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Abstract. In this paper, we simplify the notion of stochastic domination in the Cesàro sense for arrays of random vari-
ables and provide some sharp sufficient conditions for a multidimensional array of random variables stochastically dom-
inated in the Cesàro sense. We establish relationships between stochastic domination in the Cesàro sense and uniform
integrability in the Cesàro sense for a random field. We give applications to the weak law of large numbers for multi-
dimensional arrays of random variables, extending a recent result [F. Boukhari, On a weak law of large numbers with
regularly varying normalizing sequences, J. Theor. Probab., 35:2068–2079, 2021] by a different method. We illustrate
the sharpness of the results by two examples.
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1 Introduction

Let Zd
+, where d is a positive integer, denote the positive integer d-dimensional lattice points. The notation

m ≺ n (or n � m) for m = (m1,m2, . . . ,md) and n = (n1, n2, . . . , nd) ∈ Z
d
+ means that mi � ni,

1 � i � d. Let 1 = (1, . . . , 1) ∈ Z
d
+. For n = (n1, n2, . . . , nd) ∈ Z

d
+, we denote |n| =

∏d
i=1 ni.

A d-dimensional array of random variables {Xn, n ∈ Z
d
+} is said to be stochastically dominated by a random

variableX if

sup
n�1

P
(|Xn| > x

)
� P

(|X| > x
)

for all x ∈ R.

This notion is an extension of that for identically distributed {Xn, n ∈ Z
d
+}. Fazekas [7], Gut [9], and Hu et

al. [12] proved various strong laws of large numbers for multidimensional arrays of random variables under
stochastic domination conditions.
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The notion of stochastic domination was extended to the notion of the so-called Cesàro stochastic domina-
tion by Gut [9] (for triangular arrays) and Fazekas and Tómács [8] (for d-dimensional arrays). A d-dimensional
array of random variables {Xn, n ∈ Z

d
+} is said to be stochastically dominated in the Cesàro sense (or weakly

mean dominated) by a random variable Y if

sup
n�1

1

|n|
∑

1≺i≺n

P
(|Xi| > x

)
� CP

(|Y | > x
)

for all x ∈ R. (1.1)

In this paper, by using some techniques developed by Rosalsky and Thành [15] we prove that the constantC
in (1.1) does not play any role, and the inequality in (1.1) can be replaced by equality. More precisely, we prove
that the Gut–Fazekas–Tómács definition is equivalent to the following: A d-dimensional array of random
variables {Xn, n ∈ Z

d
+} is stochastically dominated in the Cesàro sense by a random variableX if

sup
n�1

1

|n|
∑

1≺i≺n

P
(|Xi| > x

)
= P

(|X| > x
)

for all x ∈ R, (1.2)

that is, we can choose C = 1 in (1.1). We also establish relationships between stochastic domination in the
Cesàro sense and uniform integrability in the Cesàro sense (see Chandra [4, p. 309]) for multidimensional
arrays of random variables. Then we apply these results to establish the weak law of large numbers for multi-
dimensional arrays of random variables. A considerable extension of a recent result of Boukhari [3, Thm. 1.2]
is proved by a completely different method.

The rest of the paper is arranged as follows. In Section 2, we establish the equivalence of the definitions
of the Cesàro stochastic domination given by (1.1) and (1.2) and provide sharp sufficient conditions for a mul-
tidimensional array of random variables to be stochastically dominated in the Cesàro sense. In Section 3, we
present and prove relationships between stochastic domination in the Cesàro sense and uniform integrability
in the Cesàro sense. In Section 4, we give applications to the weak law of large numbers for multidimensional
arrays of random variables. Finally, in the Appendix, we prove a technical result.

2 On stochastic domination in the Cesàro sense

In this section, we prove some new results on the notion of stochastic domination in the Cesàro sense. For
a d-dimensional array of random variables {Xn, n ∈ Z

d
+}, the following proposition characterizes when the

function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R,

is the distribution function of a random variableX such that {Xn, n ∈ Z
d
+} is stochastically dominated byX

in the Cesàro sense. The proof is similar to that of Theorem 2.1 in [15] (see also Theorem 2.1 in [18]) and is
presented in the Appendix.

Proposition 1. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables, and let

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R.

Then F is nondecreasing and right continuous, and limx→−∞ F (x) = 0. Moreover, F is the distribution
function of a random variable X if and only if limx→+∞ F (x) = 1. In such a case, {Xn, n ∈ Z

d
+} is

stochastically dominated byX in the Cesàro sense.

Using Proposition 1, we can establish the equivalence of the definitions of the Cesàro stochastic domination
given (1.1) and (1.2) as follows.
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Theorem 1. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables. Then there exists a random

variable X satisfying (1.2) if and only if there exist a random variable Y and a finite constant C > 0 satisfy-
ing (1.1).

Proof. If there exists a random variable X satisfying (1.2), then (1.1) is immediate by taking Y = X and
C = 1. Conversely, assume that there exist a random variable Y and a finite constant C > 0 satisfying (1.1).
Then

lim
x→+∞ sup

n�1

1

|n|
∑

1≺i≺n

P
(|Xi| > x

)
� C lim

x→+∞P
(|Y | > x

)
= 0,

and so by Proposition 1 there exists a random variableX with the distribution function

F (x) = 1− sup
n�1

1

|n|
∑

1≺i≺n

P
(|Xi| > x

)
, x ∈ R,

satisfying (1.2). The proof of the theorem is completed. ��
In view of Theorem 1, in the rest of the paper, we will use the definition of Cesàro stochastic domination

as in (1.2). To provide useful sufficient conditions for the Cesàro stochastic domination, we will need some
notation and definitions. We recall that a real-valued function R is said to be regularly varying with the index
of regular variation ρ ∈ R if it is a positive and measurable function on [A,+∞) for some A > 0, and for each
λ > 0,

lim
x→+∞

R(λx)

R(x)
= λρ.

A regularly varying function with the index of regular variation ρ = 0 is called slowly varying. It is well known
that a function R is regularly varying with the index of regular variation ρ if and only if it can be written in the
form

R(x) = xρL(x),

where L is a slowly varying function (see, e.g., [16, p. 2]). Let L be a slowly varying function. Then by [2,
Thm. 1.5.13] there exists a slowly varying function L̃, unique up to asymptotic equivalence, satisfying

lim
x→+∞L(x)L̃

(
xL(x)

)
= 1 and lim

x→+∞ L̃(x)L
(
xL̃(x)

)
= 1.

The function L̃ is called the de Bruijn conjugate of L (see, e.g., Bingham et al. [2, p. 29]). If L(x) = logγ x
for some γ ∈ R, then L̃(x) = 1/L(x), where log x = log2 max{2, x}, x � 0.

In the rest of the paper, by Anh et al. [1, Lemmas 2.2 and 2.3] we can assume without loss of generality that
any regularly varying function with the index of regular variation ρ > 0 (resp., ρ < 0) is strictly increasing
(resp., decreasing). We can also assume that all considered slowly varying functions L are differentiable and
satisfy

lim
x→+∞

xL′(x)
L(x)

= 0.

We will need the following simple lemma in the next main result. See Rosalsky and Thành [15] for a proof.

Lemma 1. Let g : [0,+∞) → [0,+∞) be a measurable function with g(0) = 0 that is bounded on [0, A] and
differentiable on [A,+∞) for some A � 0. If ξ is a nonnegative random variable, then

E
(
g(ξ)

)
= E

(
g(ξ)1(ξ � A)

)
+ g(A) +

+∞∫

A

g′(x)P(ξ > x) dx.
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The following theorem shows that uniformly bounded moment-type conditions on a d-dimensional array
of random variables {Xn, n ∈ Z

d
+} can guarantee stochastic domination in the Cesàro sense.

Theorem 2. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables.

(i) Let g : [0,+∞) → [0,+∞) be a nondecreasing function on [A,+∞) for some A > 0 with
limx→+∞ g(x) = +∞. If

sup
n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
< +∞, (2.1)

then there exists a random variableX with the distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R,

such that {Xn, n ∈ Z
d
+} is stochastically dominated byX in the Cesàro sense.

(ii) Let L be a slowly varying function. If

sup
n�1

1

|n|
∑

i≺n

E
(|Xi|pL

(|Xi|
)
log

(|Xi|
)
log2

(
log

(|Xi|
)))

< +∞ for some p > 0, (2.2)

then there exists a random variableX with the distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R,

such that {Xn, n ∈ Z
d
+} is stochastically dominated byX in the Cesàro sense and

E
(|X|pL(|X|)) < +∞.

Proof. (i) By the monotonicity of g and the Markov inequality we have

sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
� 1

g(x)
sup
n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
for all x � A.

Since limx→+∞ g(x) = +∞, from (2.1) we have that

lim
x→+∞ sup

n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
� lim

x→+∞

[
1

g(x)
sup
n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
]

= 0.

By Proposition 1 the array {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense by a random

variableX with distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R.

This completes the proof of (i).

(ii) Let

g(x) = xpL(x) log(x) log2(log x), h(x) = xpL(x), x � 0.
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Since L is a slowly varying function, we have limx→+∞ xL′(x)/L(x) = 0. Then there exists B large enough
such that g and h are strictly increasing on [B,+∞) and |xL′(x)/L(x)| � p/2, x > B. Therefore

h′(x) = pxp−1L(x) + xpL′(x) = xp−1L(x)

(

p+
xL′(x)
L(x)

)

� 3pxp−1L(x)

2
, x > B. (2.3)

Since g is strictly increasing on [B,+∞), it follows from (2.2) and Theorem 2(i) that {Xn, n ∈ Z
d
+} is

stochastically dominated in the Cesàro sense by a random variableX with distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R.

Moreover, by the Markov inequality we have

sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
� 1

g(x)
sup
n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
for all x � B,

which is equivalent to

g(x)P
(|X| > x

)
� sup

n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
for all x � B. (2.4)

By Lemma 1, (2.2), (2.3), and (2.4) there exists a constant C1 such that

E
(
h
(|X|)) = E

(
h
(|X|)1(|X| � B

))
+ h(B) +

+∞∫

B

h′(x)P
(|X| > x

)
dx

� C1 +
3p

2

+∞∫

B

xp−1L(x)P
(|X| > x

)
dx

= C1 +
3p

2

+∞∫

B

g(x) sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
x−1 log−1(x) log−2(log x) dx

� C1 +
3p

2
sup
n�1

1

|n|
∑

i≺n

E
(
g
(|Xi|

))
+∞∫

B

x−1 log−1(x) log−2(log x) dx

< +∞.

The proof of (ii) is completed. ��

3 Relationships between stochastic domination and uniform integrability in the Cesàro sense

The notion of uniform integrability in the Cesàro sense for sequences of random variables was introduced by
Chandra [4]. Following Chandra [4], we say that a d-dimensional array of random variables {Xn, n ∈ Z

d
+} is

uniformly integrable in the Cesàro sense if

lim
a→+∞ sup

n�1

1

|n|
∑

i≺n

E
(|Xi|1

(|Xi| > a
))

= 0.
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The de la Vallée Poussin criterion for sequences of random variables was established by Chandra and
Goswami [5, p. 228]. For d-dimensional arrays, it is formulated as follows. The proof is the same as that of
Chandra and Goswami [5, p. 228] in the case d = 1 and can be found in [6].

Lemma 2. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables. Consider the following state-

ment:

(A) There exists a measurable function φ defined on [0,+∞) with φ(0) = 0 such that φ(t)/t → +∞ as
t → +∞ and

sup
n�1

1

|n|
∑

i≺n

E
(
φ
(|Xi|

))
< +∞.

Then the following statements hold:
(i) If (A) holds, then {Xn, n ∈ Z

d
+} is uniformly integrable in the Cesàro sense.

(ii) If {Xn, n ∈ Z
d
+} is uniformly integrable in the Cesàro sense, then (A) holds. Moreover, φ can

be chosen convex and such that φ(t)/t is increasing.

We will now establish relationships between stochastic domination in the Cesàro sense and uniform inte-
grability in the Cesàro sense for d-dimensional arrays of random variables. The main result of this section is
the following theorem.

Theorem 3. Let p > 0, let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables, and let L be a slowly

varying function.

(i) If {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense by a random variableX satisfying

E
(|X|pL(|X|p)) < +∞,

then {|Xn|pL(|Xn|p),n ∈ Z
d
+} is uniformly integrable in the Cesàro sense.

(ii) If {|Xn|pL(|Xn|p),n ∈ Z
d
+} is uniformly integrable in the Cesàro sense, then there exists a random

variableX with distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R,

such that {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense byX and

E

( |X|pL(|X|p)
log(|X|) log2(log(|X|))

)

< +∞. (3.1)

Moreover,

lim
n→+∞nP

(|X| > bn
)
= 0, (3.2)

where bn = n1/pL̃1/p(n), n � 1.

Proof. Let f(x) = xpL(xp) and g(x) = x1/pL̃1/p(x), x � 0. Recall that we assume f and g to be strictly
increasing on [0,+∞).

(i) Since E(|X|pL(|X|p)) < +∞, it follows from the de la Vallée Poussin criterion for uniform integra-
bility that there exists a continuous strictly increasing function h : [0,+∞) → [0,+∞) such that h(0) = 0,

Lith. Math. J., 63(1):44–57, 2023.



50 T.V. Dat, N.C. Dzung, and V.T.H. Van

limx→+∞ h(x)/x = +∞, and E(h(|X|pL(|X|p))) < +∞. Since f(x) is strictly increasing on [0,+∞), the
Cesàro stochastic domination assumption ensures that

sup
n�1

1

|n|
∑

i≺n

P
(
f
(|Xi|

)
> h−1(x)

)
= P

(
f
(|X|) > h−1(x)

)
, x ∈ R,

or, equivalently,

sup
n�1

1

|n|
∑

i≺n

P
(|Xi|pL

(|Xi|p
)
> h−1(x)) = P

(|X|pL(|X|p) > h−1(x)
)
, x ∈ R,

which in turn is equivalent to

sup
n�1

1

|n|
∑

i≺n

P
(
h
(|Xi|pL

(|Xi|p
))

> x
)
= P

(
h
(|X|pL(|X|p)) > x), x ∈ R.

It follows that

sup
n�1

1

|n|
∑

i≺n

E
(
h
(|Xi|pL

(|Xi|p
)))

= sup
n�1

1

|n|
∑

i≺n

+∞∫

0

P
(
h
(|Xi|pL

(|Xi|p
))

> x
)
dx

=

+∞∫

0

P
(
h
(|X|pL(|X|p)) > x

)
dx

= E
(
h
(|X|pL(|X|p))) < +∞.

By Lemma 2(i), {|Xn|pL(|Xn|p), n ∈ Z
d
+} is uniformly integrable in the Cesàro sense.

(ii) We now prove (ii). By Lemma 2(ii) there exists a nondecreasing function h on [0,+∞) with h(0) = 0
such that

lim
x→+∞

h(x)

x
= +∞ (3.3)

and

sup
n�1

1

|n|
∑

i≺n

E
(
h
(
f
(|Xi|

)))
= sup

n�1

1

|n|
∑

i≺n

E
(
h
(|Xi|pL

(|Xi|p
)))

< +∞, (3.4)

and so by Theorem 2(i), (3.4) implies that {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense by

a random variableX with distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R.

Since {|Xn|pL(|Xn|p),n ∈ Z
d
+} is uniformly integrable in the Cesàro sense, (3.1) follows from Theorem 2(ii).

We will now prove (3.2). By Anh et al. [1, Lemma 2.1] we have limx→+∞ f(g(x))/x = 1, and therefore

f
(
g(n)

)
>

n

2
for all large n. (3.5)
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Thus by (3.3), (3.4), (3.5), and Markov’s inequality we have that

lim
n→+∞nP

(|X| > bn
)
= lim

n→+∞n sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > g(n)

)

= lim
n→+∞n sup

n�1

1

|n|
∑

i≺n

P
(
f
(|Xi|

)
� f

(
g(n)

))

� lim
n→+∞n sup

n�1

1

|n|
∑

i≺n

P

(

f
(|Xi|

)
� n

2

)

= lim
n→+∞n sup

n�1

1

|n|
∑

i≺n

P

(

h
(
f
(|Xi|

))
� h

(
n

2

))

� lim
n→+∞n sup

n�1

1

|n|
∑

i≺n

E(h(f(|Xi|)))
h(n2 )

= 2 sup
n�1

1

|n|
∑

i≺n

E
(
h
(
f
(|Xi|

)))
lim

n→+∞

n
2

h(n2 )
= 0,

verifying (3.2). The proof of the theorem is completed. ��

As we will see in Section 4, (3.2) is a sufficient condition for the weak laws of large numbers in the
case 0 < p < 2. See [3, 5, 10, 11, 13, 14] and the references therein for other results of this type. We close this
section by presenting an example showing that in Theorem 3(ii) the assumption that{|Xn|pL(|Xn|p), n ∈ Z

d
+}

is uniformly integrable in the Cesàro sense cannot be weakened to the assumption that

sup
n�1

1

|n|
∑

i≺n

E
(|Xn|pL

(|Xn|p
))

< +∞. (3.6)

Example 1. Let p > 0, and let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables such that

P(Xn = 0) = 1− 1

|n| , P
(
Xn = |n|1/p) = 1

|n| , n � 1.

For the slowly varying function L(x) ≡ 1, we have

sup
n�1

1

|n|
∑

i≺n

E
(|Xn|pL

(|Xn|p
))

= sup
n�1

1

|n|
∑

i≺n

E
(|Xn|p

)
= 1,

verifying (3.6). By part (i) of Theorem 2, {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense by

a random variableX with distribution function

F (x) = 1− sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
, x ∈ R.

On the other hand, for all a > 0, we have

sup
n�1

1

|n|
∑

i≺n

E
(|Xn|p1

(|Xn| > a
))

= 1,
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which implies

lim
a→+∞ sup

n�1

1

|n|
∑

i≺n

E
(|Xn|p1

(|Xn| > a
))

= 1.

Therefore {|Xn|p,n ∈ Z
d
+} is not uniformly integrable in the Cesàro sense.

Now, for x ∈ R, let �x� be the smallest integer that is greater than x. Then

P(X > x) =

{
1 if x < 1,
1

�xp� if x � 1.
(3.7)

It follows from (3.7) that

lim
n→+∞nP

(
X > n1/p

)
= lim

n→+∞
n

n+ 1
= 1,

thereby showing that (3.2) fails.

4 Applications to weak laws of large numbers

In this section, we establish WLLNs for d-dimensional arrays of random variables under the Cesàro stochastic
domination condition without any dependence structure. Throughout this section, by C we denote a positive
universal constant, not necessarily the same in each appearance.

Firstly, we will present a general WLLN for d-dimensional arrays of random variables without any depen-
dence structure.

Theorem 4. Let 0 < p � 1. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables, and let

{bn, n � 1} be a nondecreasing sequence of positive constants. If

∑

i≺n

P
(
Xi = Yn,i

) → 0 as |n| → +∞ (4.1)

and
∑

i≺n E(|Yn,i|p)
bp|n|

→ 0 as |n| → +∞, (4.2)

where

Yn,i = Xi1
(|Xi| � b|n|

)
, 1 ≺ i ≺ n,n � 1,

then we have the WLLN
maxk≺n |

∑
i≺kXi|

b|n|
P→ 0 as |n| → +∞. (4.3)

Proof. Let ε > 0 be arbitrary. Firstly, by (4.1) we have

P

(
maxk≺n |

∑
i≺k(Xi − Yn,i)|
b|n|

> ε

)

� P

(∑

i≺n

Xi =
∑

i≺n

Yn,i

)

� P

( ⋃

i≺n

(|Xi| > b|n|
)
)

�
∑

i≺n

P
(|Xi| > b|n|

) → 0 as |n| → +∞.
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This implies

maxk≺n |
∑

i≺k(Xi − Yn,i)

b|n|
P→ 0 as |n| → +∞. (4.4)

Next, by Markov’s inequality, the Cp-inequality, and (4.2) we have

P

(
maxk≺n |

∑
i≺k Yn,i|

b|n|
> ε

)

�
E(maxk≺n |

∑
i≺k Yn,i|)p

εpbp|n|

�
E(

∑
i≺n |Yn,i|)p
εpbp|n|

�
E(

∑
i≺n |Yn,i|p)
εpbp|n|

=

∑
i≺n E(|Yn,i|p)

εpbp|n|
→ 0 as |n| → +∞.

This implies

maxk≺n |
∑

i≺k Yn,i|
b|n|

P→ 0 as |n| → +∞. (4.5)

Combining (4.4) and (4.5) yields (4.3). ��

The following theorem is the main result of this section. The particular case d = 1 of Theorem 5 con-
siderably extends Theorem 1.2 of Boukhari [3]. We note that our proof is completely different from that of
Theorem 1.2 of Boukhari [3].

Theorem 5. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables that is stochastically dominated

in the Cesàro sense by a random variable X. Let {bn, n � 1} be a nondecreasing sequence of positive
constants satisfying

n∑

k=1

bk
k2

= O

(
bn
n

)

. (4.6)

If

lim
k→+∞

kP
(|X| > bk

)
= 0, (4.7)

then we have the WLLN

maxk≺n |
∑

i≺kXi|
b|n|

P→ 0 as |n| → +∞. (4.8)

Proof. For n � 1, set

Yn,i = Xi1
(|Xi| � b|n|

)
, 1 ≺ i ≺ n.

We will verify conditions (4.1) and (4.2) of Theorem 4.
Firstly, by the Cesàro stochastic domination assumption and (4.7) we have

∑

i≺n

P
(|Xi| > b|n|

)
� |n|P(|X| > b|n|

) → 0 as |n| → +∞,

verifying (4.1).
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Secondly, from the triangular inequality and the Cesàro stochastic domination assumption we obtain that

∑
i≺n E(|Yn,i|)

εb|n|
� 1

εb|n|

∑

i≺n

b|n|∫

0

P
(|Xi| > t

)
dt � |n|

εb|n|

b|n|∫

0

P
(|X| > t

)
dt

=
|n|
εb|n|

|n|∑

k=1

bk∫

bk−1

P
(|X| > t

)
dt � |n|

εb|n|

|n|∑

k=1

(bk − bk−1)P
(|X| > bk−1

)

=
|n|
εb|n|

|n|∑

k=1

bk − bk−1

k
kP

(|X| > bk−1

)
. (4.9)

Now, when |n| � 2, by (4.6) we have

|n|
b|n|

|n|∑

k=1

bk − bk−1

k
=

|n|
b|n|

( |n|−1∑

k=1

bk
k(k + 1)

+
b|n|
|n|

)

� |n|
b|n|

( |n|−1∑

k=1

bk
k2

+
b|n|
|n|

)

� O(1). (4.10)

Boukhari proved that (4.6) implies bn/n → +∞ as n → +∞ (see, e.g., [3, Remark 2.4(i)]). Therefore, for all
fixed k � 1, by (4.7) we have

|n|
b|n|

(
bk − bk−1

k

)

→ 0 as |n| → +∞ and kP
(|X| > bk−1

) → 0 as k → +∞. (4.11)

Using (4.10) and (4.11) and applying the Toeplitz lemma, we have

|n|
εb|n|

|n|∑

k=1

bk − bk−1

k
kP

(|X| > bk−1

) → 0 as |n| → +∞. (4.12)

Combining (4.9) and (4.12) yields
∑

i≺n E(|Yn,i|)
b|n|

→ 0 as |n| → +∞,

thereby proving (4.2) with p = 1.
The WLLN (4.8) thus follows by applying Theorem 4. ��
The case d = 1 of Theorem 5 was proved by Boukhari [3, Thm. 1.2] under the condition that the array

{Xn, n ∈ Z
d
+} is stochastically dominated by a random variable X satisfying (4.7). The following example

illustrates that Theorem 1.2 of Boukhari [3] is strictly weaker than Theorem 5.

Example 2. Let 0 < p < 1 and bn ≡ n1/p, and let {Xn, n ∈ Z
d
+} be a d-dimensional array of random

variables such that
P(Xn = 0) = 1 for |n| = 2m, m � 0,

and

P
(
Xn = −m1/(2p)

)
= P

(
Xn = m1/(2p)

)
=

1

2
for |n| = 2m, m � 0. (4.13)
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For n � 1, letm � 0 be such that 2m � |n| < 2m+1. Then

sup
n�1

1

|n|
∑

i≺n

E
(|Xi|2p

)
� sup

n�1

1

|n|
∑

i≺n, log(|i|)∈Z1
+

log
(|i|) � C < +∞.

Therefore {Xn, n ∈ Z
d
+} is uniformly integrable in the Cesàro sense by the de la Vallée Poussin criterion for

the Cesàro uniform integrability (Lemma 2). Then by Theorem 3(ii) the array {Xn, n ∈ Z
d
+} is stochastically

dominated in the Cesàro sense by a random variable X, and condition (4.7) (with bn ≡ n1/p) is satisfied. We
can easily check that condition (4.6) is also satisfied. It thus follows from Theorem 5 that the WLLN (4.8)
holds.

On the other hand, we have from (4.13) that

sup
n�1

P
(|Xn| > x

)
= 1 for all x ∈ R.

This implies that there is no random variable X such that the d-dimensional array {Xn, n ∈ Z
d
+} is stochas-

tically dominated byX, and so we cannot apply Theorem 1.2 of Boukhari [3] even in the case d = 1.

Combining Theorems 3 and 5, we have the following result. Note that in Corollary 1, if L(x) ≡ 1, then
we obtain the Lp convergence in (4.14) (see [17, Thm. 2.1]). However, Corollary 1 is a new result for general
slowly varying functions L.

Corollary 1. Let 0 < p < 1. Let {Xn, n ∈ Z
d
+} be a d-dimensional array of random variables, and L be

a slowly varying function. If {|Xn|pL(|Xn|p), n ∈ Z
d
+} is uniformly integrable in the Cesàro sense, then

maxk≺n |
∑

i≺kXi|
b|n|

P→ 0 as |n| → +∞, (4.14)

where bn = n1/pL̃1/p(n), n � 1.

Proof. Since {|Xn|pL(|Xn|p), n ∈ Z
d
+} is uniformly integrable in the Cesàro sense, it follows from

Theorem 3 that {Xn, n ∈ Z
d
+} is stochastically dominated in the Cesàro sense by a random variable X

satisfying

lim
k→+∞

kP
(|X| > bk

)
= 0. (4.15)

By [3, Remark 2.4 (ii)] we have
n∑

k=1

bk
k2

= O

(
bn
n

)

. (4.16)

From (4.15) and (4.16) we obtain (4.14) by applying Theorem 5. ��

Appendix

Proof of Proposition 1. It is clear that F is nondecreasing. Since P(|Xi| > x) = 1 for all 1 ≺ i ≺ n and
x < 0, we have limx→−∞ F (x) = 0.

Let G(x) = supn�1(1/|n|)
∑

i≺n P(|Xi| > x), x ∈ R. To show that F is right continuous, we will show
that

lim
x→a+

G(x) = G(a) for all a ∈ R.
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Let ε > 0 and a ∈ R. Since G(a) = supn�1(1/|n|)
∑

i≺n P(|Xi| > a), there exists n0 � 1 such that

1

|n0|
∑

i≺n0

P
(|Xi| > a

)
> G(a) − ε

2
.

Since the function

x �→ 1

|n0|
∑

i≺n0

P
(|Xi| > x

)
, x ∈ R,

is nonincreasing and right continuous, there exists δ > 0 such that

−ε

2
<

1

|n0|
∑

i≺n0

P
(|Xi| > x

)− 1

|n0|
∑

i≺n0

P
(|Xi| > a

)
� 0 for all x such that 0 � x− a < δ.

Therefore, for x such that 0 � x− a < δ, we have

G(x) + ε = sup
n�1

1

|n|
∑

i≺n

P
(|Xi| > x

)
+ ε � 1

|n0|
∑

i≺n0

P
(|Xi| > x

)
+ ε

>
1

|n0|
∑

i≺n0

P
(|Xi| > a

)
+

ε

2
> G(a),

and so |G(x)−G(a)| < ε. Thus limx→a+ G(x) = G(a). Since F is nondecreasing and right continuous with
limx→−∞ F (x) = 0, it is the distribution function of a random variableX if and only if

lim
x→+∞F (x) = 1.

SinceP(|Xi| > x) = 1 for all 1 ≺ i ≺ n and x < 0, we have F (x) = 0 for all x < 0, that is,X � 0 almost
surely. By the definition of F it is clear that (1.2) holds, that is, {Xn, n ∈ Z

d
+} is stochastically dominated

by X in the Cesàro sense. ��
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