m ≤ M + 1 and n > M + 1. By introducing additional terms
Vi,j = 0 for m + 1 ≤ i ≤ M + 2 and 1 ≤ j ≤ n, the proof of this case follows from the case
where m ∧ n > M + 1. �

3 A General Mean Convergence Theorem and Its Corollaries

In this section, we will establish a very general mean convergence theorem for the maximum
of normed double sums from arrays of M -dependent random elements in a real separable
Rademacher type p (1 ≤ p ≤ 2) Banach space X . Its proof follows directly from Lemma 2.2
(ii), and it covers results concerning both single sums from triangular arrays and double sums
from double arrays. We present three corollaries of Theorem 3.1 which extend and improve
several results from the literature.

Theorem 3.1 Let M be a nonnegative integer. Let 1 ≤ p ≤ 2 and let {Vm,n,i,j , 1 ≤ i ≤
km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1} be an array of random elements in a real separable Rademacher
type p Banach space X such that for fixed m ≥ 1 and n ≥ 1, the double array {Vm,n,i,j , 1 ≤
i ≤ km, 1 ≤ j ≤ �n} is comprised of M -dependent random elements. Let q ≥ p, and let
{dm,n, m ≥ 1, n ≥ 1} be an array of positive constants such that E‖Vm,n,i,j‖q < ∞ for all
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1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1. If

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

→ 0 as m ∨ n → ∞, (3.1)

then

max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖

dm,n

Lq→ 0 as m ∨ n → ∞. (3.2)

Proof For m ≥ 1, n ≥ 1,

E(max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖q)

dq
m,n

≤ C(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j − EVm,n,i,j‖q

dq
m,n

(by Lemma 2.2 (ii))

≤ C(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

(by Lemma 2.1 with n = 2)

→ 0 as m ∨ n → ∞ (by (3.1))

thereby establishing (3.2). �
Next, we will present three corollaries which demonstrate the generality of Theorem 3.1. The

first corollary indicates that Theorem 3.1 covers the “rowwise independent triangular arrays”
case. The special case M = 0 and q = p of Corollary 3.2 is Theorem 1.2 and it generalizes and
improves Theorem 1 of Li et al. [6].

Corollary 3.2 Let M be a nonnegative integer. Let 1 ≤ p ≤ 2, q ≥ p, let {�n, n ≥ 1} be a
sequence of positive integers with �n → ∞ as n → ∞, and let {Vn,j , 1 ≤ j ≤ �n, n ≥ 1} be a
triangular array of rowwise M -dependent random elements in a real separable Rademacher type
p Banach space X with E‖Vn,j‖q < ∞ for all 1 ≤ j ≤ �n, n ≥ 1. Let {dn, n ≥ 1} be a sequence
of positive constants such that

(�n)q/p−1
∑�n

j=1 E‖Vn,j‖q

dq
n

→ 0 as n → ∞. (3.3)

Then
max1≤�≤�n

‖∑�
j=1(Vn,j − EVn,j)‖
dn

Lq→ 0 as n → ∞.

Proof Consider km ≡ 1, and an array {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1} of
X -valued random elements defined by

V1,n,1,j = Vn,j , 1 ≤ j ≤ �n, n ≥ 1,

and
Vm,n,1,j = 0, 1 ≤ j ≤ �n, m ≥ 2, n ≥ 1.

Consider an array {dm,n, m ≥ 1, n ≥ 1} of positive constants such that

dm,n = dn, m ≥ 1, n ≥ 1.

We thus have from (3.3) that for m = 1,

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n
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=
(�n)q/p−1

∑�n

j=1 E‖Vn,j‖q

dq
n

→ 0 as n → ∞,

and for m ≥ 2,

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

= 0.

Therefore, all assumptions of Theorem 3.1 are satisfied, and so we obtain from (3.2) that

max1≤�≤�n
‖∑�

j=1(Vn,j − EVn,j)‖
dn

=
max1≤k≤k1,1≤�≤�n

‖∑k
i=1

∑�
j=1(V1,n,i,j − EV1,n,i,j)‖

d1,n

Lq→ 0 as n → ∞
completing the proof. �

The next corollary indicates that Theorem 3.1 covers the “double arrays” case. In the case
where M = 0, km ≡ m, and �n ≡ n, Corollary 3.3 reduces to Theorem 3.10 of Parker and
Rosalsky [9].

Corollary 3.3 Let M be a nonnegative integer. Let 1 ≤ p ≤ 2, q ≥ p, and let {Vi,j , i ≥ 1, j ≥
1} be a double array of M -dependent random elements in a real separable Rademacher type p

Banach space X with E‖Vi,j‖q < ∞ for all i ≥ 1, j ≥ 1. Let {dm,n, m ≥ 1, n ≥ 1} be a double
array of positive constants such that

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vi,j‖q

dq
m,n

→ 0 as m ∨ n → ∞. (3.4)

Then
max1≤k≤km,1≤�≤�n

‖∑k
i=1

∑�
j=1(Vi,j − EVi,j)‖

dm,n

Lq→ 0 as m ∨ n → ∞.

Proof Consider an array {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1} of X -valued random
elements defined by

Vm,n,i,j = Vi,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1.

We thus have from (3.4) that

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

=
(km�n)q/p−1

∑km

i=1

∑�n

j=1 E‖Vi,j‖q

dq
m,n

→ 0 as m ∨ n → ∞.

Therefore, all assumptions of Theorem 3.1 are satisfied, and so we obtain from (3.2) that

max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1(Vi,j − EVi,j)‖

dm,n

=
max1≤k≤km,1≤�≤�n

‖∑k
i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖

dm,n

Lq→ 0 as m ∨ n → ∞
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completing the proof. �
A double array of constants {dm,n, m ≥ 1, n ≥ 1} is said to be increasing if dk,� ≤ dm,n when-

ever k ≤ m, � ≤ n. The following corollary provides an exact characterization of Rademacher
type p Banach spaces. The implication ((i)⇒(ii)) was proved by Parker and Rosalsky [9, The-
orem 3.1] for the independence (or M = 0) case.

Corollary 3.4 Let 1 ≤ p ≤ 2, and let X be a real separable Banach space. Then the following
two statements are equivalent.

(i) X is of Rademacher type p.
(ii) For any increasing double array {dm,n, m ≥ 1, n ≥ 1} of positive constants satisfying

limm∨n→∞ dm,n = ∞, and for any double array {Vm,n, m ≥ 1, n ≥ 1} of M -dependent X -valued
random elements, the condition

∞∑

i=1

∞∑

j=1

E‖Vi,j‖p

dp
i,j

< ∞ (3.5)

implies
max1≤k≤m,1≤�≤n ‖∑k

i=1

∑�
j=1(Vi,j − EVi,j)‖

dm,n

Lp→ 0 as m ∨ n → ∞ (3.6)

irrespective of the value of M ∈ {0, 1, 2, . . .}.
Proof Firstly, we prove ((i)⇒(ii)). Let {Vm,n, m ≥ 1, n ≥ 1} be a double array of M -dependent
X -valued random elements and let {dm,n, m ≥ 1, n ≥ 1} be an increasing double array of
positive constants such that (3.5) holds and limm∨n→∞ dm,n = ∞. By applying the Kronecker
lemma for double sums with nonnegative terms (see, Móricz [7]), we obtain from (3.5) that

∑m
i=1

∑n
j=1 E‖Vi,j‖p

dp
m,n

→ 0 as m ∨ n → ∞. (3.7)

By applying Corollary 3.3 with q = p, (3.6) follows from (3.7) thereby verifying (ii).
Next, we prove ((ii)⇒(i)). We apply (ii) with dm,n = mn, m ≥ 1, n ≥ 1 and M = 0. Let

{Vm,n, m ≥ 1, n ≥ 1} be a double array of independent mean zero X -valued random elements
such that ∞∑

i=1

∞∑

j=1

E‖Vi,j‖p

(ij)p
< ∞. (3.8)

By (ii), we obtain

max1≤k≤m,1≤�≤n ‖∑k
i=1

∑�
j=1 Vi,j‖

mn

Lp→ 0 as m ∨ n → ∞,

and so ∑m
i=1

∑n
j=1 Vi,j

mn

P→ 0 as m ∨ n → ∞. (3.9)

By Theorem 3.1 of [13], we obtain from (3.8) and (3.9) that
∑m

i=1

∑n
j=1 Vi,j

mn
→ 0 almost surely (a.s.) as m ∨ n → ∞.

By Theorem 3.1 of [11], we have ((ii)⇒(i)). This completes the proof of the corollary. �
In the next theorem, we show for 0 < p ≤ 1 that (3.10) implies (3.11) without imposing

any geometric conditions on the Banach space and with no dependence type of conditions and
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with no mean zero conditions imposed on the random elements comprising the array. Theorem
3.5 may be compared with Theorem 3.1 wherein 1 ≤ p ≤ 2.

Theorem 3.5 Let 0 < p ≤ 1 and let {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1}
be an array of random elements in a real separable Banach space X . Let q ≥ p, and let
{dm,n, m ≥ 1, n ≥ 1} be an array of positive constants such that E‖Vm,n,i,j‖q < ∞ for all
1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1. If

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

→ 0 as m ∨ n → ∞, (3.10)

then
max1≤k≤km,1≤�≤�n

‖∑k
i=1

∑�
j=1 Vm,n,i,j‖

dm,n

Lq→ 0 as m ∨ n → ∞. (3.11)

Proof The proof is similar to that of Theorem 3.1. For m ≥ 1, n ≥ 1, we have

E(max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1 Vm,n,i,j‖q)

dq
m,n

≤ (km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

(by Lemma 2.2 (i))

→ 0 as m ∨ n → ∞ (by (3.10))

thereby establishing (3.11). �

4 Proofs of Theorems 1.2 and 1.3

In this section, we will present the proofs of Theorems 1.2 and 1.3.
Proof of Theorem 1.2 Theorem 1.2 follows immediately from Corollary 3.2 by letting M = 0
and q = p. �
Proof of Theorem 1.3 Let 1 < p ≤ 2. We first verify that the hypotheses of Theorem 1.1
imply those of Theorem 1.2. Let the function h : [0,∞) → [0,∞) and the two sequences of
positive constants {bn, n ≥ 1} and {cn, n ≥ 1} satisfy the hypotheses of Theorem 1.1. It only
needs to be shown that (1.7) holds. For 1 ≤ j ≤ �n, n ≥ 1, let

Un,j = Vn,j1(‖Vn,j‖ ≤ h(bn)) and Wn,j = Vn,j1(‖Vn,j‖ > h(bn)).

In Li et al. [6] the proof of Theorem 1.1, it is shown that its hypotheses ensure
∑�n

j=1 E‖Un,j‖p

dp
n

→ 0 and

∑�n

j=1 E‖Wn,j‖p

dp
n

→ 0 as n → ∞. (4.1)

Note that for 1 ≤ j ≤ �n, n ≥ 1, we have

‖Vn,j‖p = ‖Un,j‖p + ‖Wn,j‖p,

and so
E‖Vn,j‖p = E‖Un,j‖p + E‖Wn,j‖p. (4.2)

Thus (1.7) follows from (4.1) and (4.2).
Next, we verify that the hypotheses of Theorem 1.2 imply those of Theorem 1.1. Assume

that (1.7) holds. It needs to be shown that there exist a continuous function h : [0,∞) → [0,∞)
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and two sequences of positive constants {bn, n ≥ 1} and {cn, n ≥ 1} with cn < bn, n ≥ 1
satisfying (1.1)–(1.5).

Let h(x) = x, x ≥ 0. Then (1.1) is satisfied. Since Xn,j = h−1(‖Vn,j‖) = ‖Vn,j‖, 1 ≤ j ≤
�n, n ≥ 1, it is clear that (1.2) follows from (1.7). Since E‖Vn,j‖p < ∞ for all 1 ≤ j ≤ �n, n ≥ 1,
we have from Jensen’s inequality that E‖Vn,j‖ < ∞ for all 1 ≤ j ≤ �n, n ≥ 1. Therefore

�n∑

j=1

E‖Vn,j‖ < ∞, n ≥ 1.

For n ≥ 1, set

bn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
dp

n

n
∑�n

j=1 E‖Vn,j‖

)1/(p−1)

, if
�n∑

j=1

E‖Vn,j‖ > 0,

1, if
�n∑

j=1

E‖Vn,j‖ = 0

and
cn =

bn

2n
.

Then cn < bn for all n ≥ 1 and

hp(bn)
dp

nbn

�n∑

j=1

EXn,j1(Xn,j > cn) ≤ hp(bn)
dp

nbn

�n∑

j=1

EXn,j

=
bp−1
n

∑�n

j=1 E‖Vn,j‖
dp

n

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
n

, if
�n∑

j=1

E‖Vn,j‖ > 0,

0, if
�n∑

j=1

E‖Vn,j‖ = 0

→ 0 as n → ∞
verifying (1.3) and (1.4). We also have

hp(cn)
cn

= cp−1
n =

(
bn

2n

)p−1

and
hp(bn)

bn
= bp−1

n , n ≥ 1.

Therefore (1.5) also holds.
The proof of the theorem is completed. �

5 Some Interesting Examples

In this section, we present four examples which illustrate the results in Section 3.
The first example, which is inspired by Example 4.3 of Rosalsky and Thành [12], shows that

in Theorem 3.1, we cannot obtain a.s. convergence in (3.2).

Example 5.1 Let 1 ≤ p = q < 2 and {Xn, n ≥ 1} be a sequence of independent real-valued
random variables such that

P(Xn = 0) = 1 − 1
(n + 1) log(n + 1)

, P(Xn = ±(n + 1)1/p) =
1

2(n + 1) log(n + 1)
, n ≥ 1.



Mean Convergence Theorems for Double Sums 1737

Then
E|Xn|p =

1
log(n + 1)

, n ≥ 1.

Let km ≡ 1, �n ≡ n, and define an array {dm,n, m ≥ 1, n ≥ 1} of positive constants, and an
array {Vm,n,i,j , 1 ≤ i ≤ km, 1 ≤ j ≤ �n, m ≥ 1, n ≥ 1} of random variables by

dm,n = n1/p, m ≥ 1, n ≥ 1,

V1,n,1,j = Xj , 1 ≤ j ≤ n, n ≥ 1,

and
Vm,n,1,j = 0, 1 ≤ j ≤ n, m ≥ 2, n ≥ 1.

Then for m = 1 and n ≥ 1,

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E|Vm,n,i,j |q
dq

m,n
=

∑n
j=1 E|Xj |p

n

=
1
n

n∑

j=1

1
log(j + 1)

→ 0 as n → ∞,

and for m ≥ 2 and n ≥ 1,

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E|Vm,n,i,j |q
dq

m,n
= 0.

By Theorem 3.1 with any M ≥ 0, we have

max1≤k≤km,1≤�≤�n
|∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)|

dm,n

Lp→ 0 as m ∨ n → ∞.

We also have
∑k1

i=1

∑�n

j=1 V1,n,i,j

d1,n
=

∑n
j=1 Xj

n1/p
.

Rosalsky and Thành [12, Example 4.3] showed that
∑n

j=1 Xj

n1/p
� 0 a.s. as n → ∞.

Therefore

max1≤k≤km,1≤�≤�n
|∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)|

dm,n

≥ |∑k1
i=1

∑�n

j=1 V1,n,i,j |
dm,n

� 0 a.s. as m ∨ n → ∞

and so a.s. convergence does not hold in (3.2).

The second example shows that in Theorem 3.1, the M -dependence hypothesis cannot be
dispensed with.

Example 5.2 Let q = p > 1, km ≡ m, �n ≡ n, dm,n ≡ mn, and let X be a real-valued random
variable with

P(X = −1) = P(X = 1) =
1
2
.
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Let {Vm,n,i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, m ≥ 1, n ≥ 1} be an array of random variables with

Vm,n,i,j = X a.s., 1 ≤ i ≤ m, 1 ≤ j ≤ n, m ≥ 1, n ≥ 1.

Then for no M ≥ 0 is the double array {Vm,n,i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} comprised of
M -dependent random variables for m ∨ n > M + 1. Now

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

=
mn

(mn)q
→ 0 as m ∨ n → ∞

and so (3.1) holds. However,

max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖

dm,n

=
max1≤k≤km,1≤�≤�n

|k�X|
mn

=
mn|X|

mn
= 1 a.s.

for all m ≥ 1, n ≥ 1 and so (3.2) fails.

Apropos of Examples 5.3 and 5.4, for 1 ≤ p ≤ 2, we consider the real separable Banach
space lp consisting of absolute p-th power summable real sequences v = {vr, r ≥ 1} with norm
‖v‖ = (

∑∞
r=1 |vr|p)1/p. The element of lp having 1 in its r-th position and 0 elsewhere will

be denoted by v(r), r ≥ 1. Let ϕ : N × N → N be a one-to-one and onto map, and let
{Vi,j , i ≥ 1, j ≥ 1} be a double array of random elements in lp by requiring the Vi,j , i ≥ 1, j ≥ 1
to be independent with

P(Vi,j = v(ϕ(i,j))) = P(Vi,j = −v(ϕ(i,j))) =
1
2
, i ≥ 1, j ≥ 1.

The third example, which was inspired by Example 5.1 of Rosalsky and Thành [11], shows
that Theorem 3.1 can fail if the hypothesis that X is of Rademacher type p is dispensed with.

Example 5.3 Let X = l1, 1 < p ≤ 2. It is well known that l1 is not of Rademacher type p for
every 1 < p ≤ 2. Consider an array {Vm,n,i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, m ≥ 1, n ≥ 1} of l1-valued
random elements defined by

Vm,n,i,j = Vi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, m ≥ 1, n ≥ 1.

Let
q = p, km ≡ m, �n ≡ n, and dm,n ≡ mn.

Now

(km�n)q/p−1
∑km

i=1

∑�n

j=1 E‖Vm,n,i,j‖q

dq
m,n

=

∑m
i=1

∑n
j=1 1

(mn)p

=
mn

(mn)p
→ 0 as m ∨ n → ∞

and so all of the hypotheses of Theorem 3.1 (except for the Rademacher type p hypothesis) are
satisfied with any M ≥ 0. However,

max1≤k≤km,1≤�≤�n
‖∑k

i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖

dm,n
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=
max1≤k≤m,1≤�≤n k�

mn

=
mn

mn

= 1 a.s.

for all m ≥ 1, n ≥ 1 and so (3.2) fails.

Apropos of Corollary 3.4, the fourth example shows that for a double array of M -dependent
random elements in a real separable Rademacher type p Banach space and an increasing double
array {dm,n, m ≥ 1, n ≥ 1} of positive constants satisfying limm∨n→∞ dm,n = ∞, (3.6) can fail
if the condition (3.5) is weakened to

lim
i∨j→∞

E‖Vi,j‖p

dp
i,j

= 0. (5.1)

Example 5.4 was inspired by Example 5.1 of Rosalsky, Thành, and Thuy [13].

Example 5.4 Let 1 ≤ p ≤ 2 and X = lp. It is well known that lp is of Rademacher type p.
Let dm,n = (mn)1/p, m ≥ 1, n ≥ 1. Now

E‖Vi,j‖p

dp
i,j

=
1
ij

, i ≥ 1, j ≥ 1

and so (5.1) holds but (3.5) fails. All of the conditions of Corollary 3.4 (ii) are satisfied with
any M ≥ 0 except for (3.5). Moreover,

max1≤k≤m,1≤�≤n ‖∑k
i=1

∑�
j=1(Vm,n,i,j − EVm,n,i,j)‖

dm,n
=

max1≤k≤m,1≤�≤n(k�)1/p

(mn)1/p

=
(mn)1/p

(mn)1/p

= 1 a.s.

for all m ≥ 1, n ≥ 1 and so (3.6) also fails.
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