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Abstract
The aim of this study is to establish some Chung-type strong laws of large numbers
and almost complete convergence for arrays of measurable operators under various
conditions. Some related results in the literature are extended to the noncommutative
context.
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1 Introduction

As is well known, the law of large numbers (LLN) is an essential theory in probability,
statistics and related fields. The strong LLN for arrays of random variables was consid-
ered by several authors. For example, Hu and Taylor [7] presented some Chung-type
strong LLN’s for arrays of row-wise independent random variables. Bozorgnia et al.
[2] also obtained strong LLN’s for Banach spaces under conditions similar to those
of Chung [4] and Hu and Taylor [7] with appropriate modifications for the geometric
condition type p. Hu et al. [6] gave the complete convergence for arrays of row-wise
independent random variables, and Gut [5] extended their results. When considering
the complete convergence for arrays of random elements in Banach space, Taylor [15]
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and Hu et al. [8] also derived some interested results without the geometry of the
underlying Banach space.

In noncommutative probability theory, there are several versions of LLN, e.g., Batty
[1], Jaite [9] and Luczak [12] have proved someweak and strong LLN’s for a sequence
of successively independent measurable operators. Some strong LLN’s for positive
measurable operators have been established by Quang et al. [13], and Choi and Ji [3]
gave estimates of the rate of convergence for weighted sums of measurable operators.
Recently, Quang et al. [14] established several LLN’s for the sequence of measurable
operators under some kinds of uniform integrability. Other versions of LLN can be
found in Chao and YouLiang [16], Klimczak [10], Lindsay and Pata [11] and the
references cited therein. However, the strong LLN for arrays of measurable operators
has not yet been studied in our knowledge.

The main purpose of this paper is to give some Chung-type strong laws of large
numbers and the almost complete convergence for arrays of measurable operators
under various conditions. To do this purpose, we establish some new properties and
use the “mean type of the Multinomial theorem" for measurable operators. The layout
of this paper is as follows: In Sect. 2, we summarize some basic concepts and related
properties. Section 3will establish someChung-type strong LLN’s. Finally, the almost
complete convergence for arrays of measurable operators will be considered in Sect. 4.

2 Preliminaries

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators on
H . A von Neumann algebra is a subalgebra A of B(H) which is self-adjoint (that is,
if a ∈ A, then a∗ ∈ A ), contains 1, and is closed in the weak operator topology.

The range R(T ) and the null space N (T ) of a operator T ∈ B(H) are subspaces
of H ;N (T ) is closed, butR(T ) is not necessarily closed. A bounded linear operator
U is called a partial isometry if for h ∈ N (U )⊥, ‖U (h)‖ = ‖h‖. Let X be a densely
defined closed operator in H , |X | = (X∗X)1/2, and let U be the partial isometry
in the polar decomposition X = U |X | of X . Then, X is said to be affiliated to the
von Neumann algebra A if U and all the spectral projections of |X | belong to A. We
notate ˜A for the set of all operators which are affiliated to the von Neumann algebra
A. An element of ˜A is called ameasurable operator. Let τ be a faithful normal tracial
state onA. For notational consistency, ˜Awill be denoted by L0(A, τ ). Then, we have
natural inclusions:

A ≡ L∞(A, τ ) ⊂ Lq(A, τ ) ⊂ L p(A, τ ) ⊂ ... ⊂ L0(A, τ ) = ˜A

for 1 ≤ p ≤ q < ∞, where L p(A, τ ) is a Banach space of all elements in L0(A, τ )

satisfying

||X ||p = [τ(|X |p)] 1
p < ∞.

A densely defined closed operator X : H ⊇ D(X) �→ R(X) ⊆ H is called
positive, denoted by X ≥ 0, if X is self-adjoint and

〈

X(h), h
〉 ≥ 0 for all h ∈ D(X),
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where
〈·, ·〉 denotes the scalar product in Hilbert space H . Let S, T be densely defined

closed operators. We say that S ≤ T if T − S ≥ 0.
For two projection p, q in A, p is called a subprojection of q if p ≤ q. Note that

if p ≤ q, X ∈ ˜A and Xp, Xq ∈ A, then
∥

∥Xp
∥

∥∞ ≤ ∥∥Xq∥∥∞. Indeed, since p ≤ q,
we first show that N (p) ⊃ N (q). Let h ∈ N (q). Then, q(h) = 0. By ‖p(h)‖2 =
〈

p(h), p(h)
〉 = 〈p(h), h

〉 ≤ 〈q(h), h
〉 = 0, it follows that p(h) = 0, h ∈ N (p), and

hence, N (p) ⊃ N (q), which together H = R(p)
⊕N (p) = R(q)

⊕N (q), we
get R(p) ⊆ R(q), and it follows that

∥

∥Xp
∥

∥∞ = sup
{∥

∥Xp(h)
∥

∥ : ‖h‖ ≤ 1
} = sup

{∥

∥Xq [p(h)]
∥

∥ : ‖h‖ ≤ 1
}

≤ sup
{∥

∥Xq(k)
∥

∥ : ‖k‖ ≤ 1
} = ∥∥Xq∥∥∞.

Two projections p and q are said to be equivalent, written p ∼ q, if there exists
a partial isometry U in A such that U∗U = p and UU∗ = q. Then, since τ is
tracial, we have τ(p) = τ(q) when p ∼ q. For any projections p and q in A, we
have (p ∨ q − q) ∼ (p − p ∧ q), which implies that τ(p ∨ q) ≤ τ(p) + τ(q).
We denote p ≺ q if p is equivalent to a subprojection of q. If p ∧ q = 0, then
p ∼ (p ∨ q − q) ≤ 1 − q = q⊥, i.e., p ≺ q⊥, and hence, τ(p) ≤ τ(q⊥).

Let {Xn, n ≥ 1} be a sequence in L0(A, τ ) and X ∈ L0(A, τ ). We say that
The sequence {Xn, n ≥ 1} converges almost uniformly to X , denoted by Xn

a.u.−−→
X as n → ∞ if, for every ε > 0, there exists a projection p ∈ A such that
τ(p⊥) < ε, (Xn − X)p ∈ A, and

lim
n→∞
∥

∥(Xn − X)p
∥

∥∞ = 0.

The sequence {Xn, n ≥ 1} converges almost completely to X , denoted by Xn
a.c.−−→

X as n → ∞ if, for every ε > 0, there exists a sequence (qn) of projections in

A such that
∞
∑

n=1

τ(1 − qn) < ∞, (Xn − X)qn ∈ A, and
∥

∥(Xn − X)qn
∥

∥∞ < ε, for

n = 1, 2, ...
Denote eB(X) by the spectral projection of a self-adjoint operator X corresponding

to the Borel subset B of the real line R. Obviously, if
∞
∑

n=1

τ
[

e(ε,∞) (|Xn − X |)] < ∞

for every ε > 0, then Xn
a.c.−−→ X as n → ∞. Indeed, for every ε > 0, by choosing

1− qn = e(ε,∞) (|Xn − X |), we easily can get
∞
∑

n=1

τ(1− qn) < ∞, (Xn − X)qn ∈ A

and
∥

∥(Xn − X)qn
∥

∥∞ < ε.

Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of measurable operators. The array
{Xnk, 1 ≤ k ≤ n, n ≥ 1} is said to be uniformly bounded by a measurable operator X
if for all n, k and for every real number t > 0,

τ
[

e(t,∞)(|Xnk |)
] ≤ τ
[

e(t,∞)(|X |)] .
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For convenience, throughout of this paper, the symbol C will denote a generic
constant (0 < C < ∞) which is not necessarily the same one in each appearance.

3 Chung-Type Strong Laws

In this section, Chung-type strong laws of large numbers are obtained for arrays of
measurable operators.

At first, we present some lemmas which wewill use in the proof of our main results.
The following lemma is a slight generalization of the noncommutative version of

Chebyshev’ inequality.

Lemma 3.1 (See [13], Lemma 2.3) Let X ∈ L0(A, τ ), and let g : (0;∞) → (0;∞)

be a nondecreasing function such that τ(g(|X |)) < ∞. Then, for each ε > 0, we have

τ
(

e[ε,∞)(|X |)) ≤ τ(g(|X |))
g(ε)

.

Lemma 3.2 Let X be a self-adjoint element of A. Then, for each a ∈ R, we have

|X + a| ≤ |X | + |a|.

Proof Suppose that the spectral representation of the self-adjoint element X is

X =
+∞
∫

−∞
λedλ(X).

Then, for all h ∈ H , we have

〈

(|X | + |a|) (h), h
〉

−
〈

|X + a| (h), h
〉

=
+∞
∫

−∞
(|λ| + |a|) deh,h −

+∞
∫

−∞
|λ + a| deh,h

=
+∞
∫

−∞

[

(|λ| + |a|) − |λ + a| ]deh,h ≥ 0.

Hence,
〈

|X + a| (h), h
〉

≤
〈

(|X | + |a|) (h), h
〉

, for all h ∈ H .

This implies

|X + a| ≤ |X | + |a|.

(where eh,h is the positive measure on B(R), defined by eh,h(B) =
〈

e(B)(h), h
〉

for

any Borel subset B of R). ��
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Lemma 3.3 Suppose that r > 0 and X is a self-adjoint element of Lr (A, τ ). Then, for
each a ∈ R, we have

τ
(|X + a|r ) ≤ Cr

[

τ(|X |r + |a|r )] , where Cr = max{1, 2r−1}.

Proof As above, suppose that the spectral representation of the self-adjoint element
X is

X =
+∞
∫

−∞
λedλ(X).

Using the elementary inequality |α + β|r ≤ Cr (|α|r + |β|r ), for all α, β ∈ R, we
obtain

τ
(|X + a|r ) =

+∞
∫

−∞
|λ + a|rτ(edλ(X)

) ≤ Cr

+∞
∫

−∞

(

|λ|r + |a|r
)

τ
(

edλ(X)
)

= Cr

[

τ
(|X |r )+ |a|r

]

.

��
From now until the end of this section, we always suppose that {an, n ≥ 1} be a
sequence of positive real numbers such that an+1 > an and lim an = +∞.

Lemma 3.4 Let {Xni , 1 ≤ i ≤ n, n ≥ 1} be an array of measurable operators such
that

∞
∑

n=1

n
∑

i=1

τ
(

e(an ,∞)(|Xni |)
)

< ∞, (3.1)

Putting Yni = Xni e[0,an ](|Xni |),˜Sn =
n
∑

i=1
Yni , Sn =

n
∑

i=1
Xni , we have

Sn −˜Sn
an

a.u.−−→ 0 as n → ∞.

Proof Let ε > 0 be given.

By (3.1), we can find an integer N such that
∞
∑

n=N+1

n
∑

i=1
τ
(

e(an ,∞)(|Xni |)
)

<
ε

3
.

Since Xki , Yki ∈ L0(A, τ ) for all 1 ≤ k ≤ N , 1 ≤ i ≤ k, there exist projections

p1, p2 in A (p1, p2 depend only on N ) with τ(p⊥
1 ) <

ε

3
, τ(p⊥

2 ) <
ε

3
such that

k
∑

i=1
Xki p1 ∈ A,

k
∑

i=1
Xki p2 ∈ A.
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Clearly, there exists an integer N1, such that, for n ≥ N1,

1

an

∥

∥

∥

∥

∥

N
∑

k=1

k
∑

i=1

Xki p1

∥

∥

∥

∥

∥

∞
<

ε

4
and

1

an

∥

∥

∥

∥

∥

N
∑

k=1

k
∑

i=1

Xki p2

∥

∥

∥

∥

∥

∞
<

ε

4
.

Put p = p1∧ p2∧
(

∧

n>N
e[0,an ](|Xn1|)

)

∧ ...∧
(

∧

n>N
e[0,an ](|Xnn|)

)

= p1∧ p2∧ p3,

where p3 =
(

∧

n>N
e[0,an ](|Xn1|)

)

∧ ... ∧
(

∧

n>N
e[0,an ](|Xnn|)

)

.

We have

τ(p⊥) ≤ τ(p⊥
1 ) + τ(p⊥

2 ) + τ(p⊥
3 ) ≤ τ(p⊥

1 ) + τ(p⊥
2 )

+
∞
∑

n=N+1

n
∑

i=1

τ
(

e(an ,∞)(|Xni |)
)

< ε.

Then, for n ≥ max{N , N1},
∥

∥

∥

∥

Sn −˜Sn
an

p

∥

∥

∥

∥∞
=
∥

∥

∥

∥

∥

1

an

n
∑

i=1

(Xni − Yni )p

∥

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

∥

1

an

[

n
∑

k=1

k
∑

i=1

(Xki − Yki ) −
n−1
∑

k=1

k
∑

i=1

(Xki − Yki )

]

p

∥

∥

∥

∥

∥

∞

≤ 1

an

∥

∥

∥

∥

∥

n
∑

k=1

k
∑

i=1

(Xki − Yki )p

∥

∥

∥

∥

∥

∞
+ 1

an

∥

∥

∥

∥

∥

n−1
∑

k=1

k
∑

i=1

(Xki − Yki )p

∥

∥

∥

∥

∥

∞

≤ 2

an

∥

∥

∥

∥

∥

N
∑

k=1

k
∑

i=1

(Xki − Yki )p

∥

∥

∥

∥

∥

∞
+ 1

an

∥

∥

∥

∥

∥

n
∑

k=N+1

k
∑

i=1

(Xki − Yki )p

∥

∥

∥

∥

∥

∞

+ 1

an

∥

∥

∥

∥

∥

n−1
∑

k=N+1

k
∑

i=1

(Xki − Yki )p

∥

∥

∥

∥

∥

∞

≤ 2

an

∥

∥

∥

∥

∥

N
∑

k=1

k
∑

i=1

Xki p1

∥

∥

∥

∥

∥

∞
+ 2

an

∥

∥

∥

∥

∥

N
∑

k=1

k
∑

i=1

Yki p2

∥

∥

∥

∥

∥

∞

+ 1

an

∥

∥

∥

∥

∥

n
∑

k=N+1

k
∑

i=1

(Xki − Yki )p3

∥

∥

∥

∥

∥

∞

+ 1

an

∥

∥

∥

∥

∥

n−1
∑

k=N+1

k
∑

i=1

(Xki − Yki )p3

∥

∥

∥

∥

∥

∞
<

ε

2
+ ε

2
+ 0 + 0 = ε.
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Hence,

Sn −˜Sn
an

a.u.−−→ 0 as n → ∞.

��

Letψ(t) be a positive, even, continuous function such that
ψ(|t |)
|t |p is amonotonically

increasing function of |t | and ψ(|t |)
|t |p+1 is a monotonically decreasing function of |t |,

respectively, that is,

ψ(|t |)
|t |p ↑ and

ψ(|t |)
|t |p+1 ↓ as |t | ↑ (3.2)

for some nonnegative integer p.
Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of self-adjointmeasurable operators.
Consider the following conditions:

+ τ(Xnk) = 0, (3.3)

+
∞
∑

n=1

n
∑

k=1

τ (ψ(Xnk))

ψ(an)
< ∞. (3.4)

We define Ynk = Xnke[0,an ] (|Xnk |) and Wnk = Ynk − τ(Ynk)

an
. For some positive

integer s, we have

+
∞
∑

n=1

(

n
∑

k=1

τ

(

∣

∣

∣

∣

Xnk

an

∣

∣

∣

∣

2
))2s

< ∞, (3.5)

and

+ τ

⎛

⎝

2ps
∏

j=1

Wnk j

⎞

⎠ ≤
t
∏

i=1

τ
(

Wαi
nsi

)

, (α1 + α2 + ... + αt = 2ps) (3.6)

whereWnsi , 1 ≤ i ≤ t are the distinguishing operators of the sequence {Wni , 1 ≤ i ≤
n} and the operator Wnsi appears αi -times in

2ps
∏

j=1
Wnk j .

The conclusion of interest is

1

an

n
∑

k=1

Xnk
a.u.−−→ 0 as n → ∞. (3.7)
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(3.4) is a necessary condition for strong law of large numbers (3.7) to hold in some
sense (see Chung [4]), even in the case of random variables. Different strong laws of
large numbers are obtained for the integers p ≥ 2, p = 1, and p = 0. These strong
laws of large numbers are explicitly stated in Theorems 3.5, 3.8, and 3.9.

Theorem 3.5 Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of self-adjoint measur-
able operators. Let ψ(t) satisfy (3.2) for some integer p ≥ 2. Then, the conditions
(3.3),(3.4),(3.5) and (3.6) imply (3.7).

Proof For each n ≥ 1, put

Y ∗
nk = Xnke(an ,∞)(|Xnk |), Sn =

n
∑

k=1

Xnk, ˜Sn =
n
∑

k=1

Ynk .

We prove that, as n −→ ∞,

Sn −˜Sn
an

a.u.−−→ 0, (3.8)

τ(˜Sn)

an
−→ 0, (3.9)

and

˜Sn − τ(˜Sn)

an

a.u.−−→ 0. (3.10)

Since ψ(|t |) is an increasing function of |t |, from Lemma 3.1 and condition (3.4), we
get

∞
∑

n=1

n
∑

k=1

τ
[

e(an ,∞)(|Xnk |)
] ≤

∞
∑

n=1

n
∑

k=1

τ [ψ(Xnk)]

ψ(an)
< ∞,

which together with Lemma 3.4 yields (3.8).

To prove (3.9), since
ψ(|t |)

|t | is an increasing function of |t |, by conditions (3.3) and
(3.4), we get

∣

∣

∣

∣

∣

∞
∑

n=1

n
∑

k=1

τ(Ynk)

an

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∞
∑

n=1

n
∑

k=1

τ(Y ∗
nk)

an

∣

∣

∣

∣

∣

≤
∞
∑

n=1

n
∑

k=1

τ(|Y ∗
nk |)

an

=
∞
∑

n=1

n
∑

k=1

1

an
τ
[|Xnk |e(an ,∞)(|Xnk |)

]

=
∞
∑

n=1

n
∑

k=1

1

an

∫ +∞

an
λτ [edλ(|Xnk |)] =

∞
∑

n=1

n
∑

k=1

∫ +∞

an

λ

an
τ [edλ(|Xnk |)]
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≤
∞
∑

n=1

n
∑

k=1

∫ +∞

an

ψ(λ)

ψ(an)
τ [edλ(|Xnk |)]

(because
λ

an
<

ψ(λ)

ψ(an)
, for λ > an)

≤
∞
∑

n=1

n
∑

k=1

∫ +∞

−∞
ψ(λ)

ψ(an)
τ [edλ(|Xnk |)] =

∞
∑

n=1

n
∑

k=1

τ(ψ(Xnk))

ψ(an)
< ∞,

which implies that

n
∑

k=1

τ(Ynk)

an
−→ 0 as n → ∞,

so the condition (3.9) holds.
We now prove (3.10); note that for sufficiently large n, conditions (3.4) and (3.5)

provide that

(

n
∑

k=1

τ
(

ψ(Xnk)
)

ψ(an)

)

< 1 and

(

n
∑

k=1

τ

(

∣

∣

∣

∣

Xnk

an

∣

∣

∣

∣

2
))

< 1. (3.11)

By Lemma 3.3, for 1 ≤ u ≤ v, we obtain

τ(Wnk)
v ≤ τ(|Wnk |v) = τ

(∣

∣

∣

∣

Ynk − τ(Ynk)

an

∣

∣

∣

∣

v)

≤ 2v−1
[

τ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

v)

+
∣

∣

∣

∣

τ(Ynk)

an

∣

∣

∣

∣

v]

≤ 2vτ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

v)

= 2vτ

( |Xnk |ve[0,an ](|Xnk |)
av
n

)

= 2v

an
∫

0

∣

∣

∣

∣

λ

an

∣

∣

∣

∣

v

τ
(

edλ(|Xnk |)
)

≤ 2v

an
∫

0

∣

∣

∣

∣

λ

an

∣

∣

∣

∣

u

τ
(

edλ(|Xnk |)
)

= 2vτ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

u)

.

It means that

τ(Wnk)
v ≤ 2vτ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

v)

≤ 2vτ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

u)

. (3.12)

Next, similar to the technique in Hu and Taylor [7], we have

τ

(

n
∑

k=1

Wnk

)2ps

=
∑

k1,k2,...,k2ps

τ

⎛

⎝

2ps
∏

j=1

Wnk j

⎞

⎠ , (3.13)

where the sum is extended for all 2ps-tuples (k1, ..., k2ps) with k j = 1, 2, ..., n for
each j .
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It is very interesting that by the noncommutativity of the operators, in noncom-
mutative probability the “Multinomial theorem” is not true. However, using (3.6)
and proceeding as in [7], we get the “mean type of the Multinomial theorem" for

τ

(

n
∑

k=1
Wnk

)2ps

.

For each τ

(

2ps
∏

j=1
Wnk j

)

in the sum on the right side of (3.13), since the condi-

tion (3.6) and τ(Wnk) = 0, if there is a j with Wnki �= Wnk j for all i �= j , then

τ

(

2ps
∏

j=1
Wnk j

)

≤ 0. Therefore, using (3.6), (3.11), (3.12) and following the argument

of Hu and Taylor [7], we obtain that

∞
∑

n=1

τ

(

n
∑

k=1

Wnk

)2ps

≤ C
∞
∑

n=1

⎡

⎣

(

n
∑

k=1

τ

(

∣

∣

∣

∣

Xnk

an

∣

∣

∣

∣

2
))2s

+
(

n
∑

k=1

τ
(

ψ(Xnk)
)

ψ(an)

)

⎤

⎦ < ∞.

By applying Lemma 3.1, for any ε > 0, we get

∞
∑

n=1

τ

(

e(ε,∞)

(∣

∣

∣

∣

∣

n
∑

k=1

Wnk

∣

∣

∣

∣

∣

))

≤ 1

ε2ps

∞
∑

n=1

τ

⎛

⎝

∣

∣

∣

∣

∣

n
∑

k=1

Wnk

∣

∣

∣

∣

∣

2ps
⎞

⎠

= 1

ε2ps

∞
∑

n=1

τ

(

n
∑

k=1

Wnk

)2ps

< ∞,

which implies that

n
∑

k=1

Wnk
a.u.−−→ 0 as n → ∞,

and hence, (3.10) holds. The proof is completed. ��
Remark 3.6 It is obvious that the condition (3.6) is satisfied for an array of row-wise
independent real-valued random variables.Moreover, the other conditions of Theorem
3.5 are the same as the ones of Theorem 2.1 of Hu and Taylor [7]. Hence, Theorem
3.5 is an extension of Theorem 2.1 of Hu and Taylor [7] to noncommutative context.

The following example shows a triangular arrayof self-adjointmeasurable operators
satisfying the conditions (3.3–3.6), but its elements do not commute

Example 3.7 Let M2 be the algebra of 2 × 2 complex matrices, I2 be the identity of

M2, and τ be the unique tracial state, and let ψ(t) = t p+ 1
2 .
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Fix

A = 1√
2

(

1 1
1 −1

)

, B = 1√
2

(−1 1
1 1

)

.

Then,

AB =
(

0 1
−1 0

)

, BA =
(

0 −1
1 0

)

,

and for every positive integer k, we have that

A2k = B2k = I2,

A2k+1 = A, B2k+1 = B,

(AB)4k = (BA)4k = I2,

(AB)4k+1 = AB, (BA)4k+1 = BA,

(AB)4k+2 = (BA)4k+2 = −I2,

(AB)4k+3 = −AB, (BA)4k+3 = −BA. (3.14)

We consider the array of matrices {Xnk, 1 ≤ k ≤ n, n ≥ 1} as follows:
For n = 1, we choose X11 = A.
For n ≥ 2, we put Xn1 = A, Xnj = B for 2 ≤ j ≤ n.
Then, the condition (3.3) holds.
For each n, let

an=max

⎧

⎪

⎨

⎪

⎩

(

n.2n . max
1≤k≤n

τ
(

ψ(Xnk)
)

)

2

2p + 1 ,

(

n.2n . max
1≤k≤n

τ(|Xnk |2)
)1/2

, n+1

⎫

⎪

⎬

⎪

⎭

.

Then, the conditions (3.4) and (3.5) hold.
Since

|A| = |B| =
(

1 0
0 1

)

= I2

with the eigenvalue 1, then Ynk = Xnk for all n and k.

Therefore, W11 = 1

a1
A, and for every n ≥ 2, Wn1 = 1

an
A, Wnj = 1

an
B for

2 ≤ j ≤ n.

In each
2ps
∏

j=1
Wnk j , assume that the operators A, B appear a-times and b-times (a +

b = 2ps), respectively.
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If the numbers a, b are odd, then by (3.14), it implies that
2ps
∏

j=1
Wnk j can be equal to

(AB)2k+1 or equal to (BA)2k+1. In this case, τ

(

2ps
∏

j=1
Wnk j

)

= 0 and τ(Aa).τ (Bb) =
0, so the condition (3.6) holds.

If the numbers a, b are even, then by (3.14), it implies that
2ps
∏

j=1
Wnk j can be equal

to I2, or equal to (AB)2k , or equal to (BA)2k . In this case, τ

(

2ps
∏

j=1
Wnk j

)

= 1 or

τ

(

2ps
∏

j=1
Wnk j

)

= −1, and also τ(Aa).τ (Bb) = 1. So, the condition (3.6) holds.

However, if n is odd (n > 1), then
n
∏

k=1
Wnk = ABB...B = A, and

Wnj

n
∏

k=1,k �= j
Wnk = BABB...B = BAB = 1√

2

(−1 −1
−1 1

)

�= A, for every 2 ≤ j ≤ n.

Also, if n is even, then
n
∏

k=1
Wnk = ABB...B = AB, and

Wnj

n
∏

k=1,k �= j

Wnk = BABB...B = BA �= AB, for every 2 ≤ j ≤ n.

Therefore,

n
∏

k=1

Wnk �= Wnj

n
∏

k=1,k �= j

Wnk for every n ≥ 2 and 2 ≤ j ≤ n.

Theorem 3.8 Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of self-adjoint measurable
operators. Let ψ(t) satisfy (3.2) for p = 1. Then, conditions (3.3), (3.4) and (3.6)
imply (3.7).

Proof As in proof of Theorem 3.5, for each n ≥ 1, we put

Ynk = Xnke[0,an ](|Xnk |).

We can easily verify (3.8) and (3.9). It remains to prove (3.10), and we show that

1

an

n
∑

k=1

[

Ynk − τ(Ynk)
] a.u.−−→ 0 as n → ∞.
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Observe that

τ
(

ψ(Ynk)
)

=
+∞
∫

−∞
ψ(λ)1[0;an ](λ)τ

(

edλ(Xnk)
)

=
an
∫

0

ψ(λ)τ
(

edλ(Xnk)
)

≤
+∞
∫

−∞
ψ(λ)τ

(

edλ(Xnk)
)

= τ
(

ψ(Xnk)
)

,

(where 1B is indicator function of a Borel subset B of R),
which implies that

∞
∑

n=1

n
∑

k=1

τ

(

ψ(Ynk)

ψ(an)

)

≤
∞
∑

n=1

n
∑

k=1

τ

(

ψ(Xnk)

ψ(an)

)

< ∞.

Thus, condition (3.4) holds for {Ynk}.
By p = 1, condition (3.2) reduces to

ψ(|t |)
|t | ↑ and

ψ(|t |)
|t |2 ↓ as |t | ↑ .

Since
ψ(|t |)
|t |2 is a monotonically decreasing function of |t |, we have

τ

(

∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

2
)

=
an
∫

0

|λ|2
a2n

τ
(

edλ(|Xnk |)
)

≤
an
∫

0

ψ(|λ|)
ψ(an)

τ
(

edλ(|Xnk |)
)

= τ

(

ψ(Ynk)

ψ(an)

)

.

Therefore, for all positive integer s, we have

∞
∑

n=1

(

n
∑

k=1

τ

(

∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

2
))2s

≤
∞
∑

n=1

(

n
∑

k=1

τ

(

ψ(Ynk)

ψ(an)

)

)2s

≤
∞
∑

n=1

n
∑

k=1

τ

(

ψ(Ynk)

ψ(an)

)

≤
∞
∑

n=1

n
∑

k=1

τ

(

ψ(Xnk)

ψ(an)

)

< ∞.

This follows that condition (3.5) holds for {Ynk}, and the proof of Theorem 3.8 follows
from the proof of Theorem 3.5. ��
When condition (3.2) holds for p = 0, conditions (3.3), (3.5) and (3.6) are no longer
needed.

Theorem 3.9 Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of self-adjoint measurable
operators. Let ψ(t) satisfy (3.2) for p = 0. Then, condition (3.4) implies (3.7).

Proof Condition (3.8) follows since ψ(|t |) is a monotonically increasing function of
|t |.
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If the condition (3.2) holds for p = 0, then
ψ (|t |)

|t | is a monotonically decreasing

function of |t |.
Therefore,

τ

( |Ynk |
an

)

=
an
∫

0

|λ|
an

τ
(

edλ(|Xnk |)
)

≤
an
∫

0

ψ(|λ|)
ψ(an)

τ
(

edλ(|Xnk |)
)

= τ

(

ψ(Ynk)

ψ(an)

)

,

and hence, by the condition (3.4), we have

∞
∑

n=1

∣

∣

∣

∣

∣

1

an

n
∑

k=1

τ(Ynk)

∣

∣

∣

∣

∣

≤
∞
∑

n=1

n
∑

k=1

τ(|Ynk |)
an

≤
∞
∑

n=1

n
∑

k=1

τ (ψ(Ynk))

ψ(an)

≤
∞
∑

n=1

n
∑

k=1

τ (ψ(Xnk))

ψ(an)
< ∞,

which implies that
∞
∑

n=1

1

an

n
∑

k=1

τ(Ynk) converges. Thus, by the Kronecker lemma, we

get

1

an

n
∑

k=1

τ(Ynk) → 0 as n → ∞,

so the condition (3.9) holds.
In addition, using Lemma 3.1 and condition (3.4), we obtain, for arbitrary ε > 0,

∞
∑

n=1

τ

[

e(ε,∞)

(∣

∣

∣

∣

∣

1

an

n
∑

k=1

Ynk

∣

∣

∣

∣

∣

)]

≤ 1

ε

∞
∑

n=1

n
∑

k=1

τ

(∣

∣

∣

∣

Ynk
an

∣

∣

∣

∣

)

≤
∞
∑

n=1

n
∑

k=1

τ (ψ(Xnk))

ψ(an)
< ∞.

It follows that (3.10) holds, and the proof is completed. ��

4 Almost Complete Convergence for Arrays of Measurable Operators

We need some more lemmas

Lemma 4.1 Let {Xn, n ≥ 1}, {Yn, n ≥ 1} be two sequences of measurable operators
such that Xn − Yn

a.c.−−→ 0 and Yn
a.c.−−→ 0. Then, we have Xn

a.c.−−→ 0.

Proof Let ε > 0 be given.
Since Xn − Yn

a.c.−−→ 0, there exists a sequence (pn) of projections in A such that
∞
∑

n=1

τ(1 − pn) < ∞, (Xn − Yn)pn ∈ A, and
∥

∥

∥(Xn − Yn)pn
∥

∥

∥∞ <
ε

2
.
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Since Yn
a.c.−−→ 0, there exists a sequence (qn) of projections inA such that

∞
∑

n=1

τ(1−

qn) < ∞, Ynqn ∈ A, and
∥

∥

∥Ynqn
∥

∥

∥∞ <
ε

2
.

Put rn = pn ∧ qn , we have
∞
∑

n=1

τ(1 − rn) ≤
∞
∑

n=1

τ(1 − pn) +
∞
∑

n=1

τ(1 − qn) < ∞,

Xnrn ∈ A, and
∥

∥

∥Xnrn
∥

∥

∥∞ ≤
∥

∥

∥(Xn − Yn)rn
∥

∥

∥∞ +
∥

∥

∥Ynrn
∥

∥

∥∞ ≤
∥

∥

∥(Xn − Yn)pn
∥

∥

∥∞ +
∥

∥

∥Ynqn
∥

∥

∥∞ <

ε

2
+ ε

2
= ε.

It follows that Xn
a.c.−−→ 0. ��

Remark 4.2 Lemma 4.1 yields that if {Xn, n ≥ 1} is a sequence of measurable oper-
ators and {an, n ≥ 1} is a numerical sequence such that Xn

a.c.−−→ 0 and an → 0, then
Xn + an

a.c.−−→ 0.

Lemma 4.3 For any r ≥ 1, let X be a self-adjoint measurable operators such that
τ
(|X |r ) < ∞. Then, we have

r

2r

∞
∑

n=1

nr−1τ
(

e(n,∞)(|X |)) ≤ τ
(|X |r ) .

Proof By direct computation using Fubini’s theorem, we have

τ
(|X |r ) =

∞
∫

0

|λ|rτ(edλ(|X |))

= r

∞
∫

0

⎛

⎝

λ
∫

0

tr−1dt

⎞

⎠ τ
(

edλ(|X |)) = r

∞
∫

0

tr−1

⎛

⎝

∞
∫

t

τ
(

edλ(|X |))
⎞

⎠ dt

≥ r
∞
∑

n=0

n+1
∫

n

tr−1

⎛

⎝

∞
∫

t

τ
(

edλ(|X |))
⎞

⎠ dt ≥ r
∞
∑

n=0

n+1
∫

n

tr−1

⎛

⎝

∞
∫

n+1

τ (edλ(|X |))
⎞

⎠ dt

= r

⎧

⎨

⎩

1
∫

0

tr−1

⎛

⎝

∞
∫

1

τ (edλ(|X |))
⎞

⎠ dt +
∞
∑

n=1

n+1
∫

n

tr−1

⎛

⎝

∞
∫

n+1

τ (edλ(|X |))
⎞

⎠ dt

⎫

⎬

⎭

≥ r

{

τ
(

e(1,∞)(|X |))+
∞
∑

n=1

nr−1τ
(

e(n+1,∞)(|X |))
}

≥ r

{

τ
(

e(1,∞)(|X |))+
∞
∑

n=2

(n − 1)r−1τ
(

e(n,∞)(|X |))
}
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≥ r

2r

∞
∑

n=1

nr−1τ
(

e(n,∞)(|X |)) .

��
In this section, we will consider an array {Xnk, 1 ≤ k ≤ n, n ≥ 1} of self-adjoint
measurable operators such that for all n and k

τ(Xnk) = 0, (4.1)

and such that {Xnk, 1 ≤ k ≤ n, n ≥ 1} is uniformly bounded by ameasurable operator
X with

τ(|X |2p) < ∞ for some 1 ≤ p < 2. (4.2)

Let Ynk = Xnke[0,n1/p] (|Xnk |) and Znk = Ynk − τ(Ynk). In addition, for all positive
integer v

+ τ

⎛

⎝

2v
∏

j=1

Znk j

⎞

⎠ ≤
t
∏

i=1

τ
(

Zαi
nsi

)

, (α1 + α2 + ... + αt = 2v) (4.3)

where Znsi , 1 ≤ i ≤ t are the distinguishing operators of the sequence {Zni , 1 ≤ i ≤
n} and the operator Znsi appears αi -times in

2v
∏

j=1
Znk j .

Theorem 4.4 Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of self-adjoint measurable
operators such that (4.1), (4.3) are satisfied and {Xnk} are uniformly bounded by a
measurable operator X satisfying (4.2). Then,

1

n1/p

n
∑

k=1

Xnk
a.c.−−→ 0 as n → ∞.

Proof Let

Sn = 1

n1/p

n
∑

k=1

Xnk, ˜Sn = 1

n1/p

n
∑

k=1

Ynk .

By Lemma 4.1, it suffices to prove that as n → ∞,

Sn −˜Sn a.c.−−→ 0, (4.4)

and

˜Sn
a.c.−−→ 0. (4.5)
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We first show (4.4). For any arbitrary ε > 0, we have

q ≡ e(ε,∞)

(|Sn −˜Sn|
) ∧
(

n
∧

k=1

e[0,n1/p](|Xnk |)
)

= 0

Indeed, if there exists h of norm one, h ∈ q(H), then h ∈ e[0,n1/p](|Xnk |), for all
1 ≤ k ≤ n, and consequently Xnk(h) = Ynk(h), which yields that Sn(h) = ˜Sn(h).

Thus, from the elementary properties of the spectral decomposition, we obtain

ε = ε‖h‖ ≤ ∥∥∣∣Sn −˜Sn
∣

∣e(ε,∞)

(∣

∣Sn −˜Sn
∣

∣

)

(h)
∥

∥∞ = ∥∥(Sn −˜Sn
)

(h)
∥

∥∞ = 0,

which is impossible, so q = 0 and this implies that

e(ε,∞)

(∣

∣Sn −˜Sn
∣

∣

) ≺
n
∨

k=1

e(n1/p,∞)(|Xnk |).

It follows that τ
(

e(ε,∞)

(∣

∣Sn −˜Sn
∣

∣

)

)

≤
n
∑

k=1
τ
(

e(n1/p,∞)(|Xnk |)
)

,

which together with Lemma 4.3 (with r = 2) yields

∞
∑

n=1

τ
(

e(ε,∞)

(∣

∣Sn −˜Sn
∣

∣

)

)

≤
∞
∑

n=1

n
∑

k=1

τ
(

e(n1/p,∞)(|Xnk |)
)

≤
∞
∑

n=1

nτ
(

e(n1/p,∞)(|X |)
)

=
∞
∑

n=1

nτ
(

e(n,∞)(|X |p)
)

≤ 2τ(|X |2p) < ∞,

so (4.4) holds.
To prove (4.5), by Remark 4.2, we will show that

1

n1/p

n
∑

k=1

τ (Ynk) → 0 as n → ∞, (4.6)

and

1

n1/p

n
∑

k=1

Znk
a.c.−−→ 0 as n → ∞. (4.7)

Since

Ynk = Xnke[0,n1/p] (|Xnk |) = Xnk − Xnke(n1/p,∞) (|Xnk |) ,
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and τ (Xnk) = 0, we have

|τ (Ynk)| ≤ τ
(|Xnk | e(n1/p,∞) (|Xnk |)

)

.

Thus,

∣

∣

∣

∣

∣

∞
∑

n=1

1

n1/p

n
∑

k=1

τ (Ynk)

∣

∣

∣

∣

∣

≤
∞
∑

n=1

1

n1/p

n
∑

k=1

τ
(|Xnk | e(n1/p ,∞) (|Xnk |)

)

=
∞
∑

n=1

1

n1/p

n
∑

k=1

⎧

⎪

⎨

⎪

⎩

n1/pτ
(

e(n1/p ,∞)(|Xnk |)
)+

∞
∫

n1/p

τ
(

e(t,∞)(|Xnk |)
)

dt

⎫

⎪

⎬

⎪

⎭

≤
∞
∑

n=1

⎧

⎪

⎨

⎪

⎩

nτ
(

e(n1/p ,∞)(|X |))+ n

n1/p

∞
∫

n1/p

τ
(

e(t,∞)(|X |)) dt

⎫

⎪

⎬

⎪

⎭

:= I1.

Putting t = n1/ps and applying Lemma 4.3 (with r = 2), we get

I1 =
∞
∑

n=1

nτ
(

e(n,∞)(|X |p))+
∞
∑

n=1

n

∞
∫

1

τ
(

e(n1/ps,∞)(|X |)) ds

≤ 2τ
(

|X |2p
)

+
∞
∫

1

∞
∑

n=1

nτ
(

e(n,∞)(|s−1X |p)
)

ds

≤ 2τ
(

|X |2p
)

+ 2

∞
∫

1

s−2pτ
(

|X |2p
)

ds

= 4p

2p − 1
τ
(

|X |2p
)

< ∞.

It follows that

∣

∣

∣

∣

∣

∞
∑

n=1

1

n1/p

n
∑

k=1

τ (Ynk)

∣

∣

∣

∣

∣

< ∞,

which together with Kronecker lemma yields (4.6).
We now prove (4.7). By Lemma 3.3, for 1 ≤ q ≤ 2p, we have

τ
(|Znk |q

) = τ
(|Ynk − τ(Ynk)|q

) ≤ 2qτ
(|Ynk |q

)

,

which implies that

[

τ
(|Znk |q

)]1/q ≤ 2
[

τ
(|Ynk |q

)]1/q ≤ 2
[

τ
(

|Ynk |2p
)]1/2p ≤ 2

[

τ
(

|X |2p
)]1/2p

,
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so that, by (4.2),

τ
(|Znk |q

) ≤ 2q
[

τ
(

|X |2p
)]q/2p

< ∞. (4.8)

In addition, by Lemma 3.2,

|Znk | ≤ |Znk | + |τ (Znk)| ≤ 2n1/p (4.9)

Let v denote the least integer such that

2v

3

(

2

p
− 1

)

> 1. (4.10)

It is easy to see that v >
3

2
p.

Following the arguments in proof of Theorem 3.5, we have

τ

(

n
∑

k=1

Znk

)2v

=
∑

k1,k2,...,k2v

τ

⎛

⎝

2v
∏

j=1

Znk j

⎞

⎠. (4.11)

By using (4.3), (4.8), (4.9) and techniques as in Hu et al. [6], we get

τ

(

n
∑

k=1

Znk

)2v

≤
n
∑

k=1

τ
(

Z2v
nk

)

+
v
∑

t=2

∑

q1,...,qm ; r1,...,rl

(t)n
2v
p −t−m

(

2
p−2
)

, (4.12)

where
∑(t) means that the sum is extended over all m-tuples (q1, ..., qm) and l-tuples

(r1, ..., rl) such that m + l = t with conditions

2 ≤ qi ≤ 2p, r j > 2p, and
m
∑

i=1

qi +
l
∑

j=1

r j = 2v.

Using Lemma 3.1 and (4.12), we obtain, for any ε > 0,

∞
∑

n=1

τ

[

e(ε,∞)

(∣

∣

∣

∣

∣

1

n1/p

n
∑

k=1

Znk

∣

∣

∣

∣

∣

)]

≤
∞
∑

n=1

1

(εn1/p)2v
τ

(

n
∑

k=1

Znk

)2v

≤ C

⎧

⎨

⎩

∞
∑

n=1

1

n2v/p

n
∑

k=1

τ
(

Z2v
nk

)

+
∞
∑

n=1

1

n2v/p

v
∑

t=2

∑

q1,...,qm ; r1,...,rl

(t)n
2v
p −t−m

(

2
p −2
)

⎫

⎬

⎭

= C

⎧

⎨

⎩

∞
∑

n=1

1

n2v/p

n
∑

k=1

τ
(

Z2v
nk

)

+
v
∑

t=2

∑

q1,...,qm ; r1,...,rl

(t)
∞
∑

n=1

n
−t−m

(

2
p −2
)

⎫

⎬

⎭

:= C(I2 + I3). (4.13)
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For I2, by direct computation using Fubini’s theorem, we obtain that

I2 ≤ 22v
∞
∑

n=1

1

n2v/p

n
∑

k=1

τ
(

|Ynk |2v
)

= 22v
∞
∑

n=1

1

n2v/p

n
∑

k=1

τ

⎛

⎝

∞
∫

0

λ2v1[0,n1/p](λ)edλ (|Xnk |)
⎞

⎠

= 22v
∞
∑

n=1

1

n2v/p

n
∑

k=1

2v.τ

⎛

⎝

∞
∫

0

⎛

⎝

λ
∫

0

t2v−1dt

⎞

⎠ 1[0,n1/p](λ)edλ (|Xnk |)
⎞

⎠

≤ 22v
∞
∑

n=1

1

n2v/p
2v

n
∑

k=1

⎛

⎜

⎝

n1/p
∫

0

t2v−1τ
[

e(t,∞) (|Xnk |)
]

dt

⎞

⎟

⎠

≤ 22v
∞
∑

n=1

1

n2v/p
2vn

⎛

⎜

⎝

n1/p
∫

0

t2v−1τ
[

e(t,∞) (|X |)] dt
⎞

⎟

⎠
. (4.14)

Putting t = n1/ps1/2v , by applying Lemma 4.1 (with r = 2), we have

22v
∞
∑

n=1

2vn

n2v/p

⎛

⎜

⎝

n1/p
∫

0

t2v−1τ
[

e(t,∞) (|X |)] dt
⎞

⎟

⎠

= 22v
∞
∑

n=1

n

1
∫

0

τ
[

e(n1/ps1/2v,∞) (|X |)] ds

= 22v
1
∫

0

∞
∑

n=1

nτ
[

e(n,∞)

(∣

∣

∣s−1/2vX
∣

∣

∣

p)]

ds

≤ 22v+1

1
∫

0

s−p/vτ
(

|X |2p
)

= 22v+1 v

v − p
τ
(

|X |2p
)

< ∞. (4.15)

For I3, by noting that t + m

(

2

p
− 2

)

> 1, we have the exponent of n which is less

than −1. Since the number of terms in each of
∑(t) is finite, we get

I3 < ∞. (4.16)
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Combining (4.13), (4.14), (4.15), and (4.16), for every ε > 0, we obtain

∞
∑

n=1

τ

[

e(ε,∞)

(∣

∣

∣

∣

∣

1

n1/p

n
∑

k=1

Znk

∣

∣

∣

∣

∣

)]

< ∞.

It follows that (4.7) holds, and thereby completing the proof of Theorem 4.4. ��
Remark 4.5 As in the Remark 3.6, the condition (4.3) is obvious for an array of
row-wise independent real-valued random variables. Hence, Theorem 4.4 is a non-
commutative version of Theorem 2 of Hu, Móricz and Taylor [6].
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